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Abstract. By means of a monoclonal antibody (BH3), 
we have identified a 57-kD protein (p57) that in inter- 
phase is restricted largely to the perinuclear region of 
the cell. Double label immunofluorescence microscopy 
suggests localization of p57 to the Golgi complex and 
associated membranous structures. Protease protection 
experiments and chemical extractability indicate that 
p57 is a peripheral membrane protein exposed to the 
cytoplasm, p57 displays unique behavior during mito- 
sis. At the end of G2 or in early prophase, p57 leaves 
the perinuclear region and accumulates very rapidly 

within the nucleus, at a time when the nuclear enve- 
lope is still intact and before nuclear lamina disassem- 
bly. This relocation of p57 coincides with its hyper- 
phosphorylation on serine and threonine residues. 
After nuclear envelope breakdown p57 becomes uni- 
formly distributed throughout the mitotic cytoplasm 
until in late telophase when it returns to its 
perinuclear location and is once again excluded from 
the nucleus. The behavior of p57 during mitosis sug- 
gests that it may play a role in the cellular reorganiza- 
tion evident during mitotic prophase. 

M 
1TOSIS in higher eukaryotes is characterized by a 
profound reorganization of the cytoarchitecture. 
This includes the restructuring of interphase mi- 

crotubule arrays to form a mitotic spindle, chromatin con- 
densation and the fragmentation or vesiculation of several 
other low copy number organelles such as the nuclear enve- 
lope, Golgi apparatus, and the endoplasmic reticulum (Rob- 
bins and Gonatas, 1964; Zeligs and Wollman, 1979; Warren, 
1985). The restructuring of these membranous organelles 
has been shown to coincide with the inhibition of a num- 
ber of membrane-mediated processes including endocytosis 
(Fawcett, 1965; Berlin and Oliver, 1980), receptor recycling 
(Warren et al., 1984; Sager et al., 1984), and intracellular 
transport of newly synthesized membrane proteins (Warren 
et al., 1983; Featherstone et al., 1985). 

The mechanisms underlying the vesiculation of these or- 
ganelles is still a matter of speculation. In the case of the 
Golgi complex, for instance, it has been suggested that its 
fragmentation results from a temporary imbalance in the 
rate of membrane garlic into and out of the organelle 
(Hesketh et al., 1984; Warren, 1985). The disassembly of 
the nuclear envelope during prometaphase, on the other 
hand, seems to occur as a multi-step process (Zeligs and 
Wollman, 1979). It begins with the disassembly of the nu- 
clear lamina, a major structural component of the nuclear 
envelope, consisting predominantly of three proteins, lamins 
A, B, and C, (relative molecular mass of 60-74 kD; for re- 
view, see Gerace and Burke, 1988). Fragmentation of the 
double nuclear membrane succeeds lamina disassembly and 
commences at regions of the nuclear envelope closest to the 

asters of the mitotic spindle (Roos, 1973). The nuclear mem- 
branes apparently initially form large fragments or cisternae 
that are subsequently reduced to small vesicles (Roos et al., 
1973; Zeligs and Wollman, 1979), probably by membrane 
budding as suggested by Newport and Spann (1987). The ini- 
tial fragmentation, however, may be because of mechanical 
disruption by the cytoskeleton (Bajer and Mole-Bajer, 1969) 
or to some undescribed mechanism that results in periodic 
fusion between the extracytoplasmic faces of the inner and 
outer nuclear membranes. At the end of mitosis, in telo- 
phase, these organelles are reassembled and resume their in- 
terphase functions. This cycle of fragmentation followed by 
reassembly appears to provide the cell with a simple mecha- 
nism to ensure that each daughter receives a more or less 
equivalent allotment of each organelle (for review, see War- 
ren, 1985). The numerous vesicles derived from each inter- 
phase organelle presumably being free to partition at random 
between the two cells (Lucocq et al., 1987; Lucocq and War- 
ren, 1987). 

While the specific mechanisms underlying these structural 
rearrangements remain uncertain, the higher level regulation 
of M-phase events is becoming increasingly well under- 
stood. In yeast and in higher organisms, both vertebrate and 
invertebrate, the same conserved molecular mechanisms ap- 
pear to be operative (for review, see Cross et al., 1989). The 
general theme that has emerged from these diverse studies 
is that entry into mitosis requires the regulated activation of 
a protein kinase p34, which in yeast is encoded by the cdc2 
gene and which, in higher organisms, comprises a subunit 
of maturation promoting factor or MPF. Activation of p34 
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leads in turn to the triggering of a cascade of reactions (prob- 
ably involving many other protein kinases, including for in- 
stance a lamin kinase), which ultimately result in entry into 
mitosis. Conversely, exit from mitosis and the beginning of 
the next cell cycle is likely to involve the action of one or 
more phosphoprotein phosphatases (Doonan and Morris, 
1989; Ohkura et al., 1989; Booher and Beach, 1989). 

A number of proteins have been shown to be targets for 
mitotically activated protein kinases. The best described of 
these are the nuclear lamins (Gerace et al., 1978; Gerace and 
Blobel, 1980) whose level of phosphorylation increases by 
a factor of four- to sevenfold upon entry into mitosis (Otta- 
viano and Gerace, 1985). This hyperphosphorylation is ap- 
parently required for the disassembly of the nuclear lamina 
during prometaphase (Miake-Lye and Kirschner, 1985; 
Suprynowicz and Gerace, 1986). Likewise, there is evidence 
that dephosphorylation of the nuclear lamins during 
telophase is required for lamina and nuclear membrane reas- 
sembly (Burke and Gerace, 1986). It is a reasonable assump- 
tion that the structural dynamics during mitosis of the vari- 
ous membranous organelles (e.g., the nuclear membranes, 
Golgi apparatus, and endoplasmic reticulum) may involve 
the M-phase specific modification of certain key proteins in- 
timately involved in these rearrangements. By analogy with 
the lamins, such a modification is most likely to involve 
phosphorylation. Thus, the identification of proteins as- 
sociated with these organelles that undergo just such cyclic 
modification may provide clues as to the mechanisms under- 
lying these M-phase architectural rearrangements. 

This paper describes the identification, by means of a 
monoclonal antibody, of a protein associated with the inter- 
phase Golgi apparatus and nearby membranes. This protein, 
which is a target for a mitotically activated protein kinase, 
undergoes a dramatic relocation to the nucleus at the onset 
of mitosis, but apparently before nuclear envelope break- 
down. Possible functions for this protein p57 are discussed. 

Materials and Methods 

Cell Culture and Synchrony 
Normal rat kidney (NRK) cells were grown in DME supplemented with 
10% FCS, penicillin/streptomycin, and glutamine. CHO cells were main- 
tained in aMEM containing 5% FCS, 5% Serum Plus TM (Hazelton Sys- 
tems, Inc., Aberdeen, MD), penicillin/streptomycin, and glutamine. CHO 
cells were synchronized exactly as described by Burke and Gerace (1986) 
employing an 1 l-h thymidine block (2 mM thymidine) followed by "shake 
off" of prometaphase cells in the presence of nocodazole (600 ng/ml). 

Monoclonal Antibodies 

Hybridoma BH3 was derived from a mouse immunized with a Triton X-114 
extract of rat liver nuclear envelopes. In short, spleen cells from a Robertso- 
nian (8.12) 5BnR mouse were fused to FOX NY myelomas (Taggart and 
Samloff, 1982) using polyethylene glycol as described by Galfre et al. 
(1977). Hybridomas were distributed into 4 × 96-wetl microtitration plates 
and selected in AAT medium consisting of DME (4.5 g/liter glucose) con- 
taining 20% FCS, adenine (7.5 x 10 -5 M), aminopterin (8 x 10 -7 M), 
thymidine (1.6 × 10 -5 M), penicillin/streptomycin, and glutamine. Cul- 
tures were screened by immunofluorescence microscopy as described by 
Burke et al. (1982). Positive cultures were taken through three cycles of 
cloning by limiting dilution employing thymocytes as a feeder layer. Useful 
hybridomas were adapted to growth first in DME containing 10% FCS and 

1. Abbreviations used in this paper: DxRh, rhodamine-conjngated dextrans; 
NRK, normal rat kidney; TGN, trans-Golgi network. 

subsequently into DME 'supplemented only with 10% Serum Plus TM 

(Hazeiton Systems, Inc.). Purified antibody was obtained from spent cul- 
ture supernatant by two cycles of ammonium sulphate precipitation (at 45% 
saturation) and subsequently stored in PBS at 4°C in the presence of sodium 
azide. The antibody 53FC3 against a 135-kD Golgi membrane protein is 
described in Burke et al. (1982). A monoclonal antibody (E3) against lamin 
B2 was a gift from Erich Nigg (Lausanne, Switzerland). 

Labeling of Cells with r~S]Met and 32p04 
Cells grown in 35-mm petri dishes were labeled overnight with [35S]met 
(Amersham Corp., Arlington Heights, IL) or with trans label ([35Slmet 
and 135Slcys, ICN Radiochemicals, Irvine, CA) at 50 #Ci/ml, in met free 
DME containing 5% dialyzed (against PBS) FCS and 10% normal DME 
(providing 1/10 normal concentration of unlabeled met). For labeling with 
32po4, cells were first washed with phosphate free DME and then in- 
cubated for the specified time (see Results) in phosphate free DME contain- 
ing 5% FCS (dialyzed against Hepes-buffered saline) and 1-5 mCi/ml 
32po 4 

Immunoprecipitation 
After labeling, the cells were washed once in PBS and then lysed in a buffer 
containing 50 mM triethanolamine (TEA), 100 mM NaC1, 0.4% SDS, 
I mM DTT, 1 mM PMSF and 1:1,000 CLAP (10 mg/ml in DMSO of 
chymostatin, leupeptin, antipain, and pepstatin). After adding Triton X-100 
to a final concentration of 2 %, the lysate was centrifuged for 5 min in an 
Eppendorf centrifuge (made by Brinkmann Instruments, Westbury, NY) at 
4°C. To the supernatant was added 1-5 ~tg of monoclonal antibody, 3/~1 of 
rabbit anti-mouse IgG serum and 20/tl of a 50% suspension of protein A 
Sepharose in PBS. The mixture was then rotated overnight at 4°C. The fol- 
lowing morning the protein A Sepharose was washed 5 times in the same 
buffer containing 0.1% SDS and 0.5% Triton X-100. After two final washes 
in 50 mM Tris, pH 7.4, the Sepharose pellets were suspended in either one- 
or two-dimensional gel sample buffer as appropriate. 

Phosphoaminoacid Analysis 
NRK cells in a 35-mm tissue culture petri dish were labeled with 5 mCi 
of 32po4 for 4 h in the presence of 600 ng/ml nocodazole, p57 was then 
immunoprecipitated as described above and the immunoprecipitate frac- 
tionated by SDS-PAGE. The gel was subsequently dried, and the labeled 
p57 band excised, having been first localized by autoradiography (1-h ex- 
posure). The gel band was then rehydrated and subjected first to trypsin 
digestion and then to acid hydrolysis as described by Hunter and Sefton 
(1980). Phosphoamino acids were resolved by thin layer electrophoresis 
(Hunter and Sefton, 1980) and localized by autoradiography. 

Gel Electrophoresis 
One-dimensional SDS-PAGE was performed as described by Laemmli 
(1970). Two-dimensional gels (nonequilibrium pH gradient as the first 
dimension) were performed according to the method of O'Farrell et al. 
(1977). On completion of electrophoresis, gels containing proteins labeled 
with 35S were fixed in 10% TCA, impregnated with EN3HANCE (New 
England Nuclear, Boston, MA), dried and exposed to x-ray film at -70°C. 
Gels containing only 32p-labeled proteins were stained with Coomassie 
blue, dried, and exposed at -70°C with an intensifying screen (Dupont 
Cronex Lightning Plus, Wilmington, DE) (Laskey and Mills, 1977). 

Immunofluorescence Microscopy 
Cells grown on glass coverslips were fixed with formaldehyde and labeled 
with antibodies according to the general procedures described by Ash et al. 
(1977). Rhodamine- and fluorescein-conjugated secondary antibodies were 
obtained from Tago Inc. (Burlingame, CA). Some samples were also stained 
with Htechst dye 33258 to reveal the chromosomes. Specimens were ob- 
served and photographed with a Zeiss Axiophot equipped with an x63 NA 
and 1.4 PlanApo objective lens. For confocal microscopy, observations, and 
photography were performed using a second Axiophot equipped with an 
MRC Lasersharp confocal imaging system and optical disc storage (Bio- 
Pad Laboratories, Cambridge, MA). 

Protease Protection Analysis 
NRK cells labeled with [35S]met/cys were homogenized in a buffer con- 
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taining 10 mM TEA (pH 7.4), 10 mM KCI, I mM DTT, 10 ~g/ml cytochala- 
sin B. The homogenate was then incubated at 370C for 1 h with 100/~g/ml 
proteinase K either in the presence or absence of Triton X-100 as described 
by Fleiscber (1981) and Burke et al. (1982). After the addition of PMSF 
to I mM, the samples were processed for p57 immunoprecipitation. Dupli- 
cate samples were assayed for galactosyl transferase activity as described 
by Bretz and St/iubli (1977), Bretz et al. (1980), and Burke et al. (1982). 

Bead Loading 

A fixable rhodamine-conjugated dextran (70 kD, catalogue number D-1818; 
Molecular Probes Inc., Junction City, OR) was introduced into the cyto- 
plasm of NRK cells grown on glass coverslips using the "bead loading" tech- 
nique described by McNeil and Warder (1988) and employing 75-150/~m 
glass beads (Sigma Chemical Co., St. Louis, MO). After a l-h incubation 
at 37°C the cells were fixed in formaldehyde for 10 min and labeled with 
BH3 and a fluorescein-conjugated secondary antibody. 

R e s u l t s  

Hybridoma BH3, secreting an IgM, was obtained from a fu- 
sion involving spleen cells from a mouse that had initially 
been immunized with a preparation of  Triton X-114-solubi- 
lized rat liver nuclear membrane proteins. It was identified 
during a screen employing immunofluorescence microscopy 
of  NRK cells. The staining pattern observed with this anti- 
body is shown in Fig. 1. Clearly the labeling of interphase 
NRK cells is restricted largely to the perinuclear region and 
bears a striking resemblance to the pattern observed when 
these cells are labeled with a monoclonal antibody 53FC3 
(Burke et al . ,  1982), specific for a 135-kD integral mem- 
brane protein of the Golgi  complex (Fig. 1). However, in 
contrast to the staining pattern with 53FC3, we always ob- 

Figure L Double immunofluorescence labeling of interphase NRK 
cells employing the monoclonal antibodies BH3 (A) and 53FC3 (C, 
directed against a 135-kD integral Golgi membrane protein). Sec- 
ondary antibodies were rhodamine-conjugated goat anti-mouse 3' 
heavy chain and fluorescein-conjugated goat anti-mouse t~ heavy 
chain. All of the structures labeled by 53FC3 are labeled by BH3, 
but not vice versa. Notably, BH3 uniquely labels vesicular struc- 
tures in the perinuclear region as well as giving a low level of ditfuse 
labeling throughout the cytoplasm. Corresponding phase-contrast 
images are shown in B and D. Bar, 10 ~m. 

Figure 2. Immunoprecipita- 
tion analysis of [35S]met la- 
beled NRK cells employing 
BH3. (T) Total SDS lysate of 
labeled cells. 50 times this 
amount was used in each im- 
munoprecipitation. (1) Im- 
mune sample containing BH3. 
(NI) Noninmaune sample. BH3 
clearly immunoprecipitates a 
single polypeptide of 57 kD. 
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protein (p57) suggest that it may be present in only low abun- 
dance or that it is a long lived protein that turns over only 
relatively slowly. To further define the location of p57 with 
respect to intracellular compartments, homogenates of 35S- 
labeled NRK cells were digested with proteinase K either in 
the presence or absence of Triton X-100. After digestion, the 
samples were analyzed by immunoprecipitation with BH3. 
As shown in Fig. 3, p57 cannot be detected in proteolysed 
homogenates even in the absence of detergent when latent 
galactosyl transferase activity indicates that the membranes 
of the Golgi complex are impermeable to protease. These 
results suggest that the epitope on p57 recognized by BH3 
is exposed to the cytoplasm. When 35S-labeled NRK 
homogenates were extracted with 100 mM Na2CO3 all of 
the p57 could be recovered in the supernatant after pelleting 
of the membranes by ultracentrifugation (Fig. 4). Similar 
homogenates were also extracted with the detergent Triton 
X-114. When these extracts were wanned to 33°C, the cloud 

Figure 3. The effects of proteinase K on p57 in homogenates of 
35S-labeled NRK cells. Homogenates were digested with 100 
ttg/ml proteinase K either in the presence or absence of Triton 
X-t00 as described in Materials and Methods. Each sample was 
then processed for immunoprecipitation with BH3 (bottom). Sam- 
ples were also monitored for galactosyl transferase activity (top) to 
demonstrate latency of membranes. 

serve a low level of labeling throughout the cytoplasm with 
BH3 that cannot be attributed to background or to nonspe- 
cific binding (Fig. 1). In addition, BH3 also appears to label 
vesicular structures in the region of the Golgi complex that 
are not labeled by the Golgi specific antibody 53FC3. A sim- 
ilar pattern of labeling is observed in all mammalian cells so 
far tested, including rat (NRK), hamster (BHK, CHO), hu- 
man (SCJO, HeLa), dog (MDCK), and mouse (3T3, PYS-2, 
P19, P19MES), both embryonic and adult. Immunogold la- 
beling of ultra thin frozen sections indicate that labeling with 
BH3 (albeit at a low level) is not restricted only to the stacks 
of cisternae of the Golgi complex but can also be seen over 
other membranous structures in this region of the cell (B. 
Burke and G. Gritiiths, unpublished observations). Thus, 
this antibody cannot be considered a Golgi-specific probe. 

Immunoprecipitation analysis of NRK cells labeled to 
equilibrium with either pS]inet or with a mixture of 
[35S]met and [35S]cys, indicates that BH3 recognizes a sin- 
gle polypeptide of molecular mass 57 kD (Fig. 2). The long 
exposure times (>2 wk) required for the detection of this 

Figure 4. Labeled NRK cells were extracted either in Triton X-II4 
(TX-I14) or in Na2CO3 (Carbonate). The Triton X-ll4-extracted 
cells generated two fractions, a detergent insoluble pellet (P) and 
a soluble supernatant. The latter yielded two more fractions upon 
warming to 37°C, an aqueous phase (Aq) and a detergent phase 
(Dt). All three were processed for immunoprecipitation with BH3. 
For extraction in Na2CO3, the cells were homogenized in a 100- 
mM solution and then airfuged for 15 min at 20 psi and at 4°C to 
yield a supernatant fraction (S) and a membrane pellet (P). These 
were subsequently processed for immunoprecipitation with BH3. 
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Figure 5. Double label immunofluorescence microscopy of a prophase NRK cell employing BH3 (,4) and a monoclonal antibody (E3) against 
lamin B2 (B). Secondary antibodies were rhodamine-conjugated goat anti-mouse y heavy chain and fluorescein-conjugated goat 
anti-mouse # heavy chain. The same field photographed using phase-contrast optics is shown in C. Bar, 10/~m. 

point of the detergent, p57 could only be detected, by immu- 
noprecipitation, in the aqueous phase of the extract. Little 
could be detected in the detergent phase (Fig. 4). Taken to- 
gether, these results suggest that p57 is not an integral mem- 
brane protein, a conclusion supported by the further obser- 
vations described below. 

Late in G2 and in early prophase, p57 undergoes a dra- 
matic and unusual redistribution. From its interphase loca- 
tion in the perinuclear region of the cell it rapidly migrates 
into the cell nucleus. This redistribution is clearly shown in 
Fig. 5 where the condensing prophase chromosomes appear 
to be outlined by p57 immunolabeling. Observations with 
the confocal laser scanning microscope, however, demon- 

Figure 6. Confocal immunofluorescence micrograph of the nuclear 
region of a prophase NRK cell labeled with BH3 and a fluorescein- 
conjugated secondary antibody, p57 appears concentrated towards 
the periphery of the nucleus. Bar, 2.5 #m. 

strate that p57 is not found throughout the prophase nucleus 
but is restricted to the nuclear periphery (Fig. 6). Double la- 
bel immunofluorescence microscopy employing an antibody 
against lamin B, indicates that p57 accumulation in the 
prophase nucleus occurs at a time before disassembly of the 
nuclear lamina (Fig. 5). That the nuclear envelope is still in- 
tact and sealed to large cytoplasmic macromolecules during 
accumulation of p57 is evident from studies employing fixa- 
ble rhodamine-conjugated dextrans (DxRh) introduced into 
NRK cells using the "glass bead" method of McNeill and 
Warder (1988). When DxRh is loaded into the cytoplasm of 
G2 NRK cells, immunofluorescence microscopy shows that 
at a time when p57 has access to the nuclear interior, DxRh 
is still largely excluded (Fig. 7). This result suggests that nu- 
clear uptake of p57 may represent a signal-mediated process. 
After nuclear envelope breakdown in prometaphase, p57 be- 
comes uniformly distributed throughout the mitotic cyto- 
plasm (Fig. 8, A-C) and remains so during metaphase (Fig. 
8, D-F) and anaphase (Fig. 8, G--l). In telophase and early 
G1 cells when the nuclear envelope has reformed, p57 is 
once again excluded from the nuclear interior and returns to 
the perinuclear region of the cell. This later event appears 
to occur relatively slowly when compared with the reforma- 
tion of the Golgi complex (Fig. 8, J-L). 

When either NRK or CHO cells were incubated in 
medium containing 32PO4, immunoprecipitation analysis 
indicated that label was incorporated into p57, albeit at a low 
level, suggesting that this protein might be phosphorylated. 
This conclusion was confirmed by the phosphoamino acid 
analysis described below (Fig. 10). In a first step to deter- 
mine whether this phosphorylation could be related to the 
mitotic redistribution of p57, CHO cells were synchronized 
in pseudometaphase using nocodazole after an overnight 
thymidine block. 

The mitotic cells were subsequently collected by "shake- 
off" In one experiment, the mitotic cells were replated in 
medium containing 32PO4, either in the presence or absence 
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Figure 7. Immunofluorescence microscopy of a prophase NRK cell 
microinjected with fixable DxRh. NRK cells loaded with DxRh 
were incubated for 2 h at 37°C and then fixed and labeled with BH3 
followed by a rhodamine-conjugated secondary antibody. DxRh 
distribution is shown in B while BH3 labeling can be seen in A. The 
prophase cell shows little DxRh entry into the nucleus whereas p57 
has undergone considerable nuclear accumulation. The corre- 
sponding phase-contrast image is shown in C where several unin- 
jected cells are also visible. Bar, 10 #m. 

of nocodazole and incubated at 37°C for 1 h. During this 
period, the cells incubated in the absence of nocodazole- 
completed mitosis and entered G1. Subsequent immunopre- 
cipitation (Fig. 9 A) indicated that 32p-labeled p57 was only 
present in the mitotic cells and not the G1 cells, although 
equivalent amounts of protein could be detected in either im- 
munoprecipitate by Western blotting (Fig. 9 B). To exclude 
the possibility that the nocodazole was inducing the phos- 
phorylation of p57 in some unknown manner, CHO cells 
were incubated in the presence of nocodazole and 32po4 for 
2.5 h after which the mitotic cells were collected by shake- 
off leaving behind interphase cells on the dish. Both popula- 
tions of cells were then processed for immunoprecipitation. 
As before, labeled p57 was only detectable in the mitotic im- 
munoprecipitate (Fig. 9 C) despite the fact that far fewer mi- 
totic versus interphase cells were obtained. 

These results indicate that p57 becomes hyperphosphoryl- 
ated during mitosis. Phosphoamino acid analysis of p57 that 
was immunoprecipitated from NRK cells labeled with 5 mCi 
of 32po4 in the presence of nocodazole demonstrated that 
p57 was phosphorylated on both serine and threonine 
residues (Fig. 10) but not on tyrosine. Analysis by two- 
dimensional gel electrophoresis of either 35S- or 32p-labeled 
p57 immunoprecipitates indicates a substantial shift to a 
more acidic isoelectric point during mitosis (Fig. 11). A 
comparison of the position of the spots on the mitotic versus 
interphase gels suggests that p57 may be maximally phos- 
phorylated with ,x,4 mol of phosphate per mole of protein 
during mitosis, assuming that phosphorylation is the only 
charge altering modification detectable using this gel system. 
Such heavy phosphorylation would be consistent with the 
shift up in apparent molecular mass of mitotic versus inter- 
phase p57 evident on the two-dimensional gel shown in Fig. 
11 D and on one-dimensional gels (not shown). Also evident 
from Fig. 11, (Cand D) is that >50% of the p57 undergoes 
the shift to a more acidic isoelectric point, presumably be- 
cause of phosphorylation, in mitotic cells. 

Discussion 

In this paper, we have described the identification and char- 
acterization of a novel 57-kD protein that is localized to the 
interphase Golgi apparatus and nearby membranes. Chemi- 
cal fractionation and protease protection studies indicate that 
it is only peripherally associated with these membranous or- 
ganelles, and is exposed to the cytoplasm. This protein, p57, 
is unique in that it undergoes a dramatic redistribution to the 
nucleus at the end of G2, probably in response to its hyper- 
phosphorylation. Immunofluorescence microscopy of cells 
loaded with large DxRhs indicate that p57 accumulates in the 
nucleus before the commencement of nuclear envelope and 
lamina breakdown at a time when the nucleus is still sealed 
to cytoplasmic macromolecules. This suggests that the up- 
take of p57 into the nucleus may be a signal-mediated pro- 
cess, since if the protein is not grossly asymmetric, it would 
be too large to have access to the nuclear interior by free 
diffusion through the nuclear pore complexes (for review, see 
Dingwall and Laskey, 1986). 

Redistribution to the nucleus has previously been de- 
scribed for another Golgi-associated protein, the catalytic 
(C) subunit of the type II cAMP dependent protein kinase. 
The regulatory (R) subunit of this enzyme is anchored on the 
cytoplasmic face of membranes of the Golgi apparatus (Nigg 
et al., 1985b). In the presence of elevated cAMP the C 
subunit dissociates from the R subunit and is rapidly translo- 
cated into the nucleus (Nigg et al., 1985a). Once cAMP lev- 
els fall, the C subunit once again associates with the R 
subunit that itself undergoes no redistribution. Agents such 
as forskolin that cause an increase in cAMP resulting in C 
subunit nuclear translocation, have no discernible effect 
upon p57 localization (not shown), indicating that these are 
two quite distinct proteins. They also differ significantly in 
molecular mass (Nigg et al., 1985b). 

An intriguing feature of the redistribution of the C subunit 
in response to cAMP is that it is only the R subunit that actu- 
ally binds cAMP. This suggests that the C subunit must be 
in equilibrium between nuclear and cytoplasmic pools and 
that it is the affinity of the R subunit for C subunits, regulated 
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Figure 8. Immunofluorescence labeling of mitotic NRK cells with BH3. (A) Prometaphase, (D) metaphase, (G) anaphase, and (J) telophase. 
In B, E, and H, the corresponding fields are shown stained with Hoechst dye 33258 to reveal the chromosomes, whereas in K the cells 
were double labeled with the anti-Golgi antibody 53FC3 to reveal the state of assembly of the Golgi apparatus. The corresponding phase- 
contrast images are displayed in the right-hand column. The magnification of J-L  is somewhat lower than that of A-L Bars, 10 ttm. 
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Figure 9. CHO cells were synchronized in pseudometaphase using nocodazole after an overnight thymidine block. The mitotic cells were 
subsequently collected by shake-off. In A, the mitotic cells were replated in medium containing 32PO4, either in the presence or absence 
of nocodazole and incubated at 370C for I h, to yield labeled mitotic or GI cells, respectively. Both populations of ceils were then processed 
for immunoprecipitation with BH3 (I) or a nonimmune control (N). The total labeled cell lysate is indicated by T. 50 times this amount 
was used for each immunoprecipitation. An immunoblot of the precipitated samples is shown in B indicating that comparable amounts 
of p57 can be found in both mitotic and GI cells. In C, the CHO cells were incubated in the presence of nocodazole and 3zPOa for 2.5 h 
before shake-offof the mitotic cells. Both the mitotic cells and the interphase ceils left behind on the dish were processed for immunoprecipi- 
tation with BH3. Approximately five to ten times as many interphase as mitotic cells were used; however, labeled p57 is only detected 
in the mitotic immunopreeipitate (arrowhead). 

by cAMP, which controls gross C subunit distribution. Such 
an equilibration, implying bidirectional movement through 
the nuclear pore complexes, need not apply to p57 since it 
only returns to its perinuclear location after dissolution of 
the nuclear envelope, when it has free access to the cyto- 
plasm. It is probable that p57 contains one or more nuclear 
localization signals, but at the same time must contain se- 
quences that direct it to the locality of the Golgi complex in 
interphase cells. One of the functions of the M-phase depen- 
dent phosphorylation may be either to inactivate the Golgi 
targeting sequence or to uncover a cryptic nuclear localiza- 
tion signal, or perhaps both. Since we do not know what 
molecules p57 binds to on the Golgi complex and nearby 
membranes, the possibility must remain open that its binding 
site also undergoes some form of M-phase dependent modi- 
fication. 

Apart from p57, only one other Golgi-associated protein 
has been suggested to undergo M-phase dependent phos- 
phorylation. This is an 110-kD protein, initially identified in 
mammalian cells, which is related to the microtubule- 
associated protein MAP-2 (Allen and Kreis, 1986). It is 
thought to be involved in the interaction between the Golgi 
apparatus and the interphase microtubule network. Experi- 

ments employing Xenopus oocytes and eggs indicate that the 
amphibian homologue of this protein is hyperphosphorylated 
during meiotic metaphase. It is possible that this M-phase 
dependent modification is involved in the modulation of 
Golgi-microtubule interactions during cell division, although 
its occurrence in mammalian somatic cells has yet to be 
demonstrated. 

Several Golgi-associated proteins have molecular masses 
similar to that of p57. Willison et al. (1989) have recently 
found that a 57-kD protein, TCP-1, encoded by a gene of the 
mouse T complex, is associated with the cytoplasmic face 
of interphase Golgi membranes, specifically the trans-Golgi 
network (TGN). It is suggested that TCP-1 may be involved 
in acrosome formation in sperm, possibly the budding or tar- 
geting of transport or secretory vesicles exiting the TGN. 
TCP-1 and p57 appear not to be related, however, since 
TCP-1 apparently remains associated with Golgi-derived 
vesicles during mitosis while p57 clearly does not. In addi- 
tion, p57, in contrast to TCP-1, is not restricted to the TGN. 
A similar argument applies to the one other known periph- 
eral protein of the Golgi apparatus with a molecular mass 
in the 50-60 kD range GC1 (Chicheportiche et al., 1984; 
Chicheportiche and Tartakoff, 1987). This protein of 54 kD 
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Figure 10. NRK cells were labeled overnight with 5 mCi of 
3 2 p o  4 in the presence of nocodazole, p57 was subsequently 
immunoprecipitated from these cells and the immunoprecip- 
itate fractionated on an SDS gel. After autoradiography, p57 
was excised from the gel, digested with trypsin, and then 
subjected to acid hydrolysis. Phosphoamino acids were then 
separated by thin layer electrophoresis and detected by auto- 
radiography. The positions of nonradioactive standards were 
determined using ninhydrin, pp60 ~ was employed as a source 
of labeled phosphotyrosine, Tyr(P). It is clear that p57 con- 
tains only phosphoserine, Ser(P), and phosphothreonine, 
Thr(P ). 

and a second immunologically related polypeptide of 86 kD 
are localized exclusively to two or three medial cisternae of  
the Golgi apparatus. There is no indication that either the 54- 
or the 86-kD protein ever undergo any M-phase dependent 
redistribution independent of the Golgi apparatus. 

What then might be the function of  p57? One possibility 
would be that it is somehow involved in the normal inter- 
phase functions of the Golgi apparatus. Since, however, it 
does not appear to be associated with just a single compart- 
ment it would have to be argued that its function was com- 

mon to several biochemically distinct compartments. One 
obvious possibility would be that it is involved in either vesi- 
cle budding or targeting and that its M-phase dependent 
modification could be involved in the cessation of intra-Golgi 
transport during mitosis. Such an explanation, however, 
does not account for the movement of  this protein into the 
nucleus at the end of G2. In addition, as can be seen in Fig. 
8 (J-L), p57 appears to return to its interphase location rela- 
tively slowly, at a time when it is known that normal inter- 
phase vesicular traffic has already resumed (Warren et al., 

Figure 11. p57 was immunoprecipitated from interphase NRK cells labeled with [35S]met (A) and from mitotic NRK cells labeled with 
32po4 (B). The immunoprecipitates were subsequently fractionated on identical two-dimensional gels both of which were stained with 
Coomassie blue, processed for fluorography, and dried in parallel. The position and total number of spots on each autoradiograph indicates 
that p57 possesses 5-6 charge isoforms. The small arrowheads indicate the positions of the major charge isoforms on either autoradiograph. 
The large arrowheads show the position of a nonradioactive protein in the immunoprecipitate (detected by Coomassie blue staining; not 
shown) on each gel, which provides an internal standard for the position of p57. C and D show a pair of interphase and mitotic im- 
munoprecipitates both labeled with [3~S]met. This indicates that at least 50% of the total p57 undergoes a shift in isoelectric point during 
mitosis. Note also that p57 has undergone a slight shift up in apparent molecular mass in B and D. 
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1983). Another potential role for p57 may be as an effector 
of mitotic progression, possibly involved in some aspect of 
prophase nuclear restructuring such as chromatin condensa- 
tion or nuclear envelope breakdown. The latter might be 
consistent with the apparent concentration of p57 towards 
the periphery of the prophase nuclei. It could also in princi- 
ple, play the role of a reporter molecule involved in the syn- 
chronization of cytoplasmic and nuclear events. In this way, 
it is conceivable that the association of p57 with the inter- 
phase Golgi complex and nearby membranes could be mis- 
leading in terms of p57 function, just as it is for the cAMP 
dependent protein kinase described in detail above. 

p57 appears not to correspond to any of the other known 
regulatory proteins implicated in mitotic progression. Its 
molecular mass is very close to what has been described for 
the cyclins, which are involved in the regulation of p34 activ- 
ity (for review, see Cross et al., 1989). However, we have 
failed to obtain any immunological data which would 
confirm identity with the cyclins (Burke, B., and K. Swen- 
son, unpublished observations). Furthermore, in contrast to 
the cyclins, p57 does not appear to undergo any large scale 
degradation after metaphase. In Drosophila early embryos 
for instance, cyclins become undetectable by immunofluo- 
rescence microscopy by early anaphase (Lehner and O'Far- 
rell, 1989). Because protein kinases play a key role in mi- 
totic regulation, we have tested p57 immunoprecipitates for 
kinase activity; however, to date none has been convincingly 
found. 

If p57 is required for chromatin condensation or for some 
aspect of nuclear envelope breakdown, it should be possible 
to demonstrate this in vitro employing mitotic extracts such 
as has been described by Suprynowicz and Gerace (1986). 
After preadsorption of a CHO mitotic cytosol fraction with 
the antibody against p57, the ability of the cytosol to promote 
breakdown of interphase nuclei may then be assessed 
microscopically. Similarly, if I)57 is required for normal in- 
terphase Golgi function this may also be determined in vitro 
employing the cell free intra-Golgi transport assay developed 
by Rothman and his colleagues (Balch et al., 1984), or per- 
haps in vivo by microinjection (Burke and Warren, 1984). 
Such experiments will hopefully shed more light on the func- 
tion of p57. 
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Note added in proof'. We have recently obtained a second independent antibody 
(TCI l) against p57 that gives identical results to those described in this paper. 
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