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Lung squamous cell carcinoma (LUSC) is a disease with high morbidity and mortality.
Many studies have shown that aberrant alternative splicing (AS) can lead to tumorigenesis,
and splicing factors (SFs) serve as an important function during AS. In this research, we
propose an analysis method based on synergy to screen key factors that regulate the
initiation and progression of LUSC. We first screened alternative splicing events (ASEs)
associated with survival in LUSC patients by bivariate Cox regression analysis. Then an
association network consisting of OS-ASEs, SFs, and their targeting relationship was
constructed to identify key SFs. Finally, 10 key SFs were selected in terms of degree
centrality. The validation on TCGA and cross-platform GEO datasets showed that some
SFs were significantly differentially expressed in cancer and paracancer tissues, and some
of themwere associated with prognosis, indicating that our method is valid and accurate. It
is expected that our method would be applied to a wide range of research fields and
provide new insights in the future.

Keywords: lung squamous cell carcinoma, alternative splicing, splicing factor, bivariate cox regression, bipartite
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INTRODUCTION

Lung cancer is one of the most commonmalignant tumors, and about 85% of cases are non-small cell
lung cancer (NSCLC) (Wang et al., 2019). According to pathological classification, NSCLC can be
divided into lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) (Cheng et al.,
2019). Compared with LUAD, patients with LUSC have a poorer treatment outcome and prognosis
(Li et al., 2018). In recent years, targeted therapies for specific genes have greatly improved the living
conditions of patients with advanced LUAD. However, LUSC patients respond poorly to targeted
therapies due to the lack of driver mutations, and the specific molecular mechanisms of LUSC
pathogenesis and progression have not been systematically assessed. As a result, further exploration
of the molecular mechanisms underlying the development of LUSC is essential for the development
of more effective therapeutic regimens.

Alternative splicing (AS) is an important post-transcriptional regulatory mechanism. A single
gene can generate more than one mRNA transcript through AS, and each mRNA transcript encodes
a protein with a different structure and function (Baralle and Giudice, 2017). More than 95% of
human genes experience AS under normal physiological conditions. On the one hand, the AS process
regulates the tissue-specific and stage-specific expressions of specific genes during human
development (Xu et al., 2002; Pan et al., 2008) and is essential for normal biological processes,
such as hematopoiesis (Wong et al., 2018), brain development (Matsuda et al., 2019), and muscle
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function (Nakka et al., 2018). On the other hand, abnormal AS
triggers a series of tumor-related processes, including cell
proliferation (Xie et al., 2019), apoptosis (Tyson-Capper and
Gautrey, 2018), epithelial-mesenchymal transition (EMT)
(Pradella et al., 2017), and tumor invasion and metastasis
(Chen et al., 2017; Wang et al., 2017) in response to hypoxia
(Han et al., 2017), thereby promoting malignant cell
transformation and providing a survival advantage (Climente-
González et al., 2017; Moncada et al., 2020). The AS process is
regulated by splicing factors (SFs), and abnormal expression of
SFs is the main contributor to overall changes in alternative
splicing events (ASEs) in malignancies (David and Manley, 2010;
Dvinge et al., 2016; Su et al., 2018). Therefore, exploring abnormal
ASEs and SFs in malignant tumors may provide new insights into
the mechanisms of tumorigenesis and progression.

Recent studies have paid more attention to assessing the
clinical significance of ASEs and SFs in cancers and their
potential pathogenic pathways and regulatory networks. The
abnormal ASEs and SFs, which make network dysregulated,
have been shown to modulate malignant transformation of
cells and epithelial-mesenchymal transition (Sveen et al.,
2016). Several excellent studies have also discussed the role of
SFs in DNA damage (Shkreta and Chabot, 2015) or in
carcinogenesis and anticancer therapies (Miura et al., 2012;
Shkreta et al., 2013). However, SFs have the potential to
become molecular markers and therapeutic targets for
malignancies (Anczukow and Krainer, 2016; Yuan et al., 2017;
Park et al., 2019). Although there is an increasing systematic
analysis of AS signatures and the effect of SFs in colorectal cancer,
glioblastoma, breast cancer, and ovarian cancer (Dorman et al.,
2014; Suo et al., 2015; Zong et al., 2018), the analytical methods
for identifying tumor-associated SFs remain deficient. Only
univariate difference and survival analysis were performed in
these studies (Zhu et al., 2018; Hu et al., 2019; Zhao et al., 2020).
However, biological processes are complex and are mostly
regulated by multiple factors rather than a single factor. It is
indicated that, as a whole, some factors would have a high
correlation with the tumor process, but this would show a low
correlation when they are separated. Hence, we propose an
analysis method based on synergy to screen key factors that
regulate the initiation and progression of LUSC.We first screened
the ASEs associated with overall survival (OS-ASEs) from
combinations consisting of two ASEs using bivariate Cox
regression and AUROC. Then an association network
consisting of OS-ASEs, SFs, and their targeting relationship
was constructed to identify key SFs. This method can screen a
relatively complete set of OS-ASEs to a certain extent, thereby
improving the completeness for subsequent screening of key SFs
and providing new ideas for LUSC mechanism research.

MATERIALS AND METHODS

Data Collection and Preprocessing
Clinical information and expression levels of LUSC patients
(generated by RNA-seq) were collected from The Cancer
Genome Atlas (TCGA) database. Additionally, ASEs data were

retrieved from the TCGASpliceSeq database (Ryan et al., 2016).
In TCGASpliceSeq, the Percent Spliced In (PSI) values are
computed for each possible splice event in each gene. PSI is
the ratio of reads indicating the presence of a transcript element
versus the total reads covering the event. The cross-platform
validation set, including GSE157010, GSE3268, and GSE6044
(Supplementary Table S1), was downloaded from the NCBI-
GEO database (Barrett et al., 2013). SFs are protein factors
involved in the splicing process of pre-RNA. A total of 404
SFs were collected in this study (Wu et al., 2020), as shown in
Supplementary Table S2.

The TCGA database included 550 LUSC samples, 501 of
which were tumor samples. After removing 8 samples with no
clinical information, 493 tumor samples were retained for
subsequent analysis (Supplementary Table S3). The
TCGASpliceSeq database contained a total of 46,020 ASEs
for LUSC, of which 9424 ASEs were retained for subsequent
analysis by removing ASE containing “null” and then excluding
ASEs with variances less than 0.001 in all samples
(Supplementary Source Code S1) (Supplementary Source
Code S2). The distinguishable visualization UpSet plot,
generated by UpSetR (version 1.4.0) (Wang et al., 2021), was
used to quantitatively analyze the intersections among the seven
types of ASEs in LUSC. The expressions of 404 SFs were
extracted after being normalized by log2 (FPKM+1) (Bullard
et al., 2010). SFs with expression values of 0 in half of the
samples were excluded, and 398 SFs were finally retained for
subsequent analysis (Figure 1). The GSE157010 dataset
constitutes 235 LUSC tumor samples, each containing
clinical information. The GSE3268 dataset represents 5
tumor samples from LUSC patients and paired normal
samples. The GSE6044 dataset includes 5 normal samples
and 15 tumor samples. Ten of these 15 tumor patients have
not received platinum-based therapy, and the other five have.
Probe IDs for each GEO dataset were converted to Ensembl ID.
When multiple probes correspond to an Ensembl ID, only the
probe with the highest mean is retained. The batch correction
was performed to eliminate the batch effect of three datasets
using normalizeBetweenArrays function of limma (version
3.46.0).

Methods for Screening Alternative Splicing
Events Associated With Overall Survival
In order to investigate the prognostic value of ASEs in LUSC
patients, all bivariate ASEs combinations were first constructed.
Then Cox proportional risk hypothesis tests and bivariate Cox
proportional risk regressions were performed using the survival
package in R (Bradburn et al., 2003). The significance of the
independent variables in the regressions was tested using
likelihood ratio tests (Hazra and Gogtay, 2017). Additionally,
the area under the receiver operating characteristic curve
(AUROC) was used to show the sensitivity and specificity of
the bivariate combination model in predicting OS (Linden, 2006).
Values greater than 0.8 were considered excellent combinations.
The two indicators mentioned above, the p-value of the likelihood
ratio test and the AUROC, were used to screen OS-ASEs.
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Methods for Association Network
Construction and Analysis
Spearman correlation analysis was performed to explore the correlation
between the PSI values of OS-ASEs and the expression levels of SF
genes (Bishara and Hittner, 2012). The correlation networks
visualization was visualized by EVeen (Chen T. et al., 2021) with
SFs and the OS-ASEs as vertices and the Spearman significant
correlation between them as edges. It is assumed that the value of a
vertex in a network depends first on its position in the network. More
central vertex indicates a greater impact on the structure and function
of the network (Kitsak et al., 2010). The importance of a vertex in the
network is usually expressed by degree centrality, which is the number
of connected edges of the vertex in the network (Freeman, 1978).

Validation Methods for Alternative Splicing
Events and Splicing Factors Functions
In order to identify potential mechanisms ofOS-ASEs in LUSC, the
survival-related genes were analyzed by Gene Ontology (GO)
enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis, which were both done
byDAVID (Huang et al., 2009). The results of KEGG analysis were
presented by bubble plots generated by ggplot2 (version 3.3.5). The
results of GO analysis were visualized by a web tool Revigo, which
shows the cluster representatives in a two-dimensional space
derived by applying multidimensional scaling to a matrix of the
GO terms’ semantic similarities (Supek et al., 2011).

In order to validate the function of SFs, violin plots visualized
by ggplot2 (version 3.3.5) were used for verifying the difference
in the expression of SFs in tumor and normal tissues. The
paired-samples t test was used to test the significance of the
difference.

The Kaplan-Meier (KM), generated by survival (version 3.2-
11) and survminer (version 0.4.9), was applied to validate the
prognostic effect of SFs (Supplementary Source Code S3) (Dinse
and Lagakos, 1982). The log-rank test was used to test the
significance of differences in survival between high- and low-
risk patients (Mantel, 1966). The p-value < 0.05 was considered
statistically significant in this study.

RESULTS

Clinical Characteristics of the Lung
Squamous Cell Carcinoma Cohort
The current study included a total of 493 LUSC patients from the
TCGA database, and the characteristics and clinical information of
these patients are listed in Table 1. There were 365 men and 128
women among these patients. With a median age of 68 (ranging from
39 to 85 years old), the mean survival time of patients was 1,044 days
(ranging from 4 to 4,765 days). It is worth noting that the survival time
of patients is censored data. The patient mortality rate of 43% confirms
that LUSC is a tumor with a high mortality rate. The LUSC tumor
staging data show thatmost patients are in stages I or II. Stage I tumors
are usually small, without lymph nodes and distantmetastases, and can
be completely removed by surgery. In contrast, higher stagesmean that
the tumor is more progressive.

Overview of Alternative Splicing Events in
the Lung Squamous Cell Carcinoma Cohort
The TCGASpliceSeq database recorded seven types of ASEs,
including exon skipping (ES), mutually exclusive (ME) exons,
intron retention (RI), alternative promoter (AP), alternative

FIGURE 1 | Steps of data preprocessing. The solid line represents the preprocessing process. The light blue box represents the data to be processed. The gray
box represents the rejected data. The red box represents the last retained data. The numbers in brackets represent the data amount. (A) is the preprocessing process of
samples, (B) is the preprocessing process of SFs, and (C) is the preprocessing process of ASEs.
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terminator (AT), alternative donor (AD) site, and alternative
acceptor (AA) site (Figure 2A).

In this cohort, a total of 9424 ASEs were in 4246 genes, with
3876 ATs in 1817 genes, 2048 ESs in 1488 genes, 1761 APs in 791
genes, 656 RIs in 504 genes, 531 AAs in 468 genes, 515 ADs in 421
genes, and 37 MEs in 37 genes. Multiple ASEs can occur in a
single gene (Figure 2B).

Screening and Analysis of Alternative
Splicing Events Related to Survival
Due to the complexity of biological processes, synergistic
interactions between genes are more prevalent. To accurately
screen OS-ASEs, we employed the p-value of the likelihood ratio
test in bivariate Cox proportional risk regression and AUROC as
screening criteria (P< 0.05, AUROC> 0.8). Consequently, 1118
combinations of OS-ASEs were screened, including 953 non-
redundant ASEs.

A total of 953 OS-ASEs were detected in 489 genes. More
specifically, there were 689 ATs in 348 genes, 241 APs in 121
genes, 12 ESs in 12 genes, 10 RIs in 10 genes, and 1 AA in 1 gene.
Two splice types, AD and ME, were not included (Figure 3A).
Next, in order to understand the function of the genes
corresponding to OS-ASEs, KEGG analysis and GO analysis
were performed. KEGG analysis demonstrated that these genes
were enriched in histone-lysine N-methyltransferase activity,
protein tyrosine phosphatase activity, and DNA repair and
apoptosis pathways. These pathways are closely associated

with cancer progression (Östman et al., 2006; Wong, 2011;
Jeggo et al., 2016; Husmann and Gozani, 2019). A recent
study has shown that histone-lysine N-methyltransferase is a
key driver for the induction of LUSC (Figure 3B) (Yuan et al.,
2021). GO analysis revealed that these genes were enriched in
both the nucleus and cytoplasm and play a role in protein
binding, nucleic acid binding, and histone lysine
N-methyltransferase activity. These genes are involved in
important biological processes such as DNA repair,
peptidyltryosine dephosphorylation, and apoptosis (Figure 3C).

Construction and Analysis of the
Association Network Between Splicing
Factors and Alternative Splicing Events
Systems biology is the study of the composition and
interrelationships of the biological systems and is widely used
in the study of gene networks (Hood, 2003). For our association
network, identifying key vertices is an important way to find key
SFs (Zhao and Liu, 2019). The association network was formed
with 489 ASEs and 398 SFs as vertices and 9414 pairs of
significant correlations as edges (Figure 4). The degree
distribution is shown in Supplementary Figure S1. The
average degree of the top 10 vertices in this network is 69, and
the average degree of the remaining vertices is 22, indicating that
the top 10 SFs are associated with more ASEs and is important in
this network. Therefore, we consider these 10 SFs as key SFs.
(Table 2)

Validation of Splicing Factors
To verify the validity of the above approach, we analyzed the
expression patterns of the 10 SFs in the TCGA-LUSC dataset. It is
noticed that a significant difference exists in the expression of the
10 SFs between cancerous and paracancerous tissues (Figure 5).
Moreover, patients were divided into two groups according to the
expression of SFs, and the difference of survival time between
them was analyzed with KM curves. It is found that 5 of these 10
SFs are significantly associated with the prognosis of LUSC
patients. (Supplementary Figure S2).

In order to further assess the applicability of our approach,
three cross-platform datasets from the GEO dataset were
recruited. The GSE157010 dataset matches 9 SFs, 6 of which
exhibit prognostic function (Supplementary Figure S3). In the

TABLE 2 | Top 10 SFs for degree centrality.

Rank Ensembl Symbol

1 ENSG00000130332 LSM7
2 ENSG00000169976 SF3B5
3 ENSG00000163634 THOC7
4 ENSG00000051596 THOC3
5 ENSG00000108561 C1QBP
6 ENSG00000137168 PPIL1
7 ENSG00000079134 THOC1
8 ENSG00000139343 SNRPF
9 ENSG00000108883 EFTUD2
10 ENSG00000123154 WDR83

TABLE 1 | Clinical characteristics of 493 LUSC patients in the TCGA database.

Characteristics Groups No. of patients %

Sex Male 365 74
Female 128 26

Age at diagnosis Median 68
Range 39–85
<61 107 22
≥61 381 77
Unknown 5 1

Vital status Alive 268 54
Dead 211 43
Unknown 14 3

Stage I 241 48.88
II 158 32.05
III 83 16.84
IV 7 1.42
Unknown 4 0.81

T category T1 114 23
T2 286 58
T3 70 14
T4 23 5

N category N0 316 64
N1 127 26
N2 40 8
N3 5 1
NX 5 1

M category M0 405 82
M1 7 1
MX 77 16
Unknown 4 1
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GSE3268 and GSE6044 datasets, the matched SFs are
differentially expressed in normal and tumor samples
(Supplementary Figure S4). In the GSE6044 dataset, the
expression levels of SFs patients who received platinum-based
therapy are slightly decreased compared with that of patients who
did not, which is closer to the expression level in normal tissues
(Supplementary Figure S5).

DISCUSSION

In this research, bivariate Cox regression and the systems biology
approach were employed to detect OS-ASEs and SFs associated
with LUSC. The results showed that all 10 candidates (SFs) were
expressed at significantly higher levels in tumor samples than in
paracancerous tissues in both the TCGA-LUSC and GEO
datasets. Moreover, 7 of these SFs were associated with the
overall survival time in tumor patients in one or more
datasets. These results are consistent with the currently known
characteristics of tumor-associated genes (Givechian et al., 2018;
Qi et al., 2018). It is found that 3 of the 10 SFs are reported to be
connected with lung cancer, namely LSM7, C1QBP, and THOC1.
Specifically, LSM7 is a prognosis-related key gene and mediates
autophagy in LUSC, with significant expression differences
between tumor and normal tissues (Gatica et al., 2019; Li
et al., 2020); C1QBP is involved in various cellular processes,

including mRNA splicing, ribosome biosynthesis, protein
synthesis in mitochondria, apoptosis, transcriptional
regulation, and viral infection, and its expression correlated
with the prognosis of patients with lung, breast, and colon
tumors (Saha et al., 2019); THOC1 is down-regulated in lung
cancer cell lines SPC-A1 and NCI-H1975, and its overexpression
inhibits cell proliferation, induces G2/M cell cycle arrest, and
promotes cell apoptosis (Wan et al., 2014). THOC1 also inhibits
the proliferation of tumor cells in hepatocellular carcinoma and
prostate cancer (Liu et al., 2015; Cai et al., 2020). The above
evidence suggests that our method is reliable and accurate.

In addition, we identified 7 new SFs, 6 of which, including
SF3B5, THOC7, THOC3, SNRPF, EFTUD2, and WDR83, were
reported to be associated with other tumors. It has been suggested
that SF3B5 is a key prognostic factor in ovarian cancer (Ouyang
et al., 2021). Studies have shown a relationship between the
downregulation of THOC7 and the activation of tumorigenic
pathways in cervical cancer (Lando et al., 2013; Lando et al.,
2015). THOC3 is involved in the THO subcomplex and is
necessary for coupled mRNA transcriptional extension and
nuclear export, and its expression is significantly elevated in
glioma cells (Chen Z. et al., 2021). SNRPF is aberrantly
expressed in human glioma. In vitro experiments have
revealed that ubiquitin carboxy-terminal hydrolase isozyme L5
could inhibit human glioma cell migration and invasion by
downregulating SNRPF (Ge et al., 2017). EFTUD2 is markedly

FIGURE 2 | (A) Schematic representation of ASEs, including exon skipping (ES), intron retention (RI), alternative promoter (AP), alternative terminator (AT),
alternative donor (AD) site, alternative acceptor (AA) site, and mutually exclusive (ME) exon. (B) The number of genes with ASEs in LUSC, with 3876 ATs in 1817 genes,
2048 ESs in 1488 genes, 1761 APs in 791 genes, 656 RIs in 504 genes, 531 AAs in 468 genes, 515 ADs in 421 genes, and 37 MEs in 37 genes.
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overexpressed in hepatocellular carcinoma tissues. High
expression of EFTUD2 in hepatocellular carcinoma patients is
associated with clinical features and is pivotal in hepatocellular
carcinoma cell proliferation and cell cycle course (Lv et al., 2021).
As the NAT of WDR83, the protein-coding gene, deoxyhypusine
synthase, concordantly regulates the expressions of WDR83
mRNA and protein. Conversely, WDR83 also regulates

deoxyhypusine synthase by antisense pairing concordantly. As
a pair of protein-coding cis-sense/antisense transcripts, WDR83
and DHPS are upregulated simultaneously and correlate
positively in lung cancer. They drive the pathophysiology of
lung cancer by promoting cell proliferation (Su et al., 2012).
Furthermore, the remaining SF PPIL1, which has not been
directly reported in the literature to be associated with cancer,

FIGURE 3 | (A) Number of genes with OS-ASEs in LUSC, with 689 ATs in 348 genes, 241 APs in 121 genes, 12 ESs in 12 genes, 10 RIs in 10 genes, and 1 AA in 1
gene. (B) Pathway enrichment analysis of genes with OS-ASEs. Larger dots represent more genes enriched in the pathway and vice versa. A smaller p-value is
represented when the color of the dot is closer to blue, and a larger p-value is represented when the color of the dot is closer to red. (C) Functional enrichment analysis of
genes with OS-ASEs. The scatterplot shows the cluster representatives in a two-dimensional space derived by applying multidimensional scaling to a matrix of the
GO terms’ semantic similarities. The dot represents all GO items, and its size is related to the number of genes enriched in that GO term. The color of dots is related to the
p-value. A smaller p-value is represented when the color of the dot is closer to blue, and a larger p-value is represented when the color of the dot is closer to red.
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is a member of the peptidyl-prolyl isomerase procyclin family and
is frequently overexpressed in colon cancer cells (Chai et al.,
2021). In summary, it is reasonable to speculate that the 7 SFs
may play a role in the development of tumors, and the
relationship between these SFs and lung cancer warrants
further exploration in the future.

Our analysis method can be used not only to screen for key SFs
in LUSC but also to apply to a wider range of studies. From the
perspective of the study object, although our method is only

applied to LUSC data in this study, it is also applicable to other
tumor data. From the perspective of research objectives, our
method is not limited to screening SFs, but also can be used to
screen regulatory factors, such as transcription factors, miRNAs
or lncRNAs. For example, we can screen combinations of genes
that can accurately classify tumor samples by downscaling or
regression and then find key vertices by constructing a regulatory
network of miRNAs that can anchor key miRNAs associated with
tumors.

FIGURE 5 | The expression distribution of 10 SFs between cancerous and paraneoplastic tissues in the TCGA dataset. The horizontal axis represents the
expression of genes. The vertical axis shows the 10 key SFs.

FIGURE 4 | Network diagram of the top 10 SFs and OS-ASEs. The 10 large light blue dots represent 10 SFs, the small dots represent ASEs, and the edges
represent significant correlations between the two dots. Edges of different colors represent associations with different SFs.When an ASE is associated with multiple SFs,
the color of the edge is a superposition of the corresponding multiple colors. The correspondence between the factor and ASE is shown in Supplementary Table S3.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8036067

Chen et al. Screening Splicing Factors in LUSC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


In conclusion, our analytical approach with a wide range of
applications helps to obtain proper results and can provide
new directions and perspectives for the exploration of related
studies. In our study, although the specific functions and
mechanisms of the 10 key SFs need to be further
investigated, the available data and literature imply that
they play a critical role in LUSC. Seven of these new SFs
are also expected to be a new focus for future studies on SFs in
LUSC. Furthermore, our proposed method will provide ideas
and references for more studies. However, some limitations
remain in our study. Due to the complexity of calculating
multivariate combinations, we only calculated bivariate
combinations, but multifactor combinations were not
further explored. In subsequent studies, we will further
improve our methods and extend to more scientific
questions to provide novel focuses for future research.

CONCLUSION

Abnormal AS is widely considered a novel indicator of
carcinogenic processes, and SFs play a vital role in this
process. Consequently, our aim is to screen key SFs that
regulate carcinogenesis and progression. All combinations
consisting of two ASEs were first constructed and screened
using bivariate Cox regression and AUROC. Next, an
association network of OS-ASEs and SFs was constructed by
the Spearman correlation. Based on topological properties, we
screened the top 10 SFs in terms of degree centrality. Finally,
literature and data validation were performed on these 10 SFs.
The data validation showed that 10 SFs were all significantly
differentially expressed in both cancerous and paracancerous
tissues of LUSC patients. Moreover, 5 of these SFs showed
prognostic effects. It has been reported that 8 of these SFs are

closely associated with tumors. In addition, cross-platform
validations of GEO were carried out, and similar results were
obtained. These findings can serve as a reference for subsequent
experimental studies.
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