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Innate immunity in the human lung: pathogen recognition
and lung disease
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Abstract As the human lung is exposed to a variety of
microbial pathogens in the environment, a first line of
defense is built up by pulmonary cells like bronchial/
alveolar epithelial cells and alveolar macrophages. These
cells express several pattern recognition receptors
(PRRs) recognizing highly conserved microbial motifs
and initiating the production of chemokines and pro- and
anti-inflammatory cytokines acting as transmembrane or
intracellular receptors. This might not only lead to acute but
also to chronic inflammation which is discussed as an
underlying mechanism in the pathogenesis of different lung
diseases.
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Introduction

The human lung is continously exposed to airborne
pathogens including bacteria, viruses and fungi. To protect
the organ from infectious diseases, several lines of defense
have been developed belonging to the immune system.

Concerning the different mechanisms of the immune
response, the immune system is divided into the major
branches innate and acquired immunity. Regarding the
respiratory compartment, the innate immune system
consists of the epithelial barrier, the tracheobronchial
mucociliary system and constitutively expressed antimi-
crobial peptides, lysozyme and surfactant proteins. Cells
of the innate immune system include phagocytes (neu-
trophils, monocytes, macrophages), dendritic cells,
epithelial cells, basophils, mast cells, eosinophils and
natural killer cells. These cells can be found with a
preferential distribution in distinct lung compartments
(Pabst and Tschernig 2010).

In children, organized bronchus-associated lymphoid
tissue (BALT) can be found in a certain percentage. It is
very likely that there are M cells in the epithelium covering
(BALT) which are able to take up particular antigens as
demonstrated for BALT in animals (Tschernig et al. 2007).
We proposed the concept that in a two-step system BALT
might be induced in adult man and used as an entry side for
vaccination by aerosols as the second step (Pabst and
Tschernig 2010).

In the conducting airways, the type and composition of
epithelial cells are changing from the trachea to the
terminal bronchioles, and variable numbers of subsets of
dendritic cells can be found (Tschernig et al. 2006;
Randall 2010). The molecular components of innate
responses include complement, acute-phase proteins, and
cyto- and chemokines.
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The innate immune system also specifically eliminates
bacteria after recognizing several conserved microbial
motifs, the so-called pathogen-associated molecular pat-
terns (PAMPs), by pattern recognition receptors (PRRs).
PAMPs are highly conserved structures present in large
groups of microorganisma, for instance, bacterial lipopoly-
saccharide (LPS), peptidoglycan (PGN) or lipoteichoic acid
(LTA). PRRs are present in soluble forms like mannan-
binding lectin (MBL) and in form of transmembraneous or
intracellular molecules that directly mediate cellular
immune responses. These cell-bound receptors include
Toll-like receptors (TLRs), NOD-like receptors (NLRs),
RIG-I-like receptors (RLRs) and cytosolic DNA receptors.
PRRs are expressed by alveolar macrophages, lung epithe-
lial cells and dendritic cells responsible for the first
reactions to invading pathogens (Bals and Hiemstra 2004;
Opitz et al. 2010). Relevant respiratory pathogens causing
different types of pneumonia or exacerbations of asthma
and COPD are listed in Table 1.

Pattern recognition receptors (PRR)

Toll-like receptors (TLR)

TLRs are one important group of PRRs consisting of 10
members of the human TLR family. The cytoplasmic Toll/
IL-1 receptor homology (TIR) domain is responsible for
downstream signaling via TIR adaptor molecules whereas
the extracellular leucinerich repeat (LRR) domain most
likely mediates ligand binding. TLRs are located either at
the cell surface (TLR1, 2, 4-6, 10) or in intracellular
lysosomal/endosomal membranes (TLR3, 7–9). In the lung,
several host cells including macrophages, dendritic cells
(DCs), lung epithelial and endothelial cells express TLRs.
Different combinations of TLRs can be found on different
respiratory cells (see also Table 2) and the simultaneous
activation of several TLRs might lead to a more pathogen-
specific immune response (Bals and Hiemstra 2004;
Krishnan et al. 2007; Knuefermann et al. 2007). TLR
activation by microbial pathogens can also lead to increased
TLR expression on the surface of the stimulated cell such

as H. influenzae upregulates TLR2-expression on bronchial
and alveolar epithelial cells (Fig. 1a, b). This is important to
know since unstimulated epithelial cells show a weak
expression of TLR (Imasato et al. 2002).

TLR2 and TLR4 are most widely studied and are
considered the major transmembrane TLRs. TLR2 recog-
nizes lipoproteins and lipoteichoic acid (LTA) from a
variety of Gram-positive and some Gram-negative bacteria
as well as from mycobacteria and fungi. After activation,
TLR2 forms a heterodimer with TLR6 or TLR1 to
recognize (responding to a different panel of lipoproteins)
diacyl and triacyl lipopeptides. TLR2 binds to zymosan, a
particle of yeast cell wall components, peptidoglycan, a
component of the Gram-positive bacteria cell wall, and
Pam3Cys-Ser-(Lys)4 hydrochloride (Pam3Cys), a lipohex-
apeptide analog of the immunologically active N-terminal
portion of bacterial lipoprotein (Chaudhuri et al. 2005;
Henning et al. 2008). The enhanced expression of TLR2 at
the protein level and the increased expression of TLR2 on
the cell surface leads to remarkable induction of mRNA
expression for IL-6 and CXCL-8 and after stimulation with
PGN. These gene products and others are known to be
important for innate immune responses and host defense
reactions, upregulated TLR2 in respiratory epithelial cells
may consequently enhance the antimicrobial responses of
the host (Homma et al. 2004; Reppe et al. 2009).

TLR4 plays a central role in the response of cells to LPS,
a major component of the Gram-negative cell wall. LPS is
bound by LPS-binding protein (LBP), an acute phase
protein produced by liver cells and epithelial cells in the
lung. LBP transfers LPS to CD14, to constitute the TLR4
complex together with the extracellular protein MD-2.
Activation of the TLR4 receptor complex by the recogni-
tion of LPS is followed by intracellular signal transduction
including the adaptor molecule MyD88 and leading to the
production and secretion of proinflammatory cytokines
(Wieland et al. 2005; Janardhan et al. 2006). The regulation
of TLR4 expression on the cell surface of bronchial
epithelium and alveolar macrophages is discussed contro-
versially (Saito et al. 2005). In addition to LPS, TLR4 also
recognizes pneumolysin (PLN), an intracellular toxin
found as an important virulence factor in S. pneumoniae.

Gram-positive bacteria Gram-negative bacteria Viruses Fungi

S. pneumoniae H. influenzae RSV Aspergillus spp.

S. aureus M. pneumoniae Rhinovirus Candida spp.

Chlamydia spp. Influenza virus Pseudallescheria spp.

Klebsiella spp. Parainfluenza virus Scedosporium spp.

Legionella spp. CMV P. jirovecii

P. aeruginosa Adenovirus

Acinetobacter spp. SARS coronavirus

Table 1 Important respiratory
pathogens
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Interaction of TLR4 and PLN leads to enhanced cytokine
production and thus to the elimination of the pathogen from
the respiratory tract (Dessing et al. 2008).

TLR3, TLR7/8 and TLR9 act as intracellular PRRs as
they are located in the endosome. TLR3 detects double-
stranded (ds)RNA which is an intermediate in viral
replication, as well as possibly endogenous mRNA released
from necrotic cells, and TLR7/8 respond to viral single-
stranded (ss)RNA. TLR5 recognizes extracellular bacterial
flagellin. TLR9 responds to microbial DNA by recognizing
cytosine–guanine pairs in the DNA, the so-called CpG-
DNA (Opitz et al. 2010; Chaudhuri et al. 2005). Analogous
to TLR2 expression of TLR9 is increased by bacterial
pathogens (Fig. 1c–e). The ligand for TLR10 has not yet
been identified (Bals and Hiemstra 2004; Hippenstiel et al.
2006).

NOD-like receptors and inflammasomes

A further group of PRRs is the family of cytosolic NACHT-
LRR receptors (NLR) with a central nucleotide-binding
domain present in NAIP (neuronal apoptosis inhibitor
protein), CIITA (class II transactivator), HET-E and TP-1,
and extracellular leucin-rich repeats (LRR) mediating
ligand binding (Inohara et al. 2005).

Proteins of the NACHT family appear to function
independently of the TLRs and were demonstrated in macro-
phages and epithelial cells. NACHT proteins lack a TIR
domain, but in contrast to TLRs include an N-terminal
caspase-associated recruitment domain (CARD) or a PYRIN
domain that links bacterial pattern recognition to other effector
proteins, such as procaspase-1 and the Iκ-kinase-binding
protein RIP2/CARDIAK. Caspase-1 and RIP2/CARDIAK

TLR AEC BEC TrEC DC AM LEndC LFib ASmC

TLR-1 + + + + +

TLR-2 + + + + + + + +

TLR-3 + + + + - + +

TLR-4 (+) (+) + + + + + +

TLR-5 + + + -

TLR-6 + + + +

TLR-7 ++ +

TLR-8 + +

TLR-9 + + + ++ - +

Table 2 TLR-expression of
different pulmonary target cells
in respiratory infections and
their ligands

TLR Toll-like receptor, AEC al-
veolar epithelial cells, BEC
bronchial epithelial cells, TrEC
tracheal epithelial cells, DC
dendritic cells, AM alveolar
macrophages, LEndC lung en-
dothelial cells, LFib lung fibro-
blasts, ASmC airway smooth
muscle cells

Fig. 1 Immunohistochemical
(IHC) staining of TLR2 in hu-
man lung tissue before (a) and
after (b) in vitro infection with
nontypeable H. influenzae. IHC
of TLR9 in human lung tissue
before (c) and after (d, AEC;
and e bronchial epithelial cells)
in vitro infection with nontype-
able H. influenzae (scale bar
50μm)
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are necessary for the activation of proinflammatory cytokines
such as pro-IL-1β and for the induction of NF-κB. The
activation of NACHT family proteins is thought to involve
oligomerization via their corresponding NACHT domains,
triggered by binding of specific pathogen-derived molecules
to the LRRs (Damiano et al. 2004).

The NLR family consists of 22 members in humans
most of which are located in the cytosol.

The best studied NLRs are the CARD-containing
molecules NOD1 and NOD2 that both act as cytosolic
PRRs. Whereas NOD1 is expressed in airway epithelial
cells, endothelial cells, alveolar epithelial type II cells and
alveolar macrophages and contains one CARD domain,
NOD2 is mainly expressed in antigen-presenting cells like
leukocytes and also in lung epithelial cells and contains two
CARD domains to facilitate protein-protein interaction after
receptor activation. NOD1 recognizes peptidoglycan-
related molecules containing meso-diaminopimelic acid
found in all Gram-negative and also in some Gram-
positive bacteria. NOD2 recognizes the muramyldipeptide
(MDP) MurNAc-L-Ala-D-iso-Gln which is conserved in
peptidoglycans of all bacteria (McDonald et al. 2005).

As described by Netea et al. (2004), NOD2 synergizes
with TLR2 for the induction of imuune response. It was
shown that both NOD2 and TLR2 are required for the
production of cytokines by PGN indicating an interaction
between these two pathways. Accordingly, the specific
NOD2 ligand MDP was found to have a synergistic effect
on the induction of TNF-α, IL-1β, and IL-10 upon
costimulation with the specific TLR2 agonists Pam3Cys
(Netea et al. 2004). Studies in mice showed that TLR4
and MyD88 are essential for the host defense against
H. influenzae and clearance of this pathogen from the lung
(Wieland et al. 2005; Wang et al. 2002), but Zola et al. also
indicated that nasopharyngeal clearance of encapsulated
H. influenzae required NOD1 signaling in addition to TLR2
and TLR4, whereas individual deficiencies in each of these
signaling cascades did not affect clearance of nonencapsu-
lated strains (Zola et al. 2008).

Of the 22 identified NLR family members, five are
characterized by a CARD-domain (NLRC1–5), whereas
14 other members of the NLRP (NLR family, pyrin
domain containing) subgroup of NLRs are characterized
by a PYD domain. At least NLRP1–3 form macromo-
lecular protein complexes called “inflammasome”.
Inflammasomes consist ofoneortwoNLRs,inmostcasesof
the adapter molecule ASC (apoptosis-associated speck-like
protein containing a CARD), and of the cysteine protease
“caspase-1”. Inflammasomesrespond tovariouspathogensand
inhaledparticlesandfinallyleadtosecretionofIL-1βandIL-18.

The NLRP3 (NALP3) inflammasome (also known as
Nalp3, cryopyrin, PYPAF1, CIAS1, and CLR1.1) mediates a
caspase-1-dependent processing of proIL-1β as well as proIL-

18 into their mature forms and regulates a caspase-1-dependent
cell death in certain situations. The NLRP3 inflammasome
responds to infections with viruses such as influenza virus,
bacteria including S. aureus, and fungi like Candida albicans.

Inflammasome activation requires two signals. First of
all PAMP, e.g., LPS or MDP, activating receptors on the
cell surface or in the intracellular compartment leading to
NF-κB-dependent transcription of immature cytokines
(e.g., proIL-1β) which become processed and secreted after
a second activating signal. This is mostly mediated by
damage-associated molecular patterns (DAMPs) that might
be released after tissue damage from necrotic cells, like
ATP, hyaluronan or uric acid crystals, leading to caspase-1-
dependent cleavage of proIL-1β into mature IL-1β.
Initially, stimulation with any of these second signals leads
to the formation of a large complex containing NLRP3,
caspase-1, and the adaptor protein, ASC. Studies in gene-
targeted mice suggest that the inflammatory response to
these DAMPs is crucial for the pathogenesis of, e.g., acute
lung injury and perhaps other lung diseases (Opitz et al.
2010; Abdul-Sater et al. 2009).

RIG-like receptors

A further group of cytosolic PRRs recognizes viral
dsRNA. The RNA helicases retinoic acid inducible
gene-I (RIG-I) and melanoma differentiation-associated
gene 5 (MDA5) belong to the RIG-I-like receptor
(RLRs) family. Both proteins show IFN-inducible
expression in different host cells including alveolar
macrophages and lung epithelial cells. They consist of
a carboxy-terminal DexD/H box RNA helicase domain
mediating the recognition of the dsRNA and two
CARD domains mediating the downstream signal
transduction. Both helicases signal through multiple
downstream adapter molecules resulting in production
of the antiviral type I IFNs (e.g., IFN-α/-β) and
NF-κB-dependent induction of inflammatory cytokines.

Kato et al. described that both RIG-I and MDA5 detect
RNA viruses and polyinosine-polycytidylic acid (poly(I:C)),
a synthetic dsRNA analogue. Nevertheless the recognition of
RNA viruses is differentially mediated via RIG-I and MDA5
(Wilkins and Gale 2010).

RIG-I-deficiency leads to decreased IFNα/β responses to,
e.g., influenza Avirus and respiratory syncytial virus, whereas
MDA5 deficiency led to decreased cytokine production
induced after infection with picornaviruses. It is hypothesized
that RIG-I and MDA5 mediate virus recognition in most cell
types including macrophages, conventional DCs and pulmo-
nary epithelial cells, whereas TLRs are essential for antiviral
responses by plasmacytoid DCs (Opitz et al. 2010; Kato et al.
2006).
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Signal transduction of PRRs

The intracellular portion of each known TLR contains
a Toll-IL-1-receptor domain (TIR). As the TIR-domain
is also present in myeloid differentiation factor 88
(MyD88), TLRs and IL-1-receptor induce MyD88 and
four other cytoplasmic adaptor proteins containing a
TIR domain to initiate intracellular signaling. These
additional adaptor proteins include MyD88 adaptor-like
protein (MAL) also known as TIR domain containing
adaptor protein (Tirap), Toll receptor–associated activa-
tor of interferon (TRIF) also known as TIR domain
containing adaptor molecule-1 (TICAM-1), TRIF relat-
ed adaptor molecule (TRAM), also known as TICAM-
2, and MyD88-5 the so-called α- and HEAT-Armadillo
motifs. Activation of different adaptor molecules results
in different ways of down-stream signaling thus
mediating different cellular responses.

The signaling pathway involves recruitment and
activation of IL-1-Receptor associated kinase (IRAK)-4,
which phosphorylates IRAK-1 and IRAK-2. Phosphory-
lation and activation of TNF receptor-associated factor
(TRAF)-6 and TGF-β-activated kinase (TAK)-1 leads to
phosphorylation of I-kappa kinase (IKK) and the phosphor-
ylation and degradation of IκB, resulting in translocation of
NF-κB to the nucleus and the transcription of a large
number of pro-inflammatory and anti-inflammatory gene
products. IRAK-4 and TAK-1 also activate p38 mitogen-
activated protein (MAP) kinase and c-Jun N-terminal kinase
(JNK), leading to broad intracellular kinase activation
(Martin and Frevert 2005) (Fig. 2).

All TLRs except TLR3 are able to initiate a MyD88-
dependent signaling pathway leading to NF-κB-
dependent expression of, e.g., antimicrobial peptides
and pro-inflammatory mediators such as TNFα, IL-
8 and proIL-1β. Whereas TNFα, IL-8 and other
cytokines subsequently regulate the inflammatory
response and contribute to leukocyte recruitment, proIL-
1β needs first to be processed in a caspase-1-dependent
second regulatory step. In addition to stimulation of
NF-κB-dependent gene expression, TLR3, -4, -7, -8,
and -9 are capable of activating IRF (IFN regulatory
factor) transcription factors and mediating type I IFN
responses which are essential for the antiviral defense
(Inohara et al. 2005; Akira and Takeda 2004).

In general, both NOD1 and NOD2 activate downstream
signaling through interaction with the RIP-like interacting
CLARP kinase (RICK) via a caspase recruitment domain
(CARD)-interaction. This activates the Jun N terminal
kinase (JNK), p38 and extracellular signal-regulated kinase
(ERK) pathways leading to a NF-κB-dependent expression
of pro-inflammatory mediators as well as to ROS produc-
tion (Barton et al. 2007).

Opitz et al. and other groups demonstrated that even
the activation of NOD1 and NOD2 leads to NF-κB
activation by recruiting the adaptor molecules RICK/
Rip2 mediated by CARD–CARD interaction. Especially
after infection with S. pneumoniae, epithelial cells reveal
NOD2-mediated NF-κB activation via the downstream
molecules IRAK1, IRAK2 and TRAF6, similar to the TLR
pathway described above (Opitz et al. 2004; Kobayashi et
al. 2002).

Further pathogen recognition systems in the human
lung

Beyond the pattern recognition receptors described above,
there are additional systems of innate immunity for
pathogen recognition in the human lung.

These include the mannose receptor, Dectin-1 and
Surfactant Proteins A and D (Kerrigan and Brown 2009).

The mannose receptor, a type-I-transmembrane protein
that is characterized as a C-type lectin consisting of an
extracellular region and a cytoplasmatic tail. It binds to a
variety of microorganisms including Candida, P. jiroveci,
K. pneumoniae and S. pneumonia by recognizing man-
nose, fucose or N-acetylglucosamine sugar residues on the
pathogens’ surface and together with other binding
receptors leads to cytoskeleton rearrangements and thus
to phagocytosis of the pathogen (Le et al. 2005).

Another item of pathogen recognition is the type-II-
transmembrane protein Dectin-1, a receptor for β-glucans
mainly found in the cell walls of fungal species like
Candida spp., Aspergillus spp. and P. jiroveci (Brown et al.
2003; Taylor et al. 2007). Binding of Dectin-1 to a
pathogen or other opsonised particles enables phagocytosis
as well.

Furthermore, Surfactant Proteins A and D (SP-A, SP-D)
are C-type-lectins. They are mainly synthesized in the human
lung in type II alveolar epithelial cells and Clara cells and are
secreted into the alveolar space as the main constituent of the
pulmonary surfactant. They interact with a variety of
carbohydrates and glycolipids and are also able to recognize
a wide range of respiratory pathogens like P. aeruginosa,
S. pneumoniae, K. pneumoniae, A. fumigatus, and P. jiroveci
(Pastva et al. 2007). The surfactant proteins either function as
opsonins linking pathogens to receptors on phagocytic cells
or cause aggregation of pathogens. SP-A, for example, can
also increase the expression of scavenger receptor A (SR-A).
SR-A recognizes conserved bacterial structures like modified
lipoproteins, LTA or LPS, and is thus a binding receptor for
Gram-positive and Gram-negative bacteria (Amiel et al.
2009; Platt and Gordon 2001) leading to an enhanced
bacterial uptake by the phagocytic cell (Kuronuma et al.
2004).
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Respiratory diseases

Defective mechanisms of the innate immune system play an
important role in numerous repiratory diseases. Asthma and
COPD are mainly characterized by secretion of proinflam-
matory cytokines and other mediators from the airway
epithelium. Via differential activation of multiple PRRs in
lung tissue cigarette smoke and PAMP´s trigger inflamma-
tory reactions.

Most of the COPD patients show respiratory tract
colonization with respiratory pathogens like H. influenza,
S. pneumoniae, P. aeruginosa and M. cartarrhalis, which
contributes to chronic inflammation and airway dysfunc-
tion. Change from colonization to infection is able to cause
acute exacerbations of COPD. Increased susceptibility of
COPD patients to infectious complications might be related
to impaired function of innate immunity mechanisms.

According to this hypothesis, we demonstrated an
altered phenotype of alveolar macrophages from smokers
and COPD patients with decreased expression of TLR2
(Droemann et al. 2005). In addition, colonizing microbes
might also have adapted mechanisms to lower PRR-
mediated innate immune responses in order to evade
clearance. Martí-Lliteras et al. demonstrated that macro-
phages treated with extracts of cigarette smoke showed
markedly diminished ability to engulf NTHi in order to
eliminate the pathogen, whereas expression of proinflam-
matory cytokines by murine macrophages was not signif-
icantly decreased by cigarette smoke exposure (Marti-
Lliteras et al. 2009).

Regarding NOD-receptors and their role in COPD,
Barton et al. (2007) characterized NOD1-expression in
airway epithelial cells and in some alveolar epithelial type
II cells as well as in alveolar macrophages and endothelial
cells. They also demonstrated decreased NOD1-expression
in lung tissue of a patient with chronic bronchitis (Barton et
al. 2007). In addition, activation of the inflammasome by
DAMPs might be another mechanism contributing to the
pathogenesis of COPD. Inhaled toxic agents, oxidative
stress, infections, necrotic cell death, as well as hypoxia,
hypercapnia, focal hypoperfusion and tissue acidification
might lead to release of DAMPs (e.g., uric acid, ATP) by
damaged lung tissue which activates the NLRP3 inflam-
masome. Uric acid concentrations were increased in
broncho-alveolar fluids of COPD patients and smokers.
Furthermore, COPD patients showed significantly reduced
concentrations of IL-1β antagonists compared with controls
(Opitz et al. 2010).

Thus, cigarette smoke appears to affect immune reac-
tions in different ways, according to the pathogen and the
recognition molecules as well as other factors.

Aberrant and chronic activation of the pulmonary innate
immune system might contribute to lung remodeling,
development of COPD and emphysema (Hansel and Barnes
2009). Domagala-Kulawik et al. observed that chronic
exposure to cigarette smoke causes increased production of
metalloproteinases (MMP) by macrophages and proteolitic
enzymes by neutrophils contributing to development
of emphysema (Domagala-Kulawik 2008). Of note,
we currently described the expression of the TGF-β-

Fig. 2 In situ hybridization tar-
geting S. pneumoniae DNA after
in vitro infection in human lung
tissue (a, AM; b, AEC Type II.
Expression of pp38 in human
lung tissue after in vitro
infection (c) (scale bar 50μm)
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pseudoreceptor BMP and activin membrane-bound inhibi-
tor (BAMBI) in COPD lung tissue and upregulation by
NTHI revealing a decreased expression of TGF-β in
combination with a strong proinflammatory response. This
also may influence inflammation induced tissue remodel-
ling (Droemann et al. 2010).

Regarding the different role of cell populations
(i.e. alveolar macrophages and alveolar epithelial cells),
epithelial cells are less responsive to microorganisms and
their products like LPS or LTA compared to mononuclear
phagocytes (Bals and Hiemstra 2004). Infection with
S. pneumoniae was studied recently in in vitro experiments
with human lung tissue. Pneumococcal DNA was found in
80–90% of the AM and only 15–30% of AEC, whereas
bronchial epithelial cells (BECs) were only sporadically
infected. Inactivated macrophages using Clodronat/Lip-
osomes led to an extensive reduction of proinflammatory
cytokine release from lung tissue, indicating that in this
setting macrophages are the main source of proinflamma-
tory cytokines after pneumococcal infection.

Respiratory infections frequently become evident as
coinfection of different bacterial strains or viral–bacterial
coinfections. As shown for the coinfection of pulmonary
epithelial cells with S. pneumoniae and H. influenzae, the
synergistic inflammatory response resulted in a stronger
activation of NF-κB and synergistically increased CXC-8-
expression (Ratner et al. 2005). As described by Didierlaur-
ent et al. impaired immune responses to bacterial infections,
including desensitization to TLR signals, can be observed
after infections with influenza virus or respiratory syncytial
virus. Although such desensitization may be beneficial for
prevention of overwhelming immune responses, the re-
duced neutrophil recruitment might contribute to severe
secondary bacterial pneumonia. The influence of PRRs on
epithelial cells and immune cells is also very important in
allergic lung diseases which has recently been summarized
(Lloyd and Murdoch 2010).

Concluding remarks

Innate immunity in the lung is the important first line defense
against respiratory pathogens. Recognition of invading
pathogens and cell injury-associated endogenous molecules
by pattern recognition receptors expressed on phagocytes and
epithelial cells lead to a differentiated immune reaction. Acute
inflammatory reactions are supposed to eliminate the patho-
gen, but also implicate tissue destruction. Therefore, PRR-
mediated signaling pathways are critical for the balance
between host protection and tissue homeostasis. Considering
this key role in infectious and non-infectious lung diseases
therapeutic approaches, targeting this system should be
strengthened. Many details have been characterized recently

on the innate immune system. However, severaldetails are so
far only known for experimental animals (mostly mice) and
have to be studied in the human lung in future.
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