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Abstract
Purpose T-box transcription factor 21 (T-bet), which is the master regulator of effector T-cell activation, is derived by 
stimulation of T-cell receptors. In this study, we focused on T-bet and examined the function of activated T cells.
Methods This study included 242 patients with primary triple-negative breast cancer (TNBC) who underwent resection 
without neoadjuvant chemotherapy between January 2004 and December 2014. The immunohistochemistry scoring for CD8 
and T-bet expression on tumor-infiltrating lymphocytes (TILs) was defined as ≥ 30 per 6.25 × 10−3 mm2.
Results Of the 242 TNBC cases, CD8 was positively expressed in 127 (52.5%) tumors, and T-bet was positively expressed 
in 67 (27.7%) tumors. T-bet expression was significantly correlated with CD8 expression (p < 0.0001). Patients with T-bet+ 
tumors had longer overall survival (OS) compared with patients with T-bet− tumors (p = 0.047). The combination of  CD8+ 
and T-bet+ was associated with a better recurrence-free survival (RFS) and OS compared to  CD8+/T-bet− tumors (p = 0.037 
and p = 0.024, respectively). Adjuvant chemotherapy provided significantly greater benefit to patients with T-bet+ tumors 
(p = 0.031 for RFS, p = 0.0003 for OS). Multivariate analysis revealed that T-bet expression on TILs was an independent 
and positive prognostic indicator (HR = 0.36, 95% confidence interval (CI) 0.12–0.94, p = 0.037 for RFS, HR = 0.30, 95% 
CI 0.07–0.95, p = 0.039 for OS).
Conclusions OS was significantly improved for patients with high T-bet-expressing TILs in TNBC. Thus, T-bet may be a 
predictive indicator for survival and various immunotherapy strategies in TNBC.
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IHC  Immunohistochemistry staining
RFS  Recurrence-free survival
OS  Overall survival
HR  Hazard ratio
CI  Confidence interval

Introduction

Recent studies have shown that the tumor immune system 
plays an important role in solid tumors microenvironment 
(TME). In the TME, an immune response requires tumor-
associated antigen (neoantigen) signatures presented through 
accumulation of gene mutations [1]. That is, tumor-infiltrat-
ing lymphocytes (TILs) frequently recognize neoantigens 
from a tumor, and then some of TILs become neoantigen-
reactive T cells for cytotoxicity [2, 3]. Therefore, a high 
tumor-mutational burden (TMB) derives enhanced clinical 
benefit from immune check point inhibitors [4]. Meanwhile, 
triple-negative breast cancer (TNBC) lacking the expres-
sion of estrogen and progesterone receptors and ERBB2 is 
a heterogeneous tumor that encompasses several molecu-
lar subtypes of breast cancer. Because this specific subtype 
of TNBC includes high levels of somatic mutations [5], it 
is expected to benefit from a variety of immunotherapies. 
Many analyses of treatment for immune checkpoint blockade 
have made it clear that TILs play an important role in treat-
ing cancers in both adjuvant and neoadjuvant settings [6–8]. 
We previously reported that programmed cell death ligand-1 
(PD-L1) expression on tumor cells was related to high TIL 
levels, and the combination of high TIL levels and positive 
PD-L1 was associated with a better prognosis in TNBC [9]. 
However, the molecular mechanism remains still unclear.

TILs are frequently observed but the composition of cells 
involved in innate and adaptive immunity varies between 
tumor types or organ sites [10]. Cumulative data from 
murine and human studies have associated most leukocyte 
subsets with a predominant contribution to either pro- or 
antitumor activities [11]. For instance, effector  CD8+ T cells 
and  CD4+ T cells affect immunity, while regulatory T cells 
influence tolerance [12]. It was reported that the ratio of 
 CD8+ cytotoxic T lymphocytes to  FOXP3+ regulatory T 
cells (Tregs) in tissue surrounding tumors was an independ-
ent prognostic factor for breast cancer and was associated 
with the prognosis of the molecular subtypes of tumors [13].

T-bet (encoded by TBX21) is an immune cell-specific 
member of the T-box family of transcription factors. T-bet 
is expressed in multiple immune cells including dendritic 
cells, natural killer cells,  CD4+ and  CD8+ effector cells, 
B cells and a subset of Tregs, and plays a pivotal role in 
infectious, inflammatory and autoimmune conditions, such 
as Crohn’s disease, type 1 diabetes, allergic asthma, rheu-
matoid arthritis, multiple sclerosis and so on [14], as well 

as in TME. T-bet is upregulated by stimulation of T-cell 
receptors and IL-12, and then regulates effector T-cell acti-
vation. Activated T cells function as antitumor lymphocytes 
by enhancing the production of cytokines such as INFγ [15]. 
Previous studies showed that high numbers of T-bet+ intra-
tumoral lymphoid cells have been found to correlate with 
an improved outcome in gastric cancer [16], colorectal can-
cer [17] and in high-grade cervical intraepithelial neoplasia 
[18]. Furthermore, in a cohort of woman with familial breast 
cancer, T-bet+ lymphocytes were associated with the basal 
molecular subtype as well as with morphological features 
characteristic of such tumors, including high tumor grade, 
p53 expression, ER-negativity, CK5-positivity and EGFR-
positivity, and also were correlated with a good prognosis 
[19]. In addition, T-bet+ TILs were associated with a favora-
ble outcome in all breast cancers [20]. However, there are 
few reports regarding the relationship between T-bet expres-
sion and prognosis, or between effector  CD8+ T cells and 
T-bet in TNBC.

In the present study, we retrospectively analyzed CD8 
and T-bet expression on lymphocytes in 242 TNBC cases. 
We also explored the correlation between immune system 
features, including T-bet positivity, clinicopathologic char-
acteristics, response to chemotherapies and clinical outcome.

Methods

Patients and treatments

This study included 242 patients with primary TNBC 
who underwent resection without neoadjuvant chemo-
therapy at Kyushu University Hospital (Fukuoka, Japan), 
Hamanomachi Hospital (Fukuoka, Japan) or Kumamoto 
City Hospital (Kumamoto, Japan) between January 2004 
and December 2014. Approximately, 20% of TNBC patients 
received neoadjuvant chemotherapy and were excluded 
from this study. The patients were treated according to the 
National Comprehensive Cancer Network Guidelines for 
treatment of breast cancer [21], the recommendations of the 
St. Gallen International Breast Cancer Conference [22–25] 
and the Clinical Practice Guidelines for Breast Cancer by 
the Japanese Breast Cancer Society [26]. The adjuvant treat-
ments for the patients are shown in Supplementary Table S1. 
The study conformed to the principles of the Declaration 
of Helsinki and was approved by the Institutional Review 
Board (IRB) of Kyushu University Hospital (No. 30-231). 
Prior to their operations, participants comprehensively pro-
vided their written consent stating that the tissue samples 
from resected specimen may be used for various researches. 
Once the IRB approved this study, all details were made 
available on the Kyushu University Hospital website instead 
of renewing informed consent. All patients have the option 
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to confirm ongoing studies and may choose to opt out of con-
sent at any time. The IRB approved this consent procedure.

Immunohistochemistry (IHC) staining

Tumor subtypes were identified using IHC staining on surgi-
cally resected tissue. All resected specimens used for IHC 
were fixed (fixation was begun within 1 h) in 10% neutral 
buffered formalin for 6–72 h. ER-positive or PR-positive tis-
sues were defined as ≥ 1% of tumor cells staining positive for 
ER or PR. Cancer specimens were defined as HER2 positive 
when HER2 IHC staining was scored as 3+ according to the 
standard criteria [27, 28], or when HER2 gene amplification 
was detected using fluorescence spectroscopy with in situ 
hybridization.

Primary anti-CD8 antibody (monoclonal mouse, 
C8/144B; Nichirei Bioscience Inc., Tokyo, Japan) was used 
according to the protocol. Briefly, slides were deparaffi-
nized and immersed in unmasking solution (pH 6.0) at a 
sub-boiling temperature (95–98 °C) for heat-induced antigen 
unmasking. The primary antibody was used at no dilution 
and was incubated for 60 min, and the secondary anti-mouse 
antibody was incubated for 40 min at room temperature. 
Slides were counterstained with hematoxylin. Primary anti-
T-bet antibody (monoclonal rabbit, D6N8B; Cell Signaling 
Technology, Beverly, MA) was used at a 1:1600 dilution 
and incubated overnight at 4 °C, and the secondary anti-
rabbit antibody was incubated for 40 min at room tempera-
ture.  CD8+ and T-bet+ staining was evaluated according 
to previous reports [20]. Briefly, tumor-infiltrating  CD8+ 
T lymphocytes were counted separately according to their 
intracellular localization, i.e. intraepithelial (intratumoral) 
or stromal.  CD8+ TILs were counted under a microscopic 
field at × 200 magnification (0.00625 mm2). Five areas with 
the most abundant infiltration were selected, and the average 
count was calculated. The results were interpreted as posi-
tive when more than or equal to 30 cells per 0.0625 mm2 
were identified in intraepithelial (intratumoral) or stromal 
areas (Supplementary Fig. S1a). T-bet+ lymphocytes were 
evaluated in the same way (Supplementary Fig. S1b). PD-L1 
expression on tumor cells was evaluated according to our 
previous report [9].

Statistics

Logistic regression was used to compare continuous varia-
bles and χ2 tests were used to compare categorical variables 
between T-bet+ and T-bet− groups. The survival endpoints 
evaluated were recurrence-free survival (RFS) and overall 
survival (OS). RFS was defined as the time from surgery to 
recurrence, including both local relapse and metastatic dis-
ease. OS was defined as the time from surgery until the date 
of death from any cause. Survival curves were generated 

using the Kaplan–Meier method and compared with the 
log-rank test. Interactions between T-bet and other factors 
were evaluated using nested effects in the Cox proportional 
hazards model. Variables for the multivariate analysis were 
selected through the back elimination method. However, 
variables, which were known as prognostic factors and 
highly associated with T-bet, were included in the multi-
variate analysis. Hazard ratios (HR) were calculated using 
Cox proportional hazards regression. Values of p < 0.05 were 
considered statistically significant. The multiplicity was not 
adjusted for RFS and OS because this research was develop-
ing and exploratory. Statistical analysis was carried out using 
JMP 11 (SAS Institute Inc., Cary, NC).

Results

Clinicopathologic features and CD8 and T‑bet 
expression

We evaluated 242 TNBC tumors with respect to the clinico-
pathologic data (Table 1) and CD8 and T-bet expression on 
TILs (Supplementary Fig. S1). Among the 242 TNBC cases, 
CD8 on TILs was expressed as positive in 127 (52.5%) 
tumors (Supplementary Table S2) and T-bet on TILs was 
expressed as positive in 67 (27.7%) tumors (Table 1). When 
focusing on T-bet expression, T-bet+ tumors were smaller 
than T-bet− tumors (p = 0.04), and there was no significant 
difference in nodal status and pathological stage between 
T-bet+ and T-bet− tumors (Table 1). Nuclear grade and 
Ki-67 labeling index in T-bet+ tumors were higher than 
in T-bet− tumors (p < 0.0001 and p < 0.0001, respectively; 
Table 1). Analysis of the combination of CD8 and T-bet 
expression revealed T-bet was positive in 55 (22.7%)  CD8+ 
tumors and 12 (5.0%)  CD8− tumors, and T-bet was negative 
in 72 (29.7%)  CD8+ tumors and 103 (42.6%)  CD8− tumors. 
T-bet expression on TILs was significantly correlated with 
CD8 expression on TILs (Table 1). T-bet expression on TILs 
was also significantly correlated with PD-L1 expression on 
tumor cells (Table 1).

Patient survival

The median follow-up in this cohort was 67 months (range 
2–150 months). There was no significant difference in RFS 
and OS between patients with  CD8+ tumors and those with 
 CD8− tumors (Supplementary Fig. S2). Although there 
was no significant difference in RFS between patients with 
T-bet+ tumors and those with T-bet− tumors (Fig.  1a), 
patients with T-bet+ tumors had significantly better OS than 
those with T-bet− tumors (p = 0.047, Fig. 1b).

Next, we evaluated the prognosis of patients categorized 
according to the combination of CD8 and T-bet expression. 
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When focusing on  CD8+ tumors, patients with  CD8+/T-bet+ 
tumors had significantly better RFS and OS than those with 
 CD8+/T-bet− tumors (p = 0.037 and p = 0.024, respectively, 
Fig. 2a, b). Meanwhile, in the case of  CD8− tumors, there 

was no significant difference between  CD8−/T-bet+ tumors 
and  CD8−/T-bet− tumors (Fig. 2c, d). The adjuvant treatment 
background of these four subgroups did not significantly dif-
fer (Supplementary Table S1). Furthermore, the results of 
nested effects in the Cox proportional hazards model showed 
that the effect of T-bet occur only within  CD8+ tumors when 
we evaluated interactions between T-bet and CD8 (Supple-
mentary Table S3a).

Adjuvant chemotherapy and clinical outcome

Among the 242 TNBC patients, 167 (69.0%) patients 
received adjuvant chemotherapy, 74 (30.6%) patients 
received no treatment, and there was no information avail-
able for 1 (0.4%) patient (Table 1). Adjuvant chemotherapy 
provided significantly greater benefit to patients with T-bet+ 
tumors (p = 0.031 for RFS, p = 0.0003 for OS, Fig. 3a, b). 
In patients with T-bet− tumors, their prognosis did not sig-
nificantly differ between the patients who received adjuvant 
chemotherapy and those who received no treatment (Fig. 3c, 
d). In addition, the results of nested effects showed that the 
effect of adjuvant chemotherapy occurs only within T-bet+ 
tumors when we evaluated interactions between T-bet and 
treatment (Supplementary Table S3b).

Univariate and multivariate survival analysis

Univariate analysis of the clinicopathologic characteristics 
revealed that tumor size (> 2 cm) and lymph node involve-
ment were significantly related to poorer RFS and OS, while 
receiving adjuvant chemotherapy and T-bet+ tumors were 
significantly related to better OS (Table 2a). Multivariate 
analysis revealed that the tumor size (> 2 cm) was a negative 
prognostic factor for RFS and that the lymph node involve-
ment was also a negative prognostic factor for both RFS 
and OS. Adjuvant chemotherapy provided significantly 
better OS. Meanwhile, T-bet expression proved to be an 
independent positive prognostic factor for both RFS and 
OS (HR = 0.36, 95% confidence interval (CI) 0.12–0.94, 
p = 0.037 for RFS, HR = 0.30, 95% CI 0.07–0.95, p = 0.039 
for OS) (Table 2b).

Discussion

According to the reports by Denkert et al. increased levels of 
TILs in woman receiving neoadjuvant chemotherapy were 
associated with improved prognosis in HER2+ or TNBC, 
but a poorer outcome in ER+/HER2− breast cancer [7]. In 
addition, in our previous study, we evaluated TILs in TNBC 
according to international TILs guidelines, and our data 
showed that patients with TILs-high tumors had significantly 
better OS than those with TILs-low tumors [6]. This finding 

Table 1  Clinicopathologic characteristics

Bold value represents that P value was significant
a Logistic regression
b Pearson’s χ2 test

T-bet+ T-bet− p value
N = 67 (27.7%) N = 175 (72.3%)

Age at diagnosis
 Mean (range) 58.2 (32–86) 60.8 (30–89) 0.16a

Tumor size
 T1a/b (≤ 1 cm) 6 (8.9%) 14 (8.0%) 0.04b

 T1c (> 1 cm, 
≤ 2 cm)

42 (62.7%) 79 (45.1%)

 T2 (> 2 cm, ≤ 5 cm) 19 (28.4%) 75 (42.9%)
 T3 (> 5 cm) 0 7 (4.0%)

Nodal status
 N0 44 (65.7%) 118 (67.4%) 0.62b

 N1 (1–3) 19 (28.3%) 39 (22.3%)
 N2 (4–9) 2 (3.0%) 11 (6.3%)
 N3 (≥ 10) 2 (3.0%) 6 (3.4%)
 Unknown 1 (0.6%)

Pathological stage
 I 31 (46.3%) 71 (40.6%) 0.33b

 II 33 (49.2%) 86 (49.1%)
 III 3 (4.5%) 18 (10.3%)

Nuclear grade
 1 + 2 5 (7.5%) 65 (37.2%) < 0.0001b

 3 58 (86.5%) 107 (61.1%)
 Unknown 4 (6.0%) 3 (1.7%)

Ki-67 (%)
 ≤ 30 3 (5.8%) 45 (29.0%) < 0.0001b

 > 30 57 (80.6%) 104 (57.9%)
 Unknown 7 (13.6%) 26 (13.1%)

CD8
 Negative 12 (17.9%) 103 (58.9%) < 0.0001b

 Positive 55 (82.1%) 72 (41.1%)
PD-L1 on tumor cells < 0.0001b

 Negative 22 (32.8%) 121 (69.1%)
 Positive 45 (67.2%) 54 (30.9%)

Surgical treatment
 Breast-conserving 

surgery
50 (74.6) 94 (53.7) 0.003b

 Mastectomy 17 (25.4) 81 (46.3)
Adjuvant treatment
 Chemotherapy 50 (74.6%) 117 (66.8%) 0.27b

 No treatment 17 (25.4%) 57 (32.6%)
 Unknown 0 1 (0.6%)
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was consistent with the previous results, which showed that 
each 10% increase in TILs strongly predicted better survival 
[29]. To clarify the biological function of TILs, which is a 

host factor in TME, we focused on effector  CD8+ T cells and 
transcription factor T-bet.

Fig. 1  Prognostic value of T-bet expression: Kaplan–Meier curves showing estimated RFS (a) and OS (b) for T-bet expression. p values are for 
comparison of two groups

Fig. 2  Prognostic value of the combination of CD8 and T-bet expres-
sion: Kaplan–Meier curves showing estimated RFS (a) and OS (b) 
for T-bet expression in CD8-positive tumors as well as RFS (c) and 

OS (d) for T-bet expression in CD8-negative tumors. p values are for 
comparison of two groups
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Fig. 3  Prognostic value of adjuvant chemotherapy by T-bet: Kaplan–
Meier curves showing estimated RFS (a) and OS (b) for treatment 
status in T-bet-positive tumors as well as RFS (c) and OS (d) for 

treatment status in T-bet-negative tumors. p values are for comparison 
of two groups. Adjuvant adjuvant chemotherapy, No treat no treat-
ment

Table 2  Cox proportional 
hazards model for recurrence-
free and overall survival

Bold value represents that P value was significant
HR hazard ratio, CI confidence interval, TC tumor cells, Chemo chemotherapy, No treat no treatment

Variables Recurrence-free survival Overall survival

RR 95% CI p value RR 95% CI p value

A univariate analysis
 Age > 50 versus ≤ 50 1.16 0.58–2.59 0.69 1.45 0.64–3.88 0.40
 Tumor size > 2 cm versus ≤ 2 cm 2.65 1.41–5.14 0.0023 2.33 1.16–4.84 0.018
 Nodal status Positive versus negative 2.75 1.48–5.20 0.0015 2.26 1.12–4.56 0.023
 Nuclear grade 3 versus 1 and 2 1.03 0.52–2.17 0.94 0.69 0.34–1.45 0.32
 Ki-67 > 30% < versus ≤ 30% 1.61 0.57–6.70 0.41 0.75 0.31–2.23 0.58
 CD8 Positive versus negative 1.52 0.81–2.96 0.20 1.10 0.55–2.26 0.78
 PD-L1 on TC Positive versus negative 0.84 0.43–1.58 0.60 0.62 0.28–1.27 0.20
 Adjuvant treatment Chemo. versus no treat. 0.80 0.42–1.57 0.51 0.43 0.22–0.87 0.02
 T-bet Positive versus negative 0.54 0.22–1.14 0.11 0.36 0.11–0.92 0.032

B Multivariate analysis
 Tumor size > 2 cm versus ≤ 2 cm 2.73 1.29–6.19 0.0084 2.18 1.00–5.05 0.05
 Nodal status Positive versus negative 3.17 1.50–6.92 0.0024 2.78 1.26–6.24 0.012
 Nuclear grade 3 versus 1 and 2 0.99 0.42–2.58 0.98 0.58 0.25–1.43 0.24
 Ki-67 > 30% < versus ≤ 30%) 1.79 0.62–6.02 0.30 1.90 0.70–5.78 0.22
 CD8 Positive versus negative 2.00 0.95–4.33 0.07 1.52 0.69–3.32 0.30
 Adjuvant treatment Chemo. versus no treat. 0.67 0.32–1.43 0.29 0.39 0.18–0.85 0.018
 T-bet Positive versus negative 0.36 0.12–0.94 0.037 0.30 0.07–0.95 0.039
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Our results showed that CD8-positivity in TNBC was 
52.5% (Supplementary Table S2). In previous studies, 
CD8-positivity of intratumoral and stromal  CD8+ TILs in 
all subtypes of breast cancer ranged from 47.5 to 79.1% 
[13, 30, 31], and CD8 expression was associated with 
ER-negative status.  CD8+ T cells represent a candidate 
biomarker of the tumor-associated immune response as a 
major component of the adaptive immune system. Compel-
ling evidence point to clinical relevance for high numbers 
of T cells at the tumor site, with  CD8+ T cells as a criti-
cal denominator for OS in patients with colorectal cancer 
[32], and also for other solid tumors. In this TNBC study, 
CD8 expression by itself was not a predictive factor. Most 
previous studies regarding  CD8+ T cells in all subtypes of 
breast cancer have reported an association with favorable 
outcomes [30, 31, 33, 34], but others have not [13].

T-bet expression on TILs was a good prognostic factor 
for node-negative breast cancer including all subtypes [20, 
35]. However, T-bet-positivity in TNBC is rarely reported 
and it is still unclear whether T-bet expression is correlated 
with breast cancer subtype. We focused on TNBC in this 
study and found that T-bet-positivity was 27.7%. Small 
tumor size, high nuclear grade, high Ki-67 and breast-con-
serving surgery were significantly correlated with T-bet 
expression. The reason why patients with T-bet+ tumors 
received more breast-conserving surgery compared with 
those with T-bet− tumors is probably because tumor size 
was smaller. However, there was no significant difference 
in nodal status and pathological stage between T-bet+ and 
T-bet− tumors. Mulligan et al. reported that T-bet+ tumors 
were associated with a large tumor size [20], in contrast 
to our result. However, we are considering the possibility 
that the tumor immune system cannot function well when 
tumors are too large. While in small-sized tumors, T-bet 
expression might be high and effector T cells work well.

We also indicated that OS was significantly longer 
among patients with high T-bet-expressing TNBC. T-bet 
is the recognized lineage-defining transcription factor 
and mediates direct, positive feed-forward regulation of 
INFγ production for Th1 cells [36]. Recent studies sug-
gested that the development of Th1 adaptive immunity 
was associated with improved outcome in various cancer 
types [37, 38]. Therefore, T-bet may become a predictive 
factor for better prognosis of various cancer types. In addi-
tion, T-bet expression on TILs was significantly associated 
with PD-L1 expression on tumor cells (Table 1). That was 
because PD-L1-amplified tumors were classified as having 
high TMB compared with unamplified tumors [39].

When verified at the mRNA level using KM plotter, 
which is the public data from Gene Expression Omni-
bus (National Cancer for Biotechnology Information, 
Bethesda, MD) database, either CD8-high or T-bet-high 

mRNA expression was significantly correlated with longer 
RFS among TNBC patients (Supplementary Fig. S3).

In addition, we indicated that T-bet expression was asso-
ciated with response to chemotherapy, and this is the first 
report of a relationship between T-bet and response to con-
ventional chemotherapy including anthracycline and taxane 
in TNBC. The relationship between T-bet and response to 
chemotherapy has not been investigated in many cancer 
types, and only one study showed that T-bet expression in 
intratumoral lymphoid structures after neoadjuvant tras-
tuzumab–taxane in HER2-overexpressing breast cancer 
predicted better outcome [40]. This study included both 
patients who had been treated with trastuzumab–taxane and 
anthracycline-based neoadjuvant chemotherapy, and the 
presence of T-bet+ TILs after chemotherapy conferred sig-
nificantly better RFS (p = 0.011) only in patients treated with 
trastuzumab–taxane [40]. Although further investigation is 
needed, T-bet expression on TILs may become a predictive 
factor in response to chemotherapy or molecular targeted 
treatment.

This is also the first report of an interaction between 
T-bet and CD8 expression in breast cancer. T-bet expres-
sion was significantly correlated with CD8 expression on 
TILs. Even if  CD8+ TILs existed in the TME, patients with 
T-bet− tumors had a significantly worse prognosis. Prognosis 
was improved when  CD8+ effector T cells were present in 
the TME and T-bet was also expressed on immune cells. The 
presence of TILs in the TME is necessary to improve patient 
survival. However, not only the presence of TILs but also 
whether T cells are functioning or not may be important. 
Thus, the combination of T-bet and CD8 may be the most 
robust predictive factor of prognosis in TNBC.

This study had several limitations. First, it included only 
retrospectively collected cases. Second, the sample size was 
small. Although we assessed the interactive effect of T-bet 
and CD8, the causal relationship is not clear. We revealed 
that T-bet might be a prognostic or predictive factor. Since 
this study is developing and exploratory, we are planning 
the next study to make sure that T-bet will be a biomarker; 
for instance, a translational research using samples from 
the clinical trial of TNBC that has already been completed, 
or that will start in the future. Our final goal is to identify 
biomarkers that are functional indicators of tumor immune 
activation and also predictive factors in terms of treatment 
effect or resistance for immune checkpoint inhibitors.

Conclusions

Our findings suggested that T-bet expression on TILs is 
significantly correlated with CD8 expression on TILs and 
associated with better prognosis in patients with TNBC. 
OS is significantly longer among patients with high 



576 Breast Cancer Research and Treatment (2019) 176:569–577

1 3

T-bet-expressing TNBC. These results may validate the 
significance of T-bet as an indicator for various immuno-
therapies in TNBC.
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