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a b s t r a c t 

Lung cancer has the highest mortality rate among all cancers in the world. Hence, early diagnosis and personal- 

ized treatment plans are crucial to improving its 5-year survival rate. Chest computed tomography (CT) serves as 

an essential tool for lung cancer screening, and pathology images are the gold standard for lung cancer diagnosis. 

However, medical image evaluation relies on manual labor and suffers from missed diagnosis or misdiagnosis, 

and physician heterogeneity. The rapid development of artificial intelligence (AI) has brought a whole novel op- 

portunity for medical task processing, demonstrating the potential for clinical application in lung cancer diagnosis 

and treatment. AI technologies, including machine learning and deep learning, have been deployed extensively 

for lung nodule detection, benign and malignant classification, and subtype identification based on CT images. 

Furthermore, AI plays a role in the non-invasive prediction of genetic mutations and molecular status to provide 

the optimal treatment regimen, and applies to the assessment of therapeutic efficacy and prognosis of lung cancer 

patients, enabling precision medicine to become a reality. Meanwhile, histology-based AI models assist patholo- 

gists in typing, molecular characterization, and prognosis prediction to enhance the efficiency of diagnosis and 

treatment. However, the leap to extensive clinical application still faces various challenges, such as data sharing, 

standardized label acquisition, clinical application regulation, and multimodal integration. Nevertheless, AI holds 

promising potential in the field of lung cancer to improve cancer care. 
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Lung cancer remains the leading cause of all cancer deaths (18.0%)

round the world. 1 Although the treatment paradigm for lung cancer

as changed dramatically, its overall 5-year survival rate is below 20%,

hich is considerably lower than that of breast cancer and cervical can-

er. 2 The primary reason is that patients with lung cancer usually have

on-specific symptoms at an early stage, resulting in 68% of lung cancer

atients being diagnosed at an advanced stage. 3 Late-stage tumors pose

 significant public health burden. 4 Early and accurate diagnosis is the

ey to improving the prevention and treatment effect of lung cancer. 

Radiological images are powerful tools for pulmonary nodules

creening, diagnosis, and monitoring of lung cancer. Low-dose com-

uted tomography (LDCT) has been demonstrated to reduce lung can-

er mortality by 20% and is recommended for lung cancer screening.

ts sensitivity in detecting lung nodules is excellent; however, the speci-

city is limited, with 96% of the nodules being false-positive. 5 , 6 18 F-

uoro- d -glucose (FDG)-positron emission tomography (PET)/computed
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omography (CT) is a functional imaging tool developed based on CT

cans, which can accurately reflect the glucose metabolism of tumors. 7 , 8 

owever, large heterogeneity exists in the interpretation of imaging by

ifferent physicians, making it impossible to determine the characteris-

ics of the lesions. Currently, pathological confirmation remains the gold

tandard for tumor diagnosis. The interpretation of pathological slides

s a time-consuming and labor-intensive task that relies on the experi-

nce of the pathologists. There is an urgent need for imaging intelligence

ools with high automation, diagnostic efficiency, and accuracy to assist

n the precise management of pulmonary nodules. 

Over the past few years, the resurgence of artificial intelligence

AI) has revealed a promising potential to assist with complex medical

asks. 9 , 10 For instance, the deep learning system based on CT or chest

-ray images to diagnose coronavirus disease 2019 (COVID-19) pneu-

onia and deep convolutional neural networks (CNNs) to assess tumor

rigin utilizing whole-slide images (WSIs) have achieved superior per-

ormance. 11–14 AI is expected to reshape precision oncology care and

mprove the experience of clinicians. 15 In terms of lung cancer, AI is
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Fig. 1. Milestone of AI in lung cancer. LDCT: Low-dose computed tomography; NLST: National Lung Screening Trial; NELSON: Nederlands–Leuvens Longkanker 

Screenings Onderzoek; FDA: Food and Drug Administration; LUNA16: Lung Nodule Analysis 16. 
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lso utilized to detect lung nodules, predict genetic status, and distin-

uish pathological subtypes to facilitate precision medicine. 16–18 These

ovel models are able to extract high-throughput features in radiologic

mages and digital pathology to achieve comparable results to senior

octors and improve the diagnostic efficiency of physicians. 19 , 20 Nev-

rtheless, the clinical usability of AI models still requires improvement.

This study is aimed to promote the application of the latest AI tech-

ology in the field of lung cancer screening, diagnosis, treatment, and

rognosis. Of particular interest is the integration of basic, translational,

nd patient-oriented research. 

merging AI methods 

AI technologies greatly impact almost all aspects of oncology, from

ancer detection and classification to prediction of patient outcomes

y integrating and synthesizing data on clinical presentations, patient

istory, medical imaging, tumor pathology, and genomics to predict

he pathway of patient care and ultimately improve management de-

isions. 21 The first computer-aided diagnosis (CAD) system was exper-

mented for lung cancer to convert X-rays into a quantitative form for

omputer analysis. 22 Although this exploration did not lead to the detec-

ion or classification of lung nodules, it opened the path for computer-

ssisted lung cancer diagnosis by converting medical images into quan-

itative features. Since then, plenty of theoretical and empirical research

ork has been conducted in computer-aided lung cancer detection, di-

gnosis, and prediction ( Fig. 1 ). To date, several AI methods have been

mployed to detect and classify lung nodules. 

Machine learning extracts pre-defined features of a lesion. For exam-

le, the radiomics features of lung nodules based on CT or FDG-PET im-

ges include textural heterogeneity features, intensity-based measures,

hape and volumetric features, etc. 23 , 24 Moreover, statistical models

uch as random forest classifiers are used for modeling and analysis. Ra-

iomics and pathomics are relatively mature methods that require fine

ayer-by-layer annotation by physicians, and the heterogeneity of man-

al work might cause differences in features and affect the generality of

he model. 

Deep learning is a subfield of machine learning that includes com-

on neural networks such as deep neural networks (DNN), recurrent

eural network (RNN), and CNN. 25 , 26 DNN has a simple structure, each

ayer is connected to the neurons of the previous layer, and the sig-

al propagates unidirectionally from the input layer to the output layer.

NN utilizes a convolutional kernel to transform imaging data into deep

eatures through convolutional computation of the feedforward neu-

al network layers, resulting in a vector after pooling layers. This vec-
149 
or is then extended through various techniques, including fully CNNs

nd fully connected networks. It can directly take image data as in-

ut, eliminating the need for complex operations such as manual image

re-processing and additional feature extraction. Additionally, its fine-

rained feature extraction method enables the processing of images to

pproach a nearly human level of accuracy. More recently, advanced

eep learning methods have emerged to continuously improve the ef-

ciency of model operations such as the graph CNN and transformer

ipeline. 27 

The supervised learning model training process usually requires col-

ecting a large amount of labeled image data, which is a labor-intensive

rocess. However, semi-supervised learning and augmented learning

odels alleviate the reliance on manual labeling. 28 The deep learning

raining process is not transparent and thus hinders clinical applications

o a certain extent. In addition, there is complementarity between dif-

erent dimensions of information such as imaging, clinical indicators,

nd molecules. 29 The performance and mechanism of multimodal fu-

ion models need to be further investigated. 

I application in CT imaging for diagnosis 

CT imaging plays a significant role in the initial detection of pul-

onary nodules and diagnosis of lung cancer ( Table 1 ). 16 , 30–46 The crit-

cal tasks include detecting nodules, predicting the malignancy risk, and

lassifying the subtypes for precision therapy ( Fig. 2 ). 

esion detection 

Detection of lesions is time consuming and tedious and the effective-

ess of AI algorithms in lung nodule detection has been adequately doc-

mented. 47 In 2017, the Lung Nodule Analysis 16 (LUNA16) challenge

olicited nodule detection and classification algorithms from around the

orld. To provide a fair comparison between various nodule detection

nd classification algorithms, the challenge used the largest publicly

vailable Lung Image Database Consortium (LIDC)–Image Database Re-

ource Initiative (IDRI) dataset. The leading CAD system named Com-

ined LUNA16 used CNN networks with a sensitivity of 96.9%. 48 This

ystem even updated the LIDC–IDRI reference standard by identifying

odules missed in the original LIDC–IDRI annotations. 

Later, various deep learning models emerged. Lung nodule detection

sing a 3D deep CNN combined with a multiscale prediction strategy

chieved a sensitivity of 0.9293 at per scan. 30 In order to apply to CT

mages of different layer thicknesses, an innovative multi-resolution CT

ung nodule detection system was built with a sensitivity of 96.95% and
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Table 1 

Representative research of AI for lung cancer diagnosis based on CT images. 

Application Authors Year Dataset/sample size 

Imaging 

modality Algorithm Task Performance 

Nodule detection Gu et al. 30 2018 1186 nodules in the LUNA16 

database 

CT 3D deep CNN combined with a 

multi-scale prediction strategy 

Automatic lung nodule detection Sensitivity: 0.9293 on testing dataset 

Xu et al. 31 2019 1590 nodules CT Multiple neural network models Automatic lung nodule detection Sensitivity: 0.9695 and 0.9117 for 

ThinSet and ThickSet on testing dataset 

Malignancy evaluation Ardila et al. 16 2019 6716 patients from NLST and 

1139 cases for validation 

CT End-to-end three-dimensional deep 

learning 

Malignancy prediction and risk 

bucket score of lung nodules 

AUC: 0.944 on held-out NLST testing set 

Xu et al. 32 2019 548 nodules from LIDC-IDRI 

dataset 

CT MSCS neural networks – DeepLN Malignancy evaluation of lung 

nodules 

AUC: 0.94 on testing dataset 

Massion 

et al. 33 

2020 14,761 benign nodules and 

932 malignant nodules 

CT LCP-CNN Risk stratification of lung nodules AUC: 0.921 on internal validation dataset 

Baldwin 

et al. 34 

2020 1397 nodules (5–15 mm) CT LCP-CNN Malignancy evaluation of lung 

nodules 

AUC: 0.896 on external validation dataset 

Venkadesh 

et al. 35 

2021 16,077 nodules from NLST CT Deep learning Malignancy risk estimation of lung 

nodules 

AUC: 0.93 on external validation dataset 

Shi et al. 36 2021 3038 nodules CT Semi-supervised Deep Transfer Learning Benign–malignant lung nodule 

diagnosis 

AUC: 0.795 on independent testing 

dataset 

Park et al. 37 2021 359 patients CT and FDG 

PET/CT 

Deep learning classification models based 

on ResNet-18 

Malignant lung nodule diagnosis AUC: 0.837 on five-fold cross-validation 

Shao et al. 38 2022 12,360 participants CT Deep learning Detection and risk stratification of 

lung nodules 

AUC: 0.8516 on testing dataset 

Subtype classification Wu et al. 39 2016 350 patients CT Radiomics Histologic subtypes (LUAD vs. LUSC) 

prediction 

The highest AUC: 0.72 on validation 

dataset 

Zhao et al. 40 2018 651 nodules CT Dense Sharp Network Tumor invasiveness prediction ACC: 0.641 on testing dataset 

Hyun et al. 41 2019 396 patients 18 F-FDG PET/CT 4 clinical features (age, sex, tumor size, 

and smoking status) and 40 radiomic 

features 

Histologic subtypes (LUAD vs. LUSC) 

prediction 

AUC: 0.859 on testing dataset 

Han et al. 42 2021 867 LUAD and 552 LUSC 

patients 

PET/CT 10 feature selection techniques, 10 

machine learning models, and the VGG16 

deep learning algorithm 

Histologic subtypes (LUAD vs. LUSC) 

prediction 

The highest AUC: 0.903 on testing dataset 

Ren et al. 43 2021 315 NSCLC patients PET/CT Clinico-biological features and 

FDG-PET/CT radiomic-based nomogram 

via machine learning 

Histologic subtypes (LUAD vs. LUSC) 

prediction 

AUC: 0.901 on validation dataset 

Wang et al. 44 2021 1222 patients with LUAD CT Deep learning and radiomics Adenocarcinoma subtype 

classification 

AUC: 0.739–0.940 on internal validation 

dataset 

Choi et al. 45 2021 817 patients with clinical 

stage I LUAD 

CT Deep learning Prediction of visceral pleural invasion AUC: 0.75 on temporal validation dataset 

Zhong et al. 46 2022 3096 patients CT Deep learning N2 metastasis prediction and 

prognosis stratification 

AUC: 0.81 on prospective testing dataset 

AI: Artificial intelligence; ACC: Accuracy; AUC: Area under the curve; CNN: Convolutional neural network; 18 F-FDG PET/CT: Fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) computed 

tomography (CT); FROC: Free-response receiver operating characteristic; IPNs: Indeterminate pulmonary nodules; LCP-CNN: Lung Cancer Prediction-Convolutional Neural Network; LIDC: Lung Image Database 

Consortium; IDRI: Image Database Resource Initiative; LUAD: Lung adenocarcinoma; LUNA16: Lung Nodule Analysis 16; LUSC: Lung squamous cell carcinoma; MSCS: Multi-scale cost-sensitive; NLST: National Lung 

Screening Trial; NSCLC: Non-small cell lung cancer. 
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Fig. 2. Clinical process of CT-based AI models applied to lung cancer diagnosis and treatment. AI: Artificial intelligence; CT: Computed tomography. 
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a  
1.17% for lung nodules in thin and thick CT images, respectively. 31 To

ate, several lung nodule detection products have been approved by the

ood and Drug Administration (FDA) for practical use in clinical settings

o enhance physician efficiency. 21 

alignancy evaluation 

The powerful combination of LDCT and AI has led to a significant in-

rease in the efficiency of lung nodule detection. To reduce unnecessary

nvasive procedures, it is crucial to determine the malignancy of the

odules, although some non-invasive stratification models have been

roposed, such as the lung imaging reporting and data system (Lung-

ADS), PanCan model, and Mayo Clinic models, which rely on man-

al visual extraction of data on qualitative characteristics of nodules

ncluding nodule diameter, spiculation, and location with inter-grader

ariability. 6 Computer Aided Nodule Assessment and Risk Yield (CA-

ARY) is an image analysis software that has only been used in lung

denocarcinoma (LUAD) patients. 49 

The Google AI team pioneered the CT-based end-to-end deep learn-

ng model for predicting the malignancy probability of pulmonary nod-

les from the National Lung Screening Trial (NLST) cohort with an area

nder the curve (AUC) of 0.944, increasing sensitivity by 0.052 and

pecificity by 0.116 compared to specialists. 16 Lung Cancer Prediction-

onvolutional Neural Network (LCP-CNN) focused on CT images of

ndeterminate pulmonary nodules (IPNs) from the NLST dataset and

chieved a significantly improved AUC (0.921 on internal validation

ohort) over the clinically validated risk models (Brock and Mayo) on

isk stratification. 33 It further predicted malignant nodules with supe-

ior discriminatory properties and lower false negatives than the Brock

odel (AUC: 0.896 vs. 0.868) on the external validation dataset of 5–

5 mm lung nodules. 34 European researchers developed deep learning

lgorithms for malignancy risk estimation of lung nodules detected by

DCT, and the algorithms were generalizable across different screening

opulations and protocols with algorithm performance comparable to

hat of chest radiologists. 35 The AI-aided diagnosis system for lung can-

er screening based on mobile CT is successfully applied to community

ohorts in resource-limited regions of western China. It realized auto-
151 
atic lung nodule localization, risk stratification (AUC: 0.8516), and

onsultation recommendations in a lung cancer screening cohort. 38 Re-

ently, a deep learning model named Sybil was established to predict

he risk of lung cancer occurring 1–6 years after the screening. 50 Sur-

risingly, it achieved decent performance from a single LDCT scan (the

ighest concordance index [ C -index]: 0.81). 

Several challenges occur during the development of these systems,

uch as unbalanced samples. Our team innovated Multi-Scale Cost-

ensitive Neural Networks (MSCS-Net) and used a three-dimensional

NN as the backbone of a lightweight model to extract pulmonary nod-

le features from CT images. 32 The clipped multi-scale input could re-

lize a sub-network of learning multi-level context features, and solve

he problem of clinical small samples and class imbalance. Moreover, the

emi-supervised deep transfer learning (SDTL) framework could be used

or benign–malignant lung nodule diagnosis. 36 Specifically, a similar-

ty metric function is employed in the network semantic representation

pace to progressively include a small group of samples without patho-

ogical findings to iteratively optimize the classification network to ad-

ress the highly imbalanced distribution of benign and malignant nod-

les. Transfer learning (TL) and metadata evaluation introduced meta-

ata of maximum standardized uptake value (SUVmax) and lesion size

rom PET/CT into the baseline CT model, improving the CT diagnostic

erformance of both the PET/CT model (AUC: 0.837 vs. 0.762) and the

onventional CT model (AUC: 0.877 vs. 0.817). 37 

Algorithm innovations require to be validated for practicality in clin-

cal application. 51 A large number of emerging AI models such as the

eepLN system simultaneously realize the detection and classification

f pulmonary nodules. 52 , 53 To increase the explanatory capacity of the

odels, the prediction of common nodule features has been added to

mprove the homogeneity of the physicians and has been validated in

ifferent large-scale datasets. 54 

ubtype classification 

For nodules that have been diagnosed as malignant, a refined di-

gnostic classification is required to clarify the pathological subtype

nd stage for appropriate treatment. Various histologic subtypes such
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o  

t  

a  
s LUAD and lung squamous cell carcinoma (LUSC) exhibit different

rowth and treatment patterns. 39 An exploratory study revealed that 53

ut of 440 imaging features were associated with tumor pathology clas-

ification (LUAD and LUSC). After dimensionality reduction, the naïve

aye’s classifier constructed with five features achieved the best per-

ormance in differentiation. Whereas based on clinical features and ra-

iomic features from PET/CT images, the logistic regression model out-

erformed other machine learning classifiers in distinguishing LUAD

rom LUSC. 41 In another study, deep learning networks outscored con-

entional machine learning approaches in terms of classification task

erformance. 42 Furthermore, the model performance is enhanced by

ncorporating clinical and other information. An integrated clinico-

iologico-radiological model, consisting of two clinical factors, two tu-

or markers, seven PET radiomics, and three CT radiomic parameters,

ielded an AUC of 0.901 (95% confidence interval [CI]: 0.840–0.957)

n the validation set for discriminating between LUAD and LUSC. 43 Ac-

ording to the latest WHO classification, LUAD is classified into adeno-

arcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and

nvasive adenocarcinoma (IAC). Deep learning has made it possible to

dentify LUAD subtypes without invasive surgery and biopsy. 40 , 44 Sev-

ral studies have demonstrated that radiomic features are closely related

o histopathologic profiles of lung cancer and even surrogated for patho-

ogical types including the aggressive adenocarcinoma subtypes, namely

isceral pleural, lymphatic, venous, and perineural invasion. 45 , 55 , 56 

Tumor-Nodes-Metastasis (TNM) staging, the most extensively ap-

roved grading system, is essential for the diagnosis of lung cancer. 57 

he pathological stage (early vs. late) of lung cancer patients has been

ccurately predicted (average precision score: 0.84 in LUAD patients)

ased on CT image features. 58 The evaluation of lymph node (LN) metas-

ases requires complete LN dissection, which might cause additional

rauma. Especially for stage I non-small cell lung cancer (NSCLC), deep

earning signatures assist in accurately predicting N2 status with sta-

le performance in prospective cohorts (AUC: 0.81). 59 Moreover, ra-

iogenomics initially explored its biological basis, suggesting that deep

earning features capturing N2 metastasis risk might be associated with

pidermal growth factor receptor ( EGFR ) mutations, anaplastic lym-

homa kinase ( ALK ) fusions, and potential metabolic pathways asso-

iated with cell proliferation and tumor progression. 46 

I application in CT imaging for precision treatment 

AI is able not only to predict the microscopic morphology of tumor

esions but also to assess the gene mutation and molecular expression

f patients, and predict prognosis, thereby providing personalized treat-

ent advice to patients with lung cancer ( Table 2 ). 17 , 60–81 

ene mutation and molecular expression prediction 

With the development of targeted therapy and immunotherapy, the

reatment of lung cancer has proceeded in the era of precision medicine.

he identification of gene mutations and molecular expression status is

n essential step in determining therapeutic options. However, existing

ssays such as polymerase chain reaction (PCR) and next-generation se-

uencing (NGS) for genetic testing, and immunohistochemistry (IHC)

or molecular testing, are relatively expensive and challenging based on

nvasively acquired tissues to perform. However, the introduction of ra-

iogenomics aids in analyzing the link between microscopic molecules

nd macroscopic imaging features to predict molecular states non-

nvasively. 26 

EGFR is the most intensively studied gene in lung cancer radio-

enomics, and EGFR -tyrosine kinase inhibitors (TKIs) are recommended

or patients with positive mutations. A deep learning model based on

T images of 844 LUAD patients successfully achieved the prediction

f EGFR mutation status with better performance (AUC: 0.81 in the in-

ependent validation cohort) than hand-crafted CT characteristics and

linical features prediction models. 60 Furthermore, the deep learning
152 
odel built with 18 F-FDG-PET/CT images accurately predicted EGFR

utation status with AUCs of 0.83 and 0.81 in the internal validation

nd external test cohorts, respectively. 61 The predictive EGFR genotype

erformance of a fully automated artificial intelligence system (FAIS)

as validated in six testing sets that mined whole-lung information from

T images to take complete advantage of peri-lesion changes. 17 Ra-

iomics identified 17 different radiological features in baseline CT scans

ssociated with the subsequent development of T790M during EGFR

nhibitor therapy. 64 However, due to the insufficient sample size, this

nding required more extensive validation. Similarly, the non-invasive

rediction of ALK fusion status has been investigated. After adding clin-

copathological information, the AUC of the prediction model improved

rom 0.7754 to 0.8481 in the validation cohort. 63 In addition, the pro-

ramed death ligand-1 (PD-L1) expression levels were graded as indica-

ors of immunotherapy using immunohistology. 62 Deep learning algo-

ithms non-invasively measured the rank (PD-L1 expression signature

 1%, 1–49%, and ≥ 50%) and explored the regions of interest in the

etwork to assist in the clinical decisions of physicians. 82 

Based on the single-gene status prediction, the demand for multi-

olecular status assessment has become more urgent. As the most crit-

cal gene for precision therapy, EGFR , and the molecule PD-L1, sev-

ral deep learning models that simultaneously predict both molecules

ere validated. 66 , 83 In multi-task AI systems, the joint module combin-

ng deep learning, radiomics, and clinical features predicted molecular

tates optimally. Four key genes of lung cancer ( EGFR , KRAS , ERBB2 ,

nd TP53 ) were also successfully identified through machine learning

ith AUCs of 0.78 (95% CI: 0.70–0.86), 0.81 (95% CI: 0.69–0.93),

.87 (95% CI: 0.78–0.95), and 0.84 (95% CI: 0.78–0.91), respectively. 65 

urthermore, a multi-label multi-task deep learning (MMDL) system

chieved the simultaneous prediction of eight treatment-related genes

ecommended by the National Comprehensive Cancer Network (NCCN).

fter adding TP53 and PD-L1, this model achieved 10 molecular status

rediction simultaneously. 67 These radiogenomic models have the po-

ential to be an ancillary tool in conjunction with adjunctive testing to

upport precision treatment options. 84 

reatment efficacy assessment 

Standard therapies for lung cancer include surgery, chemotherapy,

adiotherapy, targeted therapy, and immunotherapy. AI techniques are

xtensively used to screen the beneficiary population and predict clini-

al outcomes. 85–87 The prognosis of surgical patients varies greatly, and

I provides a novel way of prognostic assessment. The Cox model based

n preoperative PET/CT signatures and clinical characteristics can ef-

ectively predict the disease-free survival (DFS) of NSCLC patients un-

ergoing surgery. 

Stereotactic body radiation therapy (SBRT) is the standard treat-

ent for inoperable patients, and AI assisted physicians in accomplish-

ng faster, finer, and more consistent tumor segmentation for radiation

herapy. 88 , 89 However, there is a possibility of distant failure or local

ecurrence in radiotherapy. With PET and CT, a kerneled support tensor

achine (KSTM)-based model was proposed to predict the distant fail-

re in NSCLC treated with SBRT. 90 In another study, two PET features

ere confirmed to be associated with local recurrence in patients with

ung cancer who received SBRT. 75 In patients treated with radiother-

py, three image features, namely the tumor volume, the maximum dis-

ance between involved nodes at baseline, and the change in tumor-to-

nvolved nodes distance, were closely associated with PFS. However, the

ample sizes of these studies were relatively limited (87 NSCLC patients

rom four centers, 110 NSCLC patients, and 82 patients with stage III

SCLC, respectively). 75,90,91 To achieve individualized precision treat-

ent, the Deep Profiler model was built on a retrospective dataset of

44 patients to predict time-to-event treatment failures ( C -index of 0.77

n independent validation dataset). 70 In addition, a personalized radio-

herapy dose index iGray incorporating Deep Profiler and clinical vari-

bles was recommended to estimate the probability of treatment failure
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Table 2 

Representative research of AI for lung cancer treatment based on CT images. 

Application Author Year Dataset/sample size 

Imaging 

modality Algorithm Task Performance 

Gene mutation and 

molecular expression 

prediction 

Wang et al. 60 2019 844 LUADs CT Deep learning EGFR mutation status prediction AUC: 0.81 on independent validation 

dataset 

Mu et al. 61 2020 681 NSCLC patients PET/CT Deep learning Quantification of EGFR mutation 

status 

AUC: 0.81 on external testing dataset 

Tian et al. 62 2020 939 consecutive stage IIIB–IV NSCLC 

patients 

CT Deep CNN Assessment of PD-L1 expression and 

ICI responses 

AUC: 0.76 on testing dataset, C -index: 

0.66 

Song et al. 63 2021 937 patients CT Deep learning model and 

clinicopathological information 

ALK fusion status prediction AUC: 0.8481 on validation dataset 

Rossi et al. 64 2021 109 patients CT Radiomics and SVM model Detection of EGFR mutations AUC: 0.85 on five-fold cross validation 

Zhang et al. 65 2021 134 patients CT 1672 radiomic features Simultaneous identification of EGFR , 

KRAS , ERBB2 , and TP53 mutations 

AUCs: 0.78–0.87 on five-fold cross 

validation 

Wang et al. 17 2022 18,232 patients CT FAIS Prediction of EGFR genotype and 

targeted therapy response 

AUCs: 0.748–0.813 on six testing datasets 

Wang et al. 66 2022 3816 patients CT Multitask AI system EGFR and PD-L1 status prediction AUCs: 0.928 for EGFR mutated status, 

0.905 for PD-L1 expression on testing 

dataset 

Shao et al. 67 2022 1096 Patients CT MMDL system Identification of multiple actionable 

mutations and PD-L1 expression 

AUCs: 0.862 for 8 mutated genes, 0.856 

for 10 molecular statuses on testing 

dataset 

Treatment efficacy 

assessment 

Song et al. 68 2018 117 stage IV EGFR -mutant NSCLC 

patients 

CT CT-based phenotypic characteristics Prediction of PFS with EGFR-TKI 

therapy 

C -index: 0.718, 0.720 on two validation 

datasets 

Xu et al. 69 2019 179 patients with stage III NSCLC 

treated with definitive 

chemoradiation 

CT Transfer learning of CNN with RNN 

using single seed-point tumor 

localization 

Prediction of OS AUC: 0.74 for 2-year OS on validation 

dataset 

Lou et al. 70 2019 944 patients CT Deep learning Predict treatment failure and hence 

guide the individualization of 

radiotherapy dose 

C -index: 0.77 on independent validation 

dataset 

Khorrami 

et al. 71 

2020 139 patients CT Compared changes in the radiomic 

texture (DelRADx) of CT patterns 

both within and outside tumor 

Prediction of OS and response to ICIs AUCs: 0.81, 0.85 on two independent 

validation datasets 

Dercle et al. 72 2020 Nivolumab, 92; docetaxel, 50; and 

gefitinib, 46 

CT Radiomics Prediction of systemic cancer 

therapies response 

AUC: 0.77 for nivolumab, 0.67 for 

docetaxel, and 0.82 for gefitinib on 

validation dataset 

Mu et al. 73 2020 194 patients with stage IIIB–IV NSCLC PET/CT Radiomics Prediction of ICIs benefit AUC: 0.81 on prospective testing dataset 

He et al. 74 2020 327 patients CT images Deep learning radiomics Prediction of ICIs response AUC: 0.81 on testing dataset 

Dissaux 

et al. 75 

2020 27, 29, and 8 patients treated with 

SBRT from three different centers 

18 F-FDG 

PET/CT 

Radiomics Prediction of local recurrence AUC: 0.905 on testing dataset 

Deng et al. 76 2022 570 patients with stage IV 

EGFR -mutant NSCLC treated with 

EGFR-TKIs and 129 patients with 

stage IV NSCLC treated with ICIs 

CT EfficientNetV2-based survival benefit 

prognosis (ESBP) 

Survival benefit prediction of TKIs 

and ICIs 

C -index: 0.690 on the EGFR-TKI external 

testing dataset 

( continued on next page ) 
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elow 5%. 70 In general, these AI technologies have accelerated the de-

elopment of refinement of radiotherapy and chemotherapy regimens. 

Targeted therapies and immunotherapies have revolutionized the

reatment paradigm of lung cancer, but only a few patients have bene-

ted from them. The image features mined through AI algorithms have

he potential to become markers for classifying high-benefit patients.

or instance, the CT radiomic model enables the prediction of PFS for

GFR-TKI therapy in NSCLC ( C -index: 0.718 and 0.720 for two val-

dation cohorts, respectively), improving management of TKI. 68 Sim-

larly, PET/CT-based biomarkers are available to predict the durable

linical benefit (DCB) in NSCLC patients treated with checkpoint block-

de immunotherapy (AUC: 0.81, 95% CI 0.68–0.92 in prospective test

ohort). 73 Specifically, the radiomic risk score remained significantly as-

ociated with PFS for patients treated with durvalumab after chemother-

py ( C -index: 0.77). 80 Moreover, deep learning features were developed

o distinguish between high tumor mutational burden (TMB) and low-

MB patients and subsequently help the TMB radiomic biomarker to

uccessfully evaluate the effectiveness of the immunotherapy (OS; haz-

rd rate [HR]: 0.54, 95% CI: 0.31–0.95; P = 0.03; PFS; HR: 1.78, 95% CI:

.07–2.95; P = 0.02). 74 Then an EfficientNetV2-based survival benefit

rognosis (ESBP) system as a prognostic tool for EGFR-TKI and ICI ther-

pies improved the performance of primary radiologists and oncologists

o the expert level along with the potential to improve treatment-related

abor and cost efficiency. 76 

The non-invasive monitoring of lesion changes in the imaging images

llows for a more accurate assessment of treatment outcomes during

ultiple follow-ups. 69 , 72 Machine learning could quantify the changes

n the tumor nodules during immunotherapy, which distinguishes be-

ween responders with AUCs over 0.8. 71 Overall, AI models have devel-

ped multiple approaches to identify appropriate tailored therapies for

ung cancer patients. 

urvival prognosis prediction 

The prognosis of lung cancer patients is influenced by several com-

lex factors, and imaging markers have become non-invasive biomark-

rs. Initially, radiomics extracted quantitative imaging features from CT

mages of lung cancer patients to predict prognosis with a C -index of

.65. 77 Subsequently, the deep learning networks have extracted prog-

ostic signatures from the CT images of patients treated with radiother-

py. Therefore, a transfer learning approach was applied to achieve the

ame prognosis prediction for surgery patients. 78 These models signifi-

antly divided the patients into low-risk and high-risk groups of mortal-

ty. Activation mapping indicated that areas both inside and outside the

umor in CT images contributed to the prognostic features highlighting

he importance of peritumor tissue in patient stratification. 

The combination of FDG-PET/CT provides anatomical and metabolic

nformation about the lesion that is essential to establish an accurate

rognosis and guide curative options. 79 Characteristics such as tumor

olume were confirmed to correlate with prognosis. The random sur-

ival forests that ensembled the clinical factors and deep learning fea-

ures of PET and CT images were constructed to predict the OS ( C -index:

.737). 81 In future studies, using prospective validation will help the

odel provide recommendations for lung cancer treatment options and

mprove patient care. 

I application in histopathology images 

Digitized WSIs have shifted from traditional histopathology to com-

utational methods, giving rise to a broad range of applications for AI

ethods in histopathological analysis ( Table 3 ). 18 , 27 , 92–103 These novel

ools are used to assist pathologists in the accurate diagnosis of lung

ancer, segmentation of different cell types, molecular expression as-

essment, and prognostic prediction ( Fig. 3 ). 
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Table 3 

Representative research of AI for lung cancer treatment based on pathologic images. 

Application Author Year Sample size of WSIs Algorithm Task Performance 

Classification Coudray et al. 18 2018 1634 Deep CNN (Inception-V3) Classification of LUAD, LUSC, or 

normal lung tissue and prediction 

of 10 most commonly mutated 

genes in LUAD 

AUCs: 0.97 for classification, 

0.733–0.856 for genomic 

prediction on testing dataset 

Khosravi et al. 92 2018 12,139 CNN Inception-V1 and 

Inception-V3 

Discrimination of LUAD and 

LUSC 

AUC: 0.92 on testing dataset 

Wang et al. 93 2020 939 Weakly Supervised Deep Learning Classification of carcinoma types Accuracy: 0.973 on testing 

dataset 

Yang et al. 94 2021 741, 318, and 212 from two 

hospitals, and 422 from TCGA 

EfficientNet-B5- and 

ResNet-50-based deep learning 

methods 

Classification of LUAD, LUSC, 

SCLC, pulmonary tuberculosis, 

organizing pneumonia, and 

normal lung tissue 

AUCs: 0.918–0.978 on testing 

dataset 

Chen et al. 95 2021 9662 Deep learning Classification of lung cancer types AUCs: 0.9594 for LUAD, and 

0.9414 for LUSC on testing 

dataset 

Zheng et al. 96 2021 4818 Graph-transformer Classification of LUAD, LUSC, or 

normal lung tissue 

Accuracy: 0.912 on five-fold 

cross-validation 

Wang et al. 97 2019 1337 from TCGA, 345 from 

NLST, 102 from CHCAMS, and 

130 from SPORE 

CNN Transformation of pathological 

images 

Accuracy: 0.901 on independent 

testing dataset 

Enhancement of 

Oncology Care 

Yu et al. 98 2016 2186 from TCGA, and 294 from 

TMA 

Machine learning Prognosis prediction AUC: 0.81 on testing dataset 

Fu et al. 99 2020 17,355 histopathology slide 

images from 28 cancer types 

Inception-V4 deep learning and 

transfer learning 

Classification of cancer types Average AUC: 0.99 for 14 cancers 

on held-back validation dataset 

Kapil et al. 100 2021 151 Deep learning Assessment of PD-L1 expression 

and survival analysis 

C -index: 0.93 on testing dataset 

Qaiser et al. 101 2022 1122 Weakly supervised CNN Prediction of disease outcome C -index: 0.7033 on testing 

dataset 

Choi et al. 102 2022 802 Deep learning Assessment of PD-L1 expression C -index: 0.902 for pathologists 

with AI assistance 

Lee et al. 27 2022 3950 patients with kidney, 

breast, lung, and uterine cancers 

Graph DNN Prognosis prediction C -index: 0.731 on NLST dataset, 

0.709 on TCGA dataset 

Chen et al. 103 2022 6592 gigapixel WSIs from 5720 

patient samples across 14 cancer 

types from the TCGA 

AMIL network for processing 

WSIs, SNN for processing 

molecular data features, and 

deep-learning-based MMF 

Prognosis prediction C -index: 0.578 for AMIL, 0.606 

for SNN, and 0.644 for MMF on 

five-fold cross-validation 

AI: Artificial intelligence; AMIL: Attention-based multiple-instance learning; AUC: Area under the curve; CHCAMS: Chinese Academy of Medical Sciences; CNNs: Convolutional neural networks; DNN: Deep neural 

networks; LSCC: Lung squamous cell carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; MMF: Multimodal fusion; NLST: National Lung Screening Trial; NSCLC: Non-small cell lung 

cancer; PD-L1: Programed death ligand-1; SCLC: Small cell lung cancer; SNN: Self-normalizing network; SPORE: Specialized Programs of Research Excellence; TCGA: The Cancer Genome Atlas; TMA: Stanford tissue 

microarray; WSIs: Whole slide images. 
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Fig. 3. Application of histology-based AI mod- 

els to assist in lung cancer classification and 

prognosis. AI: Artificial intelligence; H & E: 

Hematoxylin & eosin; LUAD: Lung adenocarci- 

noma; LUSC: Lung squamous cell carcinoma. 
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lassification of pathological types 

LUAD and LUSC differ in origin with distinct pathological features

nd treatment modalities. 104 The classification process typically re-

uires the visual judgment of pathologists and AI models have be-

ome a powerful aid. A deep CNN based on Inception-V3 was pro-

osed to classify WSIs into LUAD, LUSC, and normal tissues with an

UC of 0.97 achieving sensitivity and specificity close to that of a

athologist. 18 Meanwhile, a DNN was innovatively presented to pre-

ict the 10 genes’ mutation in adenocarcinoma, and eventually six

enes were successfully determined. This CNN architecture has been

ble to discriminate various cancer tissues, two subtypes of lung cancer

LUAD vs. LUSC), biomarkers of bladder cancer, and scores of breast

ancer with accuracy of 1, 0.92, 0.95, and 0.69, respectively. 92 To

ulfill the requirement for accurate lung cancer diagnosis, a six-type

lassifier for histopathological classification of LUAD, LUSC, small cell

ung carcinoma (SCLC), pulmonary tuberculosis, organizing pneumo-

ia, and normal tissues had a correlation coefficient of 0.873 with the

athologists. 94 

These aforementioned models must be validated for generalizability

n large-scale datasets. The annotation of WSIs remains a critical step

n building the dataset. Weakly supervised learning and annotation-free

hole-slide training approach solved this difficulty to some extent. 93 , 95 

hese methods input image-level labels or coarse annotations, reduc-

ng the manual annotation effort. A graph-based vision transformer was

urther optimized to deal with this classification task holistically. 96 It

ncorporated the graph representation of pathology images and a vi-

ion transformer for processing WSI images to overcome the label noise

f the patch-based methods, which outperformed current advanced

ethods. 

In addition, several segmentation algorithms were applied to lo-

ate the distributions of lung cancer pathology images. A CNN called

onvPath automatically converted a WSI into a spatial map of tumor

ells, stromal cells, and lymphocyte cells. 97 Another multi-resolution

NN named HookNet successfully split up tertiary lymphoid structures

nd germinal centers in lung cancer via a hooking mechanism. 105 In

he ACDC@LungHP (Automatic Cancer Detection and Classification in

hole-slide Lung Histopathology) challenge, the best Dice coefficient of

he segmentation results for lung cancer tissue reached 0.8372. 106 The

ulti-model methods that combined multiple networks performed sig-

ificantly better than the single-model methods by effectively assisting

hysicians in locating suspicious areas. 
156 
nhancement of oncology care 

AI approaches are employed to identify previously unrecognized im-

ge features associated with patient prognosis and guide treatment deci-

ions. A total of 9879 quantitative image features were automatically ex-

racted from 2186 WSIs of LUAD and LUSC patients by machine-learning

ethods to predict NSCLC prognosis. 98 The method showed excellent

esults in distinguishing shorter-term survivors from longer-term sur-

ivors in the test set ( P < 0.05). Recently, the image features extracted

rom hematoxylin & eosin (H&E) images based on weakly supervised

urvival CNNs were significantly associated with the prognosis of lung

nd bladder cancers in both univariate and multifactorial analyses. 101 

Simultaneously, the AI models predict lung cancer prognosis through

he assessment of the PD-L1 expression. Currently, PD-L1 tumor propor-

ion score (TPS) grade requires immunohistochemical staining and man-

al interpretation to recommend the appropriate treatment. However,

his process is subject to biases such as errors in staining operations,

ifferences in agents, and manual subjectivity. Deep learning models

ave standardized this process to coordinate with the pathologist with

 concordance value above 0.9 and further predicted patient progno-

is (HR for high vs. low automated tumor cell (TC) score group: 0.539,

 = 0.004). 100 With the assistance of AI, the overall concordance rate

mong pathologists improved from 81.4% to 90.2%, with a reduced HR

or overall patient survival and progression-free survival after ICI treat-

ent. 102 

Furthermore, several pan-cancer models are proposed to match clin-

cal scenarios. A tumor-environment-associated context learning using

raph deep learning (TEA-graph) trained on pathological images of kid-

ey, breast, lung, and uterine cancers considered contextual features

n gigapixel-sized WSIs. 27 The prognostic C -index of lung cancer in

LST and TCGA was 0.731 and 0.709, respectively. After correlating

7,355 pathological images from 28 cancer types with their matched ge-

omic, transcriptomic, and survival data, the pan-cancer computational

istopathology (PC-CHiP) analysis distinguished histopathological sub-

ypes and highlighted prognosis-related areas such as necrosis or lym-

hocyte aggregation. 99 Interestingly, multimodal data fusion improved

he predictive model performance. In 14 cancer types, most fusion mod-

ls were able to distinguish well between high-risk and low-risk groups

or survival prediction. 103 For instance, in LUAD, the prognostic predic-

ion performance of the deep-learning-based multimodal fusion (MMF)

lgorithm was superior to that of the attention-based multiple-instance

earning (AMIL) network for processing WSIs and the self-normalizing
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Fig. 4. The translational gap from AI models to clinical application. AI: Artificial intelligence. 
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etwork (SNN) for processing molecular data features. Additionally, the

uantitative assessment revealed increased lymphocyte and tumor infil-

rating lymphocytes presence in low-risk patients. These explorations

oint the way for future multimodality development. 

hallenges and opportunities 

In spite of the current boom in AI for medical image prediction

asks, several challenges have been faced. However, these obstacles

lso represent opportunities to bridge the translation between scien-

ific research and clinical applications ( Fig. 4 ). The foremost dilemma

s the collection and annotation of standardized data for model train-

ng, validation, and testing. For instance, varying institutions, different

T scanners, and diverse reconstruction methods affect the quality of

T images. 107 Therefore, uniform acquisition coefficients are required

o reduce image capture variability. Advanced decentralized AI algo-

ithms such as swarm learning and federated learning achieve compa-

able performance to models trained on merged datasets through shared

raining parameters and weights, promising to support multicenter

esearch. 108 

Subsequently, the segmentation and labeling of images become

abor-intensive, especially in the feature extraction phase of machine

earning. Weakly supervised or semi-supervised learning ameliorates

his difficulty to a certain extent. 109 To deal with the challenge of ac-

uiring labels at the input layer, the Semi-Supervised Medical Image

etection (SSMD) method was constructed to achieve the effect of auto-

atically obtaining a large number of high-quality labels after a small

mount of manual labeling. 28 The performance is verified in image seg-

entation and lesion detection by using the adaptive consistency prin-

iple to recognize unlabeled or weakly labeled images. A multi-view
157 
ivide-and-rule (MV-DAR) model using fuzzy annotations to construct

ultiple views to predict the probability of malignancy of lung nodules

s also available, providing interesting experimental ideas for label ac-

uisition. 110 

On the regulatory side, the national US FDA has been overseeing

hese automated clinical decision systems. A number of CT-based lung

odule detection systems have been approved, but most systems remain

n the research phase. 111 The reason hindering their clinical applica-

ion is the feasibility of the algorithms. The amount of human expert

ntervention required for the AUC, accuracy, and 95% CIs as metrics for

lgorithm performance assessment is unclear. Thus, extensive prospec-

ive trials are required. In addition, the interpretability of AI models,

specially deep learning models, might be a critical limitation for their

linical application. 112 , 113 Although there are attention maps indicat-

ng deep learning signals from specific regions of an image, the specific

nformation predicted for that region is difficult to quantify yet and re-

uires additional correlation studies. 

Increasingly, it has been recognized that the occurrence of cancer is

 complex biological behavior influenced by multiple factors. Medical

ata from different modalities provide information on patient care from

pecific perspectives, with both overlapping and complementary infor-

ation. The fusion of multimodal data shows the path to the realization

f accurate disease diagnosis. 29 Further, AI is a perfect fit with regard

o the purpose of the integration of parallel information streams such as

emographics, radiomics, pathomics, and genomics to improve predic-

ive models for patient outcomes. A previous study have confirmed this

bservation that a combined model comprising deep learning, imaging

istology, and clinical features performed optimally in measuring PD-L1

xpression levels. 82 Additionally, the multimodal fusion model of patho-

ogical images and molecular data features was superior to single mod-
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ls in predicting the prognosis of cancer patients. 103 Moreover, fusion

odels have revealed the association between multiple modalities. For

xample, certain mutations in adenocarcinoma correlated closely with

pecific changes in cell morphology. 18 These cross-modal relationships

an validate existing biomarkers or obtain non-invasive alternatives to

upport large-scale population screening or selection of patients with

igh benefits for treatment. 

onclusion 

In summary, AI is an exciting development in precision diagnosis

nd treatment of lung cancer. Radiomics and deep learning models

ased on radiologic images are effective tools for lung cancer screen-

ng, non-invasive diagnosis and personalized management. Meanwhile,

I technology for pathological slides enables subtype identification and

reatment decision making to improve the efficiency of physicians. This

merging field has the potential to serve as a novel arsenal of tools for

linicians, advancing cancer care into the era of precision medicine. 
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