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A neural basis of rational inattention models: consistency of 
cognitive cost with the mutual information criterion
Qi Wua, Shinji Nakazatoa, Bojian Yanga,b and Tetsuya Shimokawaa 

The rational inattention model has recently attracted 
much attention as a promising candidate to model 
bounded rationality in the research field of decision-
making and game theory. However, in contrast to this 
energetic promotion of the theoretical works, empirical 
verification of the validity of the RI model has not 
progressed much. Furthermore, to our knowledge, the 
central assumption of the RI model, that the amount of 
mutual information obtained from signals adequately 
represents the cognitive cost of information, has not been 
tested from a neuroscientific perspective. The purpose 
of the present study was to test whether the amount of 
mutual information adequately represents the cognitive 
cost of information from a neuroscientific perspective. 
We proposed a sequential investment task, in which the 
two main models of RI can be treated simultaneously 
in a more realistic experimental environment. We used 
a model-fitting approach to analyze the subjective 
information cost, and compared the model parameters 
representing the information cost with the concentration 
of oxidized hemoglobin in the brain blood. Our results 

showed that the cost parameter λ of the stochastic choice 
type model, which fits the behavioral data of the present 
experiment better than the Kalman filter type model, 
was significantly positively correlated with the activation 
status of the rostral prefrontal cortex and dorsolateral 
prefrontal cortex. The cognitive cost represented by the 
amount of mutual information employed in the RI model is 
consistent with the activation of brain regions associated 
with cognitive cost, and, thus, indirectly supports the 
assumption of the RI model. NeuroReport 33: 649–655 
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Introduction
Theoretical models that presume human rationality are 
the mainstream in the field of finance and game research, 
but in recent years, the rational inattention (RI) model, 
which explicitly introduces cognitive costs associated 
with information acquisition and processing, has been 
attracting attention. The RI model is characterized by the 
assumption that the cognitive processing cost of informa-
tion can be measured in terms of the amount of mutual 
information from the acquired signal. Once this assump-
tion is accepted, theoretically, the existing model can be 
extended to a more realistic decision-making setting in 
a relatively natural way, and it also has the great advan-
tage of being able to use the accumulated knowledge in 
the field of information theory. The RI model has been 
actively studied as a theory that links decision-making 

and information theory, and as a modern theory that 
expresses Simon’s bounded rationality [1–3].

The history of the RI models begins with Sims [4,5], and 
there have been two major streams of research. The first 
is the Kalman filter type model initiated by Sims [4]. This 
model is used in a dynamic environment, in which the 
accuracy of the filter, or Kalman gain, is determined by 
the cognitive capacity constraints of information process-
ing. This cognitive capacity, like that in Shannon’s sense, 
is an upper limit on the total amount of information that 
can be processed, but in Sims [4] it is determined by the 
subject’s ability. This model has been applied to many 
dynamic models, including financial and policy analysis.

Another stream is the stochastic choice type model. This 
model assumes that information processing costs are 
incurred in proportion to the amount of mutual infor-
mation, and given this assumption, people decide not 
only the action to take but also the amount of informa-
tion to use to maximize the expected utility. This model 
is known to be closely related to logit-type stochastic 
choice models [6] and has been applied to a variety of 
fields including game theory. Over recent years, there has 
been progress in the refinement of information cost mod-
eling and in extending it to dynamic environments.
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However, in contrast to this energetic promotion of the 
theoretical works, empirical verification of the validity 
of the RI model has not progressed much. There have 
been only a few behavioral experiments and even fewer 
in more realistic settings. Furthermore, to our knowledge, 
the central assumption of the RI model, that the amount 
of mutual information obtained from signals adequately 
represents the cognitive cost of information, has not been 
tested from a neuroscientific perspective. The present 
study aims to test this point.

A central assumption of the RI model is that it assumes 
cognitive costs concerning people’s information process-
ing. In this paper, we conducted two types of experiments, 
one with and one without exogenous control of the infor-
mation given, and examine the correspondence between 
the model parameters related to cognitive costs estimated 
from the participants’ choices and their brain responses. 
Specifically, we will examine whether the cognitive pro-
cessing cost of the model is consistent with the activation 
of brain regions related to working memory and reasoning, 
such as the dorsolateral prefrontal cortex, ventral prefron-
tal cortex, and rostral prefrontal cortex. The analysis was 
conducted using both the stochastic choice type and the 
Kalman filter type models, but due to space limitations, 
the present text refers only to the stochastic choice type, 
which better explained the behavior of the experimental 
participants. Comparison with the Kalman filter type is 
made in Supplemental Materials C, Supplemental Digital 
Content 1, http://links.lww.com/WNR/A675.

Experiment 1
Experimental setup
This experiment was conducted under the approval of the 
Ethics Committee of the Tokyo University of Science. 
The participants of this experiment were 10 undergrad-
uate and graduate students (40 samples) of the School of 
Business, Tokyo University of Science. We explained the 
details to all participants in advance of the experiment 
and obtained their written consent.

We use the sequential investment task with a view to the 
application [7,8]. In this task, participants make predic-
tions about the return of a price sequence each period and 
decide whether to invest in a single stock or a safe asset. 
The participant’s goal is to maximize the expected return. 
The fundamental return of the stock, denoted by f , is 
randomly set at the beginning of each price sequence and 
is constant over time. The return observed in each period 
t is defined by rt = f + εt , where εt ∼ N(0,σ2

N ) i.i.d . rep-
resents shocks other than fundamental, such as market 
factors. The return on the safe asset is always assumed 
to be rS = 0. The price sequence presented to the par-
ticipant’s graphical user interface (GUI) is calculated 
as Pt+1 = (1+ rt)Pt. Therefore, when the fundamental 
return is zero, f = 0, the price will randomly walk.

The participant can predict the fundamental return 
f  from the observed returns. If there is no cognitive 

constraint on information processing, fundamental 
returns f  can be identified from the law of large num-
bers by using a large enough number of past returns and 
taking the average of the time series. However, if there 
is a cognitive constraint, participants may not reasonably 
formulate a prediction because it takes a certain amount 
of calculation to obtain each period’s returns from prices 
and to take their average (RI).

The left panel of Fig. 1 shows the experimental GUI that 
participants faced during the decision-making process. 
To avoid biometric artifacts caused by the button selec-
tion behavior, the experiment used a cylinder-type input 
to allow the investment rate to be varied continuously. 
For more information on the sequential investment task, 
please see Supplemental Materials A, Supplemental 
Digital Content 1, http://links.lww.com/WNR/A675.

The biometric information used in this analysis was the 
change in blood hemoglobin concentration in the prefron-
tal area. Functional NIRS (BriteMKII supplied by Artinis 
Medical Systems , Tokyo, Japan) was used to measure the 
blood hemoglobin concentration in the prefrontal area. 
The right panel of Fig. 1 shows the brain regions that we 
focused on in this study. We will focus on the dorsolateral, 
ventral, and rostral regions, which are considered to be 
closely related to costly cognition, working memory, and 
reasoning. The prefrontal cortex may be roughly divided 
into the orbitofrontal cortex {[Brodmann area (BA)] 11, 
12, and 13}, medial prefrontal cortex (BA 24, 25, 32, and 
mesial portions of 10), and dorsolateral cortex (BA 8, 9, 
and 46). Each region has a distinct cytoarchitecture and 
function as well as distinct connections. Briefly, the orb-
itofrontal cortex is involved in decision-making, process-
ing awards, and punishment; and the medial prefrontal 
cortex, particularly the anterior cingulate cortex, mediates 
emotional monitoring, and self-regulation. The dorsolat-
eral prefrontal cortex (including BAs 46, 9) is involved in 
working memory. Working memory is the ability to hold a 
limited amount of information in mind for a short period. 
For example, working memory is necessary for holding a 
phone number ‘in mind,’ or keeping track of geographi-
cal locations as someone gives you multistep directions 
to a location across town. This type of memory is critical 
to bridging temporal gaps so that the information can be 
‘worked’ with or mentally manipulated for a short period. 
This ability to hold representations in mind is criti-
cal to other complex cognitive functions, such as deci-
sion-making, planning, and problem-solving. Area 8A can 
be considered as a key area for the top-down control of 
attentional selection, it is also a very important region for 
this experiment, but this time we used NIRS as experi-
mental equipment, so it was difficult to measure Area 8A 
[9–15]). Table 1 shows the regions of interest and the cor-
responding Montreal Neurological Institute coordinates.

Stochastic choice type rational inattention model
We focus here only on the results of the stochastic choice 
RI model, see Supplemental Materials C, Supplemental 

http://links.lww.com/WNR/A675
http://links.lww.com/WNR/A675


Copyright © 2022 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Neural basis of rational inattention models Wu et al. 651

Digital Content 1, http://links.lww.com/WNR/A675, for 
details on the analysis and mosdel comparison in the 
Kalman Filter RI model. In the stochastic choice type RI 
model, people are assumed to decide on two steps [6]. 
The first step is to choose the information strategy to use, 
and the second step is to choose the action to optimize 
the expected profit based on the prediction/belief of the 
fundamental return. It is optimal to use as many and as 
useful signals as possible to identify the fundamental 
returns, but a certain percentage of cognitive cost λ is 
required in proportion to the amount of mutual informa-
tion obtained from the signals.

More specifically, in the second stage, people decide 
whether to invest in the stock or safe asset according to 
the conditional distribution of the fundamental return 
P( f |s ) given signals, denoted by s. The observed past 
returns in experiment 1 and the associated stock returns 
in experiment 2 serve as signals, respectively. The utility 
realized with an optimal action at this stage is denoted 
by V( p( f |s )). In the first stage of information strategy 
selection, given the expected utility, people decide which 
signals to use. The choice of information strategy deter-
mines which signal structure p(s, f ) is desirable. To obtain 
more detailed information, a cost λ {H( f )−H( f |s )} 
is incurred according to the amount of mutual informa-
tion, where H is the Shannon entropy, and the amount of 
mutual information is defined as the decrease in entropy 
due to the acquisition of the signal. λ is a parameter that 
represents the cognitive cost per unit of mutual informa-
tion. The first-stage problem can be written as follows:

max
p(s|f )

∑
f

∑
s

V( p( f |s )) p(s |f ) p( f )− λ {H( f )−H( f |s )} ,

where we assume that the possible states of the funda-
mental return are finite to keep the discussion simple.

Assuming that the ex-ante choice probabilities of a stock 
and safe asset are equal before the fundamental returns 
are given in the experiment (the expected value of the 
fundamental return f given in this experiment is zero, 
which is equal to the return of the safe asset), the solution 
to this problem can be derived by the following SoftMax-
type choice rule1.

pt = exp

Å
f
λ

ã
/

ß
1+ exp

Å
f
λ

ã™
, ∀t

If the cost is infinite, pt = 1
2 the subject will be a person 

who chooses completely randomly. On the other hand, 
when a hyper-rational person with no information cost, 
he will gather information and choose the option with the 
lower payoff with probability 0, or the option with the 
higher payoff with probability 1.

The model parameter λ was estimated using maximum 
likelihood estimation from the observed investment 
choices of participants and the given values of the funda-
mental return f . Please refer to Supplemental Materials 
A and B, Supplemental Digital Content 1, http://links.lww.
com/WNR/A675, for details of the estimation.

Results of experiment 1
Quantile analysis
First, we will refer to the relationship between the vari-
ance of investment rate and blood hemoglobin concentra-
tion. The scatter plot of the relationship in Supplemental 
Materials D, Supplemental Digital Content 1, http://links.

Fig. 1

The left figure is experimental setup the right figure is brain regions of interest.

Table 1 MNI coordinates

Region of interest Brodmann areas 

MNI coordinates of the 
center of gravity

x y z 

CH19 Brodmann area 10 23 55 7
CH21 Brodmann area 9 −39 34 37
CH22 Brodmann area 46 −46 38 8

MNI, montreal neurological institute.

1To derive this rule from the above optimization problem, some equation transfor-
mations are required. See Lemma1 and Collorary1 in Matějka and McKay [6] for 
more details on this.
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lww.com/WNR/A675, shows that a positive correlation 
between the investment variance and the hemoglobin 
concentration in the brain area can be observed. From 
the above equation, the larger the information process-
ing cost λ, the closer the investment probability P is to 
1/2, and the larger the investment variance. This result 
indicates that brain regions related to information pro-
cessing and cognition are activated when the variance of 
the investment rate is large, which is consistent with the 
predictions by the RI model.

Next, we will examine the relationship between the 
estimated parameter values of each RI model and the 
hemoglobin concentration in the blood. As mentioned 
earlier, the amount of mutual information obtained from 
signals is determined subjectively, and this cannot be 
observed directly. The parameters of each model can be 
considered as its alternative indicators. Figure 2 shows 
the average hemoglobin concentration in the blood of 
each group in dichotomous analysis, and Fig. 3 shows the 
average hemoglobin concentration in the blood of each 
group in the trichotomous analysis. The figure on the 
left shows the hemoglobin concentration in the blood of 
each sample, divided into two or three groups accord-
ing to the size of the estimated model parameter λ (the 
left bar shows a small value group and the right bar is a 
large value group). From left to right, they correspond 
to rostral, dorsolateral, and ventral lateral regions. The 
right of Fig. 2 is a scatter plot of the parameter for each 
sample and the blood hemoglobin concentration in the 
extraperitoneal region.

From these figures, we can see that brain activity is 
consistent with the assumptions of the RI model. In 
other words, the larger the cognitive cost λ the more 
activated the brain regions involved in costly cognition. 
The differences between these groups are significant 
for λ in all brain regions in the dichotomous partition 
and all brain regions except the rostral region in the 

tripartite partition (5% level in the F-test of ANOVA 
analysis).

Model selection
Finally, we examined a more appropriate model based 
on the behavioral data, using the maximum likelihood 
method for model fitting. Table 3 in Supplemental 
Materials C, Supplemental Digital Content 1, http://links.
lww.com/WNR/A675, summarizes the log-likelihood (llh), 
Akaike’s information criterion, and R 2(R2) for the sto-
chastic choice type RI models. R2 is the improvement 
in the llh from a random prediction, defined as follows, 
R 2 = logM−logMrand

− logMrand
, where M is the likelihood of the 

model concerned, and Mrand is that of the random pre-
diction model.

The table clearly shows that the stochastic choice type 
is superior for this experimental data (please refer 
to Supplemental Materials C, Supplemental Digital 
Content 1, http://links.lww.com/WNR/A675, for definitions 
of six variants of the Kalman filter type RI models). As for 
the change in blood hemoglobin concentration, the cor-
relation between the parameters of the stochastic choice 
type model was clearer than that of the Kalman filter 
type model, and the same tendency was observed for the 
behavioral data.

Experiment 2
To further clarify the causal relationship between the 
amount of information processed and its cognitive cost, 
we also conducted an experiment in which we controlled 
for the amount of information available. Here, we focused 
on the RI model of the stochastic choice type that is most 
appropriate for the analysis in Section ‘Quantile analysis’. 
Figure 4 shows the PC screen presented to the experi-
mental participants in experiment 2. In this experiment, 
participants are presented with a series of prices of stocks 
to be invested in (say the target stock price, which is 
shown at the center of the screen) and a series of prices 

Fig. 2

Correlation with λ, dichotomous analysis.
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of stocks that have some correlation with that stock price 
(left two columns of the screen, signal stock prices). 
Participants can predict the target stock price to invest in 
from these signal stock price columns, and based on this 
prediction, they choose whether to invest in the target 
stock price or held it in a safe asset.

In this experiment, three treatments were conducted: 
treatment 1 is a control condition and only one signal 
stock price is presented; in treatment 2 and treatment 3, 
the number of signal stock prices presented is increased 
to 4 and 8, respectively. The more stock prices that are 

signals, the more information is available, and more accu-
rate predictions of the target stock price can be made, but 
on the other hand, there is more information needed to 
process, resulting in cognitive costs and inattention. In 
the experiment, target and signal stock price sequences 
for 30 periods are initially presented, followed by invest-
ment choices for 170 periods.

As in experiment 1, brain blood hemoglobin concentra-
tion was measured during decision-making. The meas-
urement sites are the same as in experiment 1 shown 
in Table  1. The participants in the experiment were 

Fig. 3

Trichotomous analysis of λ.

Fig. 4

GUI image. GUI, graphical user interface.
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21 undergraduate and graduate students at the Tokyo 
University of Science. The number of valid samples was 
42, each sample corresponding to one treatment. As in 
experiment 1, participants were paid for their perfor-
mance. See Supplemental Materials B, Supplemental 
Digital Content 1, http://links.lww.com/WNR/A675, for 
details on the experimental setup and model.

Figure 5 in Supplemental Materials D, Supplemental 
Digital Content 1, http://links.lww.com/WNR/A675, shows 
the sample mean of the information cost calculated from 
the model for each treatment. As intended, we see that the 
information cost increases as the number of signals con-
trolled for increases, and the sample means per treatment 
starting from treatment 1 are, 172.97, 1523.59, and 2124.09. 
As in Section ‘Stochastic choice type rational inattention 
model’, the calculation of the information cost is given by 
λ {H( f )−H( f |s )} multiplying the amount of mutual 
information obtained from the signals by the cost parame-
ter, and the ANOVA analysis shows a significant difference 
for each treatment group (F value = 3.48; P = 0.0405).

Next, we examined how blood hemoglobin concen-
trations in brain regions differed from treatment to 
treatment. If the cognitive information processing 
cost modeling by RI is appropriate, we should be able 
to observe the activation of the regions that are sup-
posed to be responsible for information processing in 
proportion to the amount of information controlled for 
and the information cost. Figure 5 is the sample mean 
of the OxyHb change (170 periods) in the dorsolat-
eral region for each treatment. The ANOVA analysis 
shows a significant difference from the control group 
(F value = 2.87; P = 0.0685; left panel: F value = 2.94, 
P  =  0.0649; right panel: F value  =  2.94; P  =  0.0649). 
The tendency is more pronounced in treatment 3 with 
eight signals are presented, which are expected to have 
exceeded the cognitive capacity. On the other hand, in 

treatment 2, which has four signals, information is pro-
cessed relatively stress-free, as in treatment 1, which 
has one signal.

Discussion
So far, the number of empirical studies on the RI mod-
els is not large. Deany and Nelighz [16] have a ball task 
and Dewan and Neligh [17] use a uniform guess task 
to examine the validity of information cost representa-
tions by Shannon entropy and Tsallis entropy. However, 
these studies do not directly test the central assumptions 
of the RI model, specifically the validity of expressing 
cognitive processing costs in terms of the mutual infor-
mation content of information, from a neuroscientific 
perspective. In this paper, we have examined the corre-
spondence between the amount of mutual information 
and cognitive cost from a biometric perspective. Our 
analysis showed that the cost parameter λ of the stochas-
tic choice type model was significantly positively corre-
lated with the activation status of the rostral prefrontal 
cortex and dorsolateral prefrontal cortex. These brain 
regions are known to associate with costly cognition and 
be activated during information integration and working 
memory utilization. This result suggests that the cogni-
tive cost represented by the amount of mutual informa-
tion employed in the RI model is consistent with the 
activation of brain regions associated with cognitive cost, 
and, thus, indirectly supports the assumption of the RI 
model.
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