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Abstract: Chronic obstructive pulmonary disease (COPD) is an umbrella term used to define a
collection of inflammatory lung diseases that cause airflow obstruction and severe damage to the lung
parenchyma. This study investigated the robustness of image-registration-based local biomechanical
properties of the lung in individuals with COPD as a function of Global Initiative for Chronic
Obstructive Lung Disease (GOLD) stage. Image registration was used to estimate the pointwise
correspondences between the inspiration (total lung capacity) and expiration (residual volume)
computed tomography (CT) images of the lung for each subject. In total, three biomechanical
measures were computed from the correspondence map: the Jacobian determinant; the anisotropic
deformation index (ADI); and the slab-rod index (SRI). CT scans from 245 subjects with varying
GOLD stages were analyzed from the SubPopulations and InteRmediate Outcome Measures In
COPD Study (SPIROMICS). Results show monotonic increasing or decreasing trends in the three
biomechanical measures as a function of GOLD stage for the entire lung and on a lobe-by-lobe basis.
Furthermore, these trends held across all five image registration algorithms. The consistency of the
five image registration algorithms on a per individual basis is shown using Bland–Altman plots.

Keywords: image registration; lung; biomechanics; COPD; SPIROMICS

1. Introduction

Chronic obstructive pulmonary disease (COPD) refers to a collection of inflammatory
lung diseases including chronic bronchitis and emphysema [1]. COPD continues to be the
third leading cause of death worldwide [1], with an ever-increasing disease burden [2].
People with COPD may experience high morbidity, high healthcare costs, poor quality of
life, activity limitation, and exacerbations [3]. Although COPD is not curable, available
treatments can help relieve symptoms, improve exercise capacity, improve the quality of
life, reduce the risk of death, and reduce the cost of healthcare [4]. Spirometry—a common
pulmonary function test—is currently the gold standard for diagnosing and staging COPD.
Based on spirometry, the Global Initiative for Chronic Obstructive Lung Disease (GOLD)
recommends grading the disease into four categories, ranging from GOLD 1 to GOLD 4 [5].
However, spirometry alone cannot capture the heterogeneous manifestations of COPD,
which calls for better diagnostic methods. Towards advancing our understanding of the
disease, several multi-center studies such as SPIROMICS [6] and the Genetic Epidemiology
of COPD, COPDGene [7] are underway. Along with spirometry, these studies rely on
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computed tomography (CT) scans of the subjects, which have led to the development of
several imaging biomarkers for characterizing COPD.

Biomechanical properties of the lung can be used to characterize lung function and
are important because they provide information on whether or not the lung is functioning
normally or abnormally. One way to indirectly measure the biomechanical properties of
the lung at the local level is to analyze the pointwise correspondences between inspiration
and expiration CT image volumes. This can be achieved using image registration. Image
registration is used to find the point-to-point correspondence between two images in the
form of a transformation or deformation vector field (DVF). Biomechanical measurements
(also called biomechanical biomarkers) can then be extracted from the transformation to
describe the local expansion or contraction of the lung during the breathing cycle.

A complementary approach to extracting biomarkers from CT images is to compute
CT intensity-based disease biomarkers. Intensity-based disease biomarkers are computed
from CT image intensities with or without using image registration. These methods extract
biomarkers at each CT voxel based on the voxel intensity or based on the intensity pattern
(texture) of a local region of voxels. Intensity-based biomarkers are widely used to infer
disease patterns, but they are susceptible to image noise and do not provide biomechanical
measurements. An example of this type of analysis includes defining emphysematous
regions by thresholding the inspiratory scan below −950 Hounsfield units (HU), while the
cut-off for air-trapping regions in an expiratory scan is −856 HU. This technique is often
referred to as CT densitometry, and is prone to noise arising from changes in volume of
acquisition, CT dosage, and scanning parameters [8–10]. To overcome these challenges,
texture-based CT analysis methods have been developed to assess parenchymal integrity
and its relation to disease progression. Sørensen et al. [11] developed a CT texture classifica-
tion method to assess COPD. A similar method was used to assess pulmonary emphysema
using local binary patterns [12]. These methods rely on globally annotated CTs, and lack
local functional information related to parenchymal disintegration. A texture-based ap-
proach called CALIPER was used to quantify interstitial lung abnormalities and showed
good correlations between the fraction of abnormal lung texture and lung functional mea-
surements [13]. More recently, a deep convolutional neural network (CNN) was employed
for staging COPD and predicting disease progression [14]. Although this approach was
able to learn effective representations associated with COPD severity and progression, it
failed to provide insights into the regional distribution of lung function abnormalities.

Several image-registration-based biomechanical biomarkers have been derived from
the DVF to understand, diagnose, and stage COPD. Galbàn et al. [15] used CT intensity and
image registration to define the parametric response mapping (PRM), a two-dimensional
histogram that measures the amounts of normal tissue, small airways disease, and emphy-
sema within the lung. Amelon et al. [16] extracted three biomechanical indices from the
DVF of pulmonary inspiration-to-expiration registration to characterize local and global
lung deformation: the Jacobian determinant (J); the anisotropic deformation index (ADI),
and the slab-rod index (SRI) [16]. Bodduluri et al. [17] evaluated the predictive performance
of J, ADI, and strain extracted from image registration and compared their performance
with conventional CT texture and densitometry [18,19] features. They demonstrated that
for a complex task such as COPD severity prediction, the biomechanical features performed
better than the conventional CT texture and density features. The current study differs
from that of Bodduluri et al. in many ways. The work of Bodduluri et al. analyzed data
from the Genetic Epidemiology of COPD (COPDGene) study whereas the current study
analyzes data from the SPIROMICS study. The SPIROMICS study collected CT scans at
total lung capacity (TLC) and residual volume (RV) whereas the COPDGene study collected
CT scans at functional residual capacity (FRC), as opposed to RV. Registering TLC to RV CT
images presents a more challenging problem than registering TLC to FRC because there is
a comparatively larger shape change from TLC to RV than TLC to FRC. The current study
extends the work of Bodduluri et al. from a single image-registration method to multiple
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image-registration algorithms. Finally, the current study analyzes nearly twice as many
data sets compared to that of the previous study by Bodduluri et al.

In another study, Bhatt et al. [20] showed an agreement between registration-based
mechanics and spirometric measures of lung function and concluded that dual volume
(inspiration–expiration) biomechanical measures are better indicators of declining lung
function and emphysema than spirometry alone. Another important work by Bodduluri
et al. [21] identified the mean of J to be significantly associated with different measures
of lung function including forced expiratory volume in 1 s (FEV1), emphysema, and six-
minute walk distance (6MWD). In a recent work by Pan et al. [22], correlations between
air-trapping regions or emphysema regions with mean J and mean ADI were found. This
work showed that the trends of mean J and ADI decreased monotonically as GOLD stages
increased for one registration algorithm. While the aforementioned studies point towards
clinical effectiveness of registration-based mechanics, they were limited to global features
derived from these biomechanical measures. Recently, Chaudhary et al. [23] showed the
predictive capabilities of global statistical features extracted from J, ADI, and SRI across
the four registration methods used in this study. The work by Chaudhary et al. [23] differs
from the current paper in that it was limited to the development of classification methods
for predicting COPD GOLD stage.

Several image registration algorithms have recently been proposed for analyzing CT
lung images of COPD subjects, such as the total variation regularization method [24],
key-points-based method [25], and Markov random field (MRF)-based discrete optimiza-
tion [26]. In addition, deep learning image registration techniques bear the potential to
perform image registration orders of magnitude faster than traditional iterative image
registration techniques [27–32].

The goal of the current study was to understand and evaluate the robustness of dif-
ferent lung biomechanical measures across different image registration methods over a
varying disease severity. In this study, we compared and contrasted five diverse image
registration algorithms with different similarity costs and transformation models to investi-
gate the impact of different algorithms on the biomechanical measures extracted from the
DVF. Image registration performance was evaluated using the lung lobe Dice coefficient
(LDC) to measure the overlap of the five lobes after registration; the worst 10% surface error
(W10SE) to measure how well the lung surfaces aligned after registration; and the vessel
tree position error (VTPE) and symmetric closest skeleton error (SCSE) to measure how
well the lung vessel trees aligned. The transformations were used to compute the J, ADI
and SRI measures [16] in order to analyze and characterize the lung function of individuals
with COPD at varying GOLD stages.

2. Materials and Methods
2.1. Data

The CT images used in this study were part of the SubPopulations and Intermediate
Outcome Measures in COPD Study (SPIROMICS) with institutional review board (IRB) ap-
proval number 201003733 [6]. SPIROMICS is an ongoing prospective cohort study designed
to identify novel clinical stratifications in subjects with COPD. CT images were collected
at baseline, one-year, three-year, and five-year follow-ups from fourteen university-based
clinical centers across the United States [6].

In this study, we analyzed CT images from current and former smokers across varying
degrees of disease severity, as defined by GOLD stage. The GOLD disease staging system
for COPD ranges from GOLD 1 (mild), to GOLD 2 (moderate), GOLD 3 (severe) and GOLD
4 (very severe) [5]. GOLD 0 subjects are asymptomatic smokers without airflow obstruction
but at risk for COPD due to their smoking history [6]. We analyzed the baseline scans of
245 subjects chosen randomly from the 14 clinical sites, with 49 subjects from GOLD 0, 50
subjects from GOLD 1, 49 subjects from GOLD 2, 50 from GOLD 3, 47 subjects from GOLD
4. At each visit, a pair of 3D breath-hold CT scans were acquired; one at total lung capacity
(TLC), and the other at residual volume (RV) [33]. The SPIROMICS imaging protocol
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uses a CT dose index to standardize exposure across scanners in different sites. The slice
collimation was set at 0.6 mm, rotation time 0.5 s and pitch to 1.0. Philips B, GE Standard,
and Siemens B35 reconstruction kernels were used [33]. The resolution of the CT scans was
approximately 0.6× 0.6× 0.5 mm3, and the image size was 512× 512 per slice, with 500 to
600 slices per image. Full details on the scanning protocol are described by Sieren et al. [33].

2.2. Preprocessing

Figure 1 shows the preprocessing pipeline applied to each CT image volume.

Figure 1. Preprocessing pipeline.

All CT image volumes were resampled to be isotropic with spacing 1× 1× 1 mm3. The
image volumes were cropped based on the 3D bounding box containing the union of the
lung regions of the inspiration and expiration scans to reduce computer memory require-
ments and computation time. A multi-resolution convolutional neural network [34] was
used to generate a segmentation of the entire lung from the CT volume. The lobes were seg-
mented from the CT volume using the FissureNet deep learning method [35,36]. We used
the recommended parameters from the cited papers for the lung and lobe segmentations.

The lobe segmentations were tessellated into triangles using the surface mesh al-
gorithm [37] implemented in the Computational Geometry Algorithms Library (CGAL)
(https://www.cgal.org (accessed on 15 September 2017)) that implements the Variational
Shape Approximation (VSA) method [38]. The mesh size was set to 2 mm2 with smoothing
to give accurate representation of the surfaces. The blood vessel trees were segmented
from the CT images using the vesselness filter developed by Jerman et al. [39]. In this
method, the eigenvalues of the Hessian matrix are computed from the intensity values of
the CT image at each voxel location. Tubular structures are identified at voxel locations
that have one near-zero eigenvalue and two non-zero eigenvalues with similar magnitudes.
Vessels were detected at different scales by computing the Hessian matrix at different scales.
For the vessel segmentation, we started from the parameters recommended in the cited
papers, then slightly fine-tuned them. A binary vessel segmentation was computed from
the vesselness probability map by thresholding. The threshold was computed using Otsu’s
method. Next, the skeletons were extracted from the binary vessel segmentation using the
binary 3D thinning algorithm implemented with Insight Toolkit (ITK) in C++ [40] with
default parameters. The TLC and RV CT data sets used in this study were collected in
register with each other. Therefore, no affine registration was performed in this study
before applying the nonrigid image registration algorithms used in this study.

2.3. Image Registration Algorithms

We selected five image-registration algorithms to cover a wide range of image reg-
istration algorithms. In general, image registration algorithms consist of three major
components: an overall cost function to be minimized, a transformation model, and an
optimization method. In this study, we focus on the two former components. In general,
the overall cost function is a linear combination of a similarity cost and a regularization cost
of the transformation. There are various choices for these two components, and therefore

https://www.cgal.org
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different combinations. In terms of similarity cost functions, we can divide them into two
major categories: intensity-based and feature-based. Commonly employed intensity-based
similarity cost functions used for matching CT scans include, but are not limited to the
sum of squared difference (SSD) [41,42], cross correlation (CC) [43], mutual information
(MI) [44], and the sum of squared tissue volume difference (SSTVD) [45–47]. Examples of
intensity-based featured-matching cost functions are the SSD vesselness measure [45], and
SSD of lobar segmentations [48] of the lung. For shape-based feature matching, the shapes
could be corresponding or non-corresponding points, curves, and surfaces. A popular
example is the Iterative Closest Point (ICP) algorithm, which can be used to match point
clouds [49], curves (contours), and surfaces [50]. Another group of shape-matching meth-
ods adopt the concept of currents and varifolds, initially proposed by Charon et al. [51],
and extensively studied by Durrelman et al. [52–57]. The idea of applying currents to
pulmonary registration was first proposed by Gorbunova et al. [58], and later Pan et al. ex-
tended the study by using varifolds representation [59,60]. The advantages of representing
shapes for registration purpose with currents and varifolds are (1) point correspondence is
not required to define the distance between landmarks, curves, surfaces, and intensity with
currents and varifolds representations; and (2) landmarks, curves, surfaces, and intensity
can be unified in one framework.

The transformation model plays a critical role in an image registration algorithm
since it determines the properties of the DVF. The aim of this study was to register TLC
inspiration scans to RV expiration scans of the lungs. Non-rigid image registrations—
also often referred to as deformable image registration (DIR)—can be classified based on
physical models, interpolation theory models, knowledge-based models and task-specific
models [61]. In this manuscript, we classify the transformations as either small or large
deformation models. The main differences between small and large deformation models
are that the large deformation model allows for more curved particle paths from the
moving image to target image, and guarantees a one-to-one correspondence between
the moving and target images. The large deformation diffeomorphic metric mapping
(LDDMM) model [41] refers to the large deformation model throughout this manuscript.
The DVFs that are parameterized by basis functions are categorized into small deformation
model, such as Fourier series [42], Thin-Plate spline [62], B-spline [46,63–65], etc.

To cover a wide category of image registration algorithms, we selected five algorithms
as follows: the Sum-of-Squared-Tissue Volume-Difference (SSTVD) [45], Geodesic Density
Regression (GDR) [66,67], Greedy Symmetric Normalization (GSyN) [43], Pulmonary blood
Vessel and lobe Surface Varifold (PVSV) [51,57,60], and the Population Learning followed
by One Shot Learning (PLOSL) [32].

2.3.1. SSTVD

The SSTVD algorithm was selected as one of the algorithms used because it was
developed particularly for registering pulmonary CT and won the Computed Tomogra-
phy Ventilation Imaging Evaluation 2019 (CTVIE19) Grand Challenge at the American
Association of Physicists in Medicine (AAPM) 2019 annual meeting. The SSTVD algo-
rithm is currently being used in the Functional Avoidance Radiation Therapy Clinical
trial NCT02843568 and has been used to treat more than 50 subjects in that trial. The
SSTVD cost function models the local intensity changes seen in the CT images of the lung
due to breathing and provides good correspondence information between inspiration and
expiration CT scans.

The overall cost of the SSTVD algorithm is the sum of three terms: (1) the sum of
squared tissue volume difference (SSTVD) similarity cost for matching pulmonary CT
intensity [46,47], (2) the sum of squared vesselness measure difference (SSVMD) similarity
cost for matching lung vessels, and (3) a regularization cost on the cubic B-Splines param-
eterized DVF to guarantee a smooth and plausible transformation [45]. The main idea
behind SSTVD is that lung tissue volume remains relatively constant over the breathing
cycle while the volume of air in the lung does not. This method can be considered as a
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lung-specific intensity-based and feature-based combined small deformation algorithm.
The cost function of SSTVD algorithm [22,45–47,68,69] is given by:

C = γ1
1
|Ω|

∫
Ω

(
I f (x)− |Jϕ−1(x)|Im(ϕ−1(x))

)2

dx

+ γ2
1
|Ω|

∫
Ω

(
I f vm(x)− Imvm(ϕ−1(x))

)2

dx + γ3

∫
Ω
||L(u(x))||2dx, (1)

where I f and Im are the fixed and moving tissue density images, respectively; I f vm and
Imvm are the fixed and moving vesselness images, respectively; L is the linear elasticity
differential operator of the type L = (−α∆ + γ)βIn×n; Ω ⊂ R3 is the domain of I f and Im;
The |Jϕ−1(x)| term is the Jacobian determinant of ϕ−1 and used to accommodate intensity
changes in the CT images due to changing air content by ensuring the total tissue volume
of the lung remains constant; ϕ−1(x) is the transformation from the fixed to the moving
coordinate system; u(x) = x − ϕ−1(x) is the displacement field; and γ1, γ2 and γ3 are
weights that control the relative importance of each term in the cost function.

2.3.2. GDR

The GDR algorithm was chosen since it is an example of a large deformation image
registration algorithm that uses the SSTVD cost function. The SSTVD and GDR image
registration algorithms were chosen to compare and contrast the effect of using small vs.
large deformation transformation models. The SSTVD and GDR image registrations also
differed in that the SSTVD algorithm included the SSVMD similarity method while the
GDR did not.

The Geodesic Density Regression (GDR) algorithm [66,67] finds the geodesic path
in image space to align pulmonary CT images. The overall cost of the GDR includes
the SSTVD term and the regularization term on the velocity fields, which are used to
parameterize the DVF as a flow of diffeomorphism. The differences between GDR in this
study and the previous SSTVD method are that the GDR algorithm is based on the LDDMM
large deformation model [41], and uses the SSTVD similarity cost but does not use the
SSVMD similarity cost. GDR can be categorized as a lung-specific intensity-based large
deformation model. The cost function of the GDR is given by

C = γ1
1
|Ω|

∫
Ω

(
I f (x)− |Jϕ−1(x)|Im(ϕ−1(x))

)2

dx + γ2

∫ 1

0
||Lv(t)||2dt, (2)

where the first term is the SSTVD cost function using the same definitions as in Equation (1).
The time-varying velocity field v(t) parameterizes the transformation ϕ by the ordinary
differential equation (O.D.E.):

∂

∂t
φv(x, t) = vt(φ

v
t (x)), (3)

where t ∈ [0, 1], φ0 = Identity and ϕ = φv
1 (see [41] for details). The second term in

Equation (2) is the regularization cost and is used to find the geodesic path in image space
between I f and Im. The large deformation model estimates a diffeomorphic transformation
ϕ that guarantees the transformation is smooth with a smooth inverse. A diffeomorphic
transformation preserves the topological properties of objects in an image, i.e., connected
structures remain connected, disjoint structures remain disjoint, and the smoothness of
curves and surfaces are preserved. The relative importance of each term compared to each
other are controlled by weights γ1 and γ2.

2.3.3. GSyN

The Greedy Symmetric Normalization (GSyN) algorithm [43] is part of the open
source ANTs (Advanced Normalization Tools) toolbox [70]. GSyN aligns two images
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with the deformable diffeomorphic transformation (LDDMM) model [43] in a symmetric
scheme. The GSyN algorithm differs from the SSTVD and GDR methods in that it estimates
the transformation from moving image to fixed image by deforming both images to the
mid-point between the two images. The GSyN algorithm fits into the intensity-based large-
deformation model image registration algorithm class. The transformation model of GSyN
differs from the GDR algorithm in that GDR uses a time-varying velocity field whereas the
GSyN uses a stationary velocity field. The difference is that a stationary velocity field is
constant for all time t in Equation (3) and therefore uses less parameters to represent the
transformation compared to the non-stationary velocity field parameterization and has
fewer degrees of freedom than a time-varying velocity field.

The GSyN algorithm used the normalized cross correlation (NCC) similarity cost
function compared to the SSTVD similarity cost used by the GDR algorithm. The NCC cost
function does not accommodate changes in CT intensity due to breathing in contrast to
the SSTVD cost function. This means that the NCC cost function may not always provide
the proper correspondences between the moving and target images. To understand this,
assume two regions of the parenchyma have the same intensity in the moving image. Next,
assume that one region expanded and the other region did not as a result of breathing. The
intensity of the expanded region will become darker due to an increase in air filling the
regions (i.e., reduced tissue density) and the other region will show no intensity change.
The NCC cost is then forced to do its best to match one intensity in the moving image with
two different intensities in the target image.

The overall GSyN cost function is defined as

C = γ1

∫
Ω

NCC(Im(ϕm(x)), I f (ϕ f (x)))dx + γ2

∫ 0.5

0
(||Lvm(t)||2 + ||Lv f (t)||2)dt, (4)

where x is a coordinate of the mid-point coordinate system of Im and I f . Note that we
use the fixed and moving notation to describe the GSyN method to be consistent with the
other registration algorithms even though both images can be thought of as moving. The
transformations ϕm and ϕ f are from the mid-point coordinate system to the coordinate
systems of Im and I f , respectively. Equation (3) is used to parameterize ϕm and ϕ f by
vm and v f , respectively. NCC is the normalized cross-correlation cost function [43]. The
relative importance of each term compared to each other are controlled by weights γ1
and γ2.

2.3.4. PVSV

The Pulmonary blood Vessel and lobe Surface Varifold (PVSV) algorithm [60] is a
shape feature-based (LDDMM) large deformation registration approach that aligns varifold
representations of the lung blood vessel skeletons and lobe surfaces. The process for ex-
tracting the blood vessel trees and lobe surfaces used for the PVSV algorithm is the same as
described in Section 2.2. The skeleton of each branch of the vessel tree was parameterized
by a quadratic line segment using a least squares fitting process. The skeletons of the vessel
trees and the lobe surfaces were then represented with delta Dirac varifolds using the
procedure in [60]. Varifolds were introduced to the field of computational anatomy to over-
come the orientation problem of currents [51]. The advantages of matching shape with a
varifolds representation are: it does not require pre-knowledge of the point correspondence
between shapes, and it can match shapes with large geometric changes.

The PVSV algorithm was chosen to determine whether meaningful biomechanical
properties could be extracted using only lung surfaces and vessel tree represented via
varifolds. The advantage of using lung surfaces and vessel trees for registration is that it
reduces the amount of information needed to represent the lung and that these features are
invariant to CT intensity changes caused by breathing. Another advantage of this approach
is that it can accurately match surface and vessel structures but it has the disadvantage of
needing to interpolate the transformation between these features.
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The vessel tree skeletons and lung surfaces are registered as a shape complex with
varifolds representation [57], and the overall PVSV cost function is given by

C = γ1||ϕ∗Cm − C f ||2W ′ + γ2||ϕ∗Sm − S f ||2W ′ + γ3

∫ 1

0

∣∣∣∣∣∣Lv(t)
∣∣∣∣∣∣2dt, (5)

where Cm and C f are the blood vessel tree skeletons represented with varifolds, while Sm
and S f are the lung surfaces with varifolds representation. ϕ∗Cm is the push forward action
of the transformation ϕ on the varifold Cm that transports Cm into the space of C f , and
same for ϕ∗Sm. The relative importance of each term is controlled by the weights γ1, γ2
and γ3.

2.3.5. PLOSL

The PLOSL is a fast unsupervised-learning-based framework developed for 3D pul-
monary CT based on population learning (PL) and one-shot learning (OSL) [32]. It uses
the same tissue volume preserving and vesselness constraints similarity metrics as the
SSTVD method. PLOSL has two training stages: (1) PL which serves as a base model;
(2) OSL which generates an individual specific model. The PLOSL algorithm has been
shown to produce state-of-the-art deep-learning-based image registration performance [32]
with comparable accuracy to traditional iterative image registration algorithms and other
deep-learning-based methods for lung CT registration.

The cost function for the PLOSL network consists of three components: SSTVD,
SSVMD, and a regularization cost as follows:

C = γ1
1
|Ω|

∫
Ω

(
I f (x)− |Jϕ−1(x)|Im(ϕ−1(x))

)2

dx

+ γ2
1
|Ω|

∫
Ω

(
I f vm(x)− Imvm(ϕ−1(x))

)2

dx + γ3

∫
Ω

∣∣∣∣∣∣∇u(x)
∣∣∣∣∣∣2

L2
dx, (6)

where the first two terms are the same as the two terms of the SSTVD method, and the
third term is a regularization term and the operator ∇ = [ ∂

∂x1
, ∂

∂x2
, ∂

∂x3
].

2.4. Image Registration Parameters

The registration algorithms employed in the study were fundamentally different and
therefore, the corresponding parameters and multi-resolution setups were different for each
method. All the registration algorithms used a coarse-to-fine multi-resolution framework
to prevent themselves from becoming stuck in local minima, speed up computation, and
achieve better registration performance. Parameters were determined by optimizing image
registration performance by hand using a few typical data sets and hundreds of different
parameter combinations for each algorithm. We optimized the algorithms independently
to achieve the best performance. The following algorithm-specific parameters were used in
this work.

The multi-resolution framework used for the SSTVD algorithm consisted of six image
resolutions at 1/8, 1/8, 1/4, 1/4, 1/2 and 1 of the original resolution, respectively. The
corresponding B-Spline node spacings were 8, 4, 8, 4, 4 and 4 mm. The cost function
described in Equation (1) used weights γ1 = γ2 = 1. The differential operator used was
L = −0.75∇2 − 0.25∇(∇·).

The multi-resolution framework employed for the GDR algorithm consisted of three
image resolutions equal to 1/8, 1/4 and 1/2 of the original resolution, respectively. The
corresponding standard deviation of the deformation Gaussian kernel size for the trans-
formation were 60, 30, and 15 mm, respectively. A total of ten time points were used
for the large deformation model, and the weight on the image cost γ1 = 0.06, and the
regularization cost γ2 = 1 at each resolution.

The multi-resolution framework used for GSyN algorithm consisted of five image
resolutions. The input images were smoothed with a Gaussian kernel with standard
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deviation 4, 3, 2, 1, and 0 mm and down sampled by a factor of 1/16, 1/8, 1/4, 1/2, and
1, respectively.

The multi-resolution framework used for PVSV algorithm consisted of two resolutions.
At the coarse resolution, the shape kernel for the vessel tree skeletons and lung surfaces
were set to 5 and 15 mm, respectively. At the fine resolution, the shape kernel for the vessel
tree skeletons and lung surfaces were set to 3 and 10 mm, respectively. The corresponding
deformation kernel sizes were 40 and 30 mm, respectively. The weights on the vessel
tree and surface cost terms were set to γ1 = 10, 000 and γ2 = 25 at coarse resolution,
respectively, and to γ1 = 4 and γ2 = 0.015, respectively, at the fine resolution. The weight
on the regularization term is γ3 = 1 for the two resolutions.

The population learning U-Net of PLOSL was trained with 2042 subjects randomly
selected from the SPIROMICS database. There was no overlap between training data used
in PLOSL and the data sets (247 subjects) analyzed in this study. The weights on the terms
of the cost function Equation (6) were set to γ1 = 1, γ2 = 1, and γ3 = 0.01, respectively. The
number of one-shot iterations was set to 50. The methods were implemented in TensorFlow
version 2.3.0 and run on an NVIDIA GeForce GTX 2080Ti GPU with 11 GB of memory. The
ADAM optimizer with a learning rate of 10−4 was used for training.

2.5. Image Registration Performance

A total of four measures were used to evaluate image registration performance:
(1) lung Lobe Dice Coefficient (LDC); (2) Worst 10% Surface Error (W10SE); (3) Vessel
Tree Position Error (VTPE); and (4) Symmetric Closest Skeleton Error (SCSE).

LDC measures the overlap of the moving and fixed lung lobes. The Dice Coefficient
(DC) of two overlapping regions L1 and L2 is given by DC = 2|L1∩L2|

|L1|+|L2|
. The human lung

has five lobes: right upper lobe, right middle lobe, right lower lobe, left upper lobe, and left
lower lobe. The LDC is the average DC of the five lobes.

W10SE is an error measurement of the alignment of two lung surfaces. The W10SE
captures the average surface error where two surfaces disagree the most. The process
for extracting the lung lobe surface triangulation used for this evaluation is described in
Section 2.2. For each vertex p of the triangles that parametrize the surface S1, its closet point
q on S2 is found, and the distances between p and q are stored. It is worth noting that q is
not necessarily a vertex of S2 and may instead be on the face of a triangle. As a next step, the
distances for all the vertices of S1 are sorted from large to small, and the mean of the largest
10% distance is computed, which is denoted as W10S1→S2 . Similarly, we compute the mean
of worst 10% distance in the opposite direction, i.e., we rank the closest-point distances
computed from each vertex of S2 to S1, then compute the mean of worst 10% again, and
denote it as W10S2→S1 . The W10SE is defined as: W10SE = 1

2 (W10S1→S2 + W10S2→S1).
VTPE measures the error of the lung blood vessel alignment. The process for extracting

the blood vessel tree skeleton used for this evaluation is described in Section 2.2. The closest-
point distances from the fixed to the moving segmentation were computed for each voxel
in the fixed segmentation and averaged. This process was repeated to compute the average
closest-point distance from the moving to the fixed segmentation. The VTPE is defined as
the average of these two closest-point distances.

SCSE measures the alignment of the skeletons of the vessel tree. SCSE is similar
to VTPE, except the symmetric closest-point distance is computed using the vessel tree
skeletons instead of binary vessel segmentations.

2.6. Biomechanical Measures

This section briefly summarizes the calculation of J, ADI, and SRI [16]. Let F(x)
be the deformation gradient tensor at the point x in the lung, i.e., the gradient of the
transformation from the inspiration-to-expiration CT images at x. For each point x in the
lung, the quantity FT F is the right Cauchy–Green deformation tensor with corresponding
eigenvalues λ2

i such that λ1 ≥ λ2 ≥ λ3.
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The Jacobian determinant J(x) measures the volume change at x and can be computed
as J = λ1λ2λ3. A value of J(x) > 1 corresponds to local volume expansion at x and a value
of J < 1 corresponds to local volume contraction at x.

ADI measures the magnitude of anisotropy deformation, i.e., it describes how much
stretching occurs along one or two directions in a three-dimensional space. The formula for

computing ADI is: ADI =
√
( λ1−λ2

λ2
)2 + ( λ2−λ3

λ3
)2. If the volume changes uniformly along

each direction (isotropically), then ADI equals zero. The larger the ADI value, the more
anisotropic the deformation.

SRI is a measure of the nature of anisotropy, i.e., it measures whether the volume
change is predominant along one direction (rod-like) or two directions (slab-like). SRI is

computed using the formula: SRI =
tan−1

(
λ3(λ1−λ2)
λ2(λ2−λ3)

)
π/2 . Note that the value of SRI ranges from

zero to one where zero corresponds to a slab-like shape and one corresponds to a rod-like
shape. SRI is undefined when ADI is zero.

Figure 2 illustrates the relationships between ADI and SRI. The α and β axes are
defined as following: α = J−1

|J−1| (
λ2
λ3
− 1), and β = J−1

|J−1| (
λ1
λ2
− 1) [16]. Notice that the terms

in the parentheses for both α and β are always positive due to the relationship between
the eigenvalues. Therefore, when J is greater than one (i.e., expansion), α and β are both
positive (first quadrant of the graph in panel A). Likewise, when J is smaller than one (i.e.,
contraction), then α and β are both negative (third quadrant).

Figure 2. Illustration of regional shape change with respect to ADI and SRI. (A) shows the cuboid
shape space as a function of ADI and SRI and how these values are related to α and β in terms similar
to polar coordinates. The cuboid shape is a uniform cube when ADI = 0. The cuboid shape is flat
when SRI = 0 and rod like when SRI = 1. The shape of a uniform cube expands or contracts as the
magnitude of ADI increases. (B) shows the cuboid shape space for particular values of ADI and SRI.
Figure from [16].

Panel B shows the first quadrant of panel A. This figure illustrates how the ADI and
SRI can be thought of as polar coordinates with ADI as the radius and SRI as the angle.
Notice that the deformation becomes more anisotropic as ADI increases. At the origin, the
ADI = 0 corresponding to an isotropic deformation.

3. Results
3.1. Registration Performance

The performance of the TLC-to-RV image registration was evaluated using registra-
tions computed from 245 unique individuals. The baseline scans of 247 subjects were
randomly chosen from the 14 SPIROMICS clinical sites, with 50 subjects from each of
GOLD 0, 1, 2, 3 and 47 subjects from GOLD 4. During analysis, one data set was excluded
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from the GOLD 0 cohort because the RV scan did not cover the entire lung. In addition, one
data set was excluded from the GOLD 4 cohort because the RV and TLC scans were nearly
identical, i.e., the subject was imaged twice at the same lung volume. The GDR image
algorithm failed (i.e., produced a nonsensical correspondence map) on one of each of the
GOLD 1, 2, and 3 data sets. The reason for the three GDR image registration failures was
due to large shape differences between the TLC and RV scans which caused the GDR to
become stuck in a local minimum during the optimization procedure. The measurements
from these three registration results were excluded from the analysis.

Figure 3 shows the registration performance for each registration algorithm. The
numbers used to generate these plots are summarized in Table 1. The bars at the top,
middle, and bottom of the violin plots correspond to the maximum, mean, and minimum of
the dataset, respectively. Notice that SSTVD had the largest variance of the five registration
methods. This is because the SSTVD method was unable to handle large deformations
as well as the other four methods. The performances of GDR and GSyN are similar, and
the performances of PVSV and PLOSL are also close and better than the other algorithms.
Appendix B shows typical difference images for the five image-registration algorithms
across GOLD stage. The results shown in Table 1 and Figure A1 demonstrate that the
performance of the five registration algorithms were similar.

(a) (b) (c) (d)

Figure 3. Violin plots of the TLC-to-RV registration performance using (a) Lung lobe Dice coefficient
(LDC), (b) Worst 10% surface error (W10SE), (c) Vessel tree position error (VTPE), (d) Symmetric
closest skeleton error (SCSE). The first column in each graph is the measure before registration.
The five remaining columns correspond to values for the five algorithms: Sum-of-Squared-Tissue
Volume-Difference (SSTVD), Geodesic Density Regression (GDR), Greedy Symmetric Normalization
(GSyN), Pulmonary blood Vessel and lobe Surface Varifold (PVSV) and Population Learning followed
by One Shot Learning (PLOSL), respectively. Note that a larger LDC value is better whereas a smaller
value is better for the other three evaluation methods.

Table 1. Comparison of registration performance of inspiration–expiration CT registration between
four iterative-registration algorithms and a deep-learning-based registration method. Results are
provided in mean ± standard deviation format.

Method LDC W10SE (mm) VTPE (mm) SCSE (mm)

Before 0.67 ± 0.12 30.90 ± 10.18 5.97 ± 2.17 7.83 ± 2.11

SSTVD 0.94 ± 0.03 4.21 ± 3.97 0.82 ± 0.64 2.61 ± 1.45
GDR 0.95 ± 0.02 2.40 ± 0.67 0.51 ± 0.20 2.18 ± 0.68
GSyN 0.96 ± 0.02 2.54 ± 1.62 0.37 ± 0.18 1.72 ± 0.65
PVSV 0.96 ± 0.01 2.31 ± 0.36 0.35 ± 0.11 1.51 ± 0.35

PLOSL 0.96 ± 0.01 2.93 ± 0.79 0.30 ± 0.08 1.50 ± 0.34

3.2. Robustness of Inferred Biomechanical Features

Figure 4 shows the mean, standard deviation (std), entropy, and root mean squared
(RMS) of J, mean of ADI, and entropy of SRI computed with respect to GOLD stage. The
numbers used to generate these graphs are summarized in Table A1. This figure shows that
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these measures increased or decreased monotonically as GOLD increased and that these
trends were consistent for all registration algorithms.

Figure 4. Comparison of biomechanical measures across image registration algorithms as a function
of GOLD stages. The measures shown were the only measures to exhibit monotonically increas-
ing/decreasing behavior independent of registration algorithms (GOLD: Global Initiative for Chronic
Obstructive Lung Disease, SRI: slab-rod index, ADI: anisotropic deformation index).

Figure 5 shows the J images for typical subjects selected from each GOLD stage.
Each row corresponds to a given subject and each column shows the J image computed
by a different registration algorithm. Notice that the J images in each row (i.e., for a
given subject) appear similar to each other, demonstrating some degree of invariance
to registration algorithm. Further, note that along each column the mean J decreases
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(i.e., the overall color transitions to darker blue) as GOLD stage increases, regardless of
registration algorithm.

Figure 5. Typical Jacobian determinant images for each GOLD stage and registration algorithm.
Dark red regions correspond to regions of large local expansion and dark blue regions correspond to
regions with little to no expansion. This figure shows that each algorithm produced similar results for
each GOLD stage and that the amount of local lung expansion decreased as the GOLD stage increased.

Figure 6 shows the distribution of the average J computed within the whole lung
and each lobe for each registration algorithm. The numbers used to generate these graphs
are summarized in Table A2. These plots show that the average Jacobian determinant
decreased as the GOLD stage increased globally, on a lobe-by-lobe basis, and that these
trends held for all the registration algorithms.

Figure 7 shows Bland–Altman plots of the mean J and compares the measurements
generated by all five image-registration algorithms. These Bland–Altman plots show
the degree of agreement between the measurement methods on an individual basis and
support the results shown in the violin plots (see Figures 3, 4 and 6). Each graph shows
four Bland–Altman plots corresponding to PLOSL vs. SSTVD, PLOSL vs. GSyN, PLOSL
vs. GDR, and PLOSL vs. PVSV, respectively. Note that the horizontal axis is different for
each GOLD stage plot since the average amount of lung deformation from expiration to
inspiration decreased as GOLD stage increased. The downward trend in the GOLD 0 plot
as the average J increases implies that the GSyN, GDR, PVSV, and PLOSL methods all
diverged from the SSTVD method for subjects that had more RV-TLC expansion. A similar
downward trend is evident in the GOLD 1 plot. The GOLD 2, 3, and 4 plots show less
disagreement between the five registration methods. This can be explained by the fact that
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there was much less RV-TLC expansion (note the ranges on the horizontal axes) for GOLD
2, 3, and 4 subjects compared to GOLD 0 and 1 subjects. These plots further confirm the
consistent trends detected by the five registration algorithms that the average J decreases
as GOLD stage increases (as shown in the x-axis).

Figure 6. The robustness of average J with respect to different registration algorithms gloablly and
on a lobe-by-lobe basis. For each row, the first column is the averaged J of lung region (LUNG). The
five remaining columns correspond to the averaged results within five lobes of the lung, respectively.
RUL, RML, and RLL refer to right upper, middle and lower lobe, respectively, whereas LUL and LLL
represent left upper and lower lobe. Each row corresponds to the five registration algorithms: SSTVD,
GDR, GSyN, PVSV and PLOSL, respectively.
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Figure 7. Multiple Comparison Bland–Altman Plots of Mean Jacobian. The shapes and colors in the
legend show the Bland–Altman plot for a given algorithm comparison. There are three dashed lines
for each comparison corresponding to the average difference and to the 95% limits of agreement, i.e.,
the average difference ±1.96 standard deviation (SD) of the difference. The color of the dashed lines
correspond to the comparison denoted in the legend. Some of the dashed lines may appear to be
missing, but that is because they are covered up by other dashed lines or out of range of the y-axis.

4. Discussion and Conclusions

This paper investigated the effects of using different image registration algorithms to
extract lung biomechanical features from inspiration and expiration CT images of subjects
with COPD. In this work, we evaluated both small deformation (SSTVD and PLOSL) and
large deformation (GDR, GSyN, and PVSV) image registration algorithms. The two main
differences between large and small transformation models are that a large transformation
model allows for curved particle paths from the moving image to target image, and large
transformation models guarantee a one-to-one correspondence between the moving and
target images.

Figure 6 shows that the average J of the SSTVD method was smaller than those of
the other four registration algorithms. One explanation for this is that the regularization
used for the SSTVD algorithm produced smoother deformations than the other approaches
and was therefore unable to accommodate as much local deformation. In addition, these
results demonstrate that a deep-learning-based image registration method (PLOSL) can
have similar average performance to traditional iterative image registration algorithms
(GDR, GSyN, and PVSV).
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In total, five biomechanical measures (mean, standard deviation, and entropy of J,
mean of ADI, and energy of SRI) were shown to follow a statistically significant monotoni-
cally increasing or decreasing trend for the entire lung and on a lobe-by-lobe basis as GOLD
stage increased. These trends held for all five registration algorithms. This study showed
that the expansion between RV and TLC decreases as GOLD stage increases in the whole
lung and within each lobe of the lung, which may potentially allow for detection, monitor-
ing, and regional evaluation of COPD. These findings support the work of Ding et al. [71],
who showed that lung function and mechanics vary regionally on a lobe-by-lobe basis.
This work also complements the work by Bhatt et al. [3], who reported spatial correlations
between regions of functional decline identified by the Jacobian determinant and regions
of emphysematous lung tissue.

The SSTVD, GDR, and PLOSL algorithms employed in this study were implemented
by our group. The GSyN used was from the ANTs [70] and PVSV registration results used
the Deformetrica [72] software version 3.0.

The SSTVD, GDR, GSyN, and PVSV algorithms were run on a single high-memory
Argon Phase 1 compute node on the University of Iowa High-Performance Argon Cluster
(https://hpc.uiowa.edu/ (accessed on 10 October 2022)). The node has two Xeon E5-2680v4
(28 Cores at 2.4 GHz) for a total of 56 compute slots, 512 GB RAM, 1 Gbps Ethernet, 100 Gbps
Omnipath, and HPL benchmark performance of 766.1 GFlops, and cost approximately USD
7500. The PLOSL algorithm was run on an NVIDIA Tesla 2080Ti GPU. The computation
time for registration varied depending on the amount of deformation required. In general,
GOLD 4 cases demonstrated smaller shape change between inspiration and expiration
compared to GOLD 0 cases. On average, the SSTVD, GDR, GSyN, and PVSV took an hour to
register a 3D pair of images. The GDR algorithm required the most computational resources
and took almost 2 h for registrations that required extensive deformation. In contrast, the
deep learning PLOSL algorithm was 1.5 orders of magnitude faster than the other four
registration methods. Once trained, the PLOSL algorithm took approximately 1.25 min to
register a 3D pair of images. Thus, for this study, the PLOSL algorithm seems to be the
preferred registration algorithm due to its faster run time and comparable performance.
The only caveat to using the PLOSL algorithm is that it needed a large number of data sets
for training. In the absence of training data, one of the other registration algorithms should
be selected.

The SSTVD and GDR both used the same loss function. However, these methods differ
in how the transformations are parameterized. The loss function defines what features
correspond for matching while the transformation parameterization defines the amount of
deformation that is allowed when matching. The SSTVD transformation is parameterized
by small deformation B-splines whereas GDR transformation is parameterized by a high-
dimensional temporal and spatially varying velocity vector field. The result of this is that
the GDR algorithm has orders of magnitude more degrees of freedom to match two image
volumes compared to the SSTVD algorithm. Having more degrees of freedom is not always
better if they are not needed. This paper shows that both algorithms performed similarly
for the current task of registering inspiration-to-expiration CT lung volumes. Thus, one
can conclude that the extra degrees of freedom, extra computation time and additional
computational resources for this task were not needed.

The results presented in this paper demonstrate that five different and varied registra-
tion methods can all produce similar measures of lung biomechanics. Such biomechanical
measures, when analyzed on a local level, further strengthen the link between spirometry
and quantitative CT and may help explain the functional changes missed using spirometry
or CT density thresholds alone [3]. There are several current and potential implications of
our work. Existing measures of lung function and structure are limited by the lack of spatial
information and by the lack of sensitivity to detect early changes. These image-registration-
based biomechanical measures are robust in detecting early abnormalities that have been
linked to important clinical outcomes, including respiratory quality of life, functional ca-
pacity, and all-cause mortality [21]. Spatial information on a lobar and sub-lobar level are

https://hpc.uiowa.edu/
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increasingly being recognized as important in patient selection for interventional COPD
therapies such as bronchoscopic and surgical lung volume reduction. These measures
may provide additional information, beyond density-based measures, about the health of
the target and ipsilateral non-target lobes for such procedures. Biomechanical measures
may also help inform patient and target selection for radiation therapy and for lobar and
segmental lung resection in lung cancer. Using spirometry, CT density measures, and
biomechanical features together may help provide mechanistic insights to explain changes
in lung function in COPD and related lung diseases.
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Appendix A. Quantitative Results for Figure 4

Table A1. Quantitative Results for Figure 4. Comparison of biomechanical measures across image
registration algorithms as a function of GOLD stages. Results are provided in mean ± standard
deviation format.

Biomechanical
Measure Method GOLD 0 GOLD 1 GOLD 2 GOLD 3 GOLD 4

Mean of J

SSTVD 1.85 ± 0.24 1.78 ± 0.24 1.65 ± 0.17 1.40 ± 0.14 1.29 ± 0.09
GDR 2.01 ± 0.36 1.92 ± 0.35 1.70 ± 0.20 1.40 ± 0.14 1.30 ± 0.09
GSyN 2.03 ± 0.35 1.92 ± 0.35 1.71 ± 0.20 1.40 ± 0.14 1.31 ± 0.10
PVSV 2.02 ± 0.36 1.93 ± 0.36 1.71 ± 0.21 1.40 ± 0.14 1.30 ± 0.09

PLOSL 2.03 ± 0.36 1.92 ± 0.35 1.71 ± 0.20 1.40 ± 0.12 1.31 ± 0.09

Std of J

SSTVD 0.46 ± 0.13 0.47 ± 0.13 0.35 ± 0.10 0.23 ± 0.10 0.18 ± 0.06
GDR 0.44 ± 0.16 0.45 ± 0.17 0.35 ± 0.10 0.26 ± 0.11 0.20 ± 0.07
GSyN 0.55 ± 0.20 0.52 ± 0.19 0.39 ± 0.12 0.28 ± 0.12 0.21 ± 0.07
PVSV 0.71 ± 0.29 0.66 ± 0.29 0.53 ± 0.18 0.38 ± 0.15 0.33 ± 0.11

PLOSL 0.26 ± 0.16 0.26 ± 0.19 0.16 ± 0.10 0.07 ± 0.05 0.04 ± 0.02

Entropy of J

SSTVD 4.17 ± 0.45 4.15 ± 0.46 3.75 ± 0.43 3.15 ± 0.56 2.73 ± 0.45
GDR 4.11 ± 0.50 4.14 ± 0.54 3.73 ± 0.38 3.21 ± 0.54 2.88 ± 0.45
GSyN 4.32 ± 0.57 4.21 ± 0.63 3.82 ± 0.39 3.26 ± 0.53 2.85 ± 0.43
PVSV 4.57 ± 0.53 4.58 ± 0.68 4.16 ± 0.43 3.73 ± 0.46 3.50 ± 0.43

PLOSL 4.21 ± 0.50 4.18 ± 0.59 3.75 ± 0.42 3.20 ± 0.56 2.85 ± 0.45

RMS of J

SSTVD 1.91 ± 0.26 1.84 ± 0.27 1.69 ± 0.19 1.42 ± 0.16 1.31 ± 0.10
GDR 2.05 ± 0.36 1.98 ± 0.39 1.74 ± 0.22 1.42 ± 0.15 1.32 ± 0.10
GSyN 2.10 ± 0.39 2.00 ± 0.39 1.75 ± 0.22 1.43 ± 0.15 1.33 ± 0.10
PVSV 2.15 ± 0.41 2.06 ± 0.47 1.80 ± 0.25 1.47 ± 0.22 1.35 ± 0.12

PLOSL 2.09 ± 0.38 2.01 ± 0.41 1.76 ± 0.22 1.43 ± 0.15 1.33 ± 0.10

Mean of ADI

SSTVD 0.40 ± 0.07 0.40 ± 0.09 0.35 ± 0.07 0.27 ± 0.08 0.22 ± 0.06
GDR 0.47 ± 0.11 0.47 ± 0.14 0.40 ± 0.09 0.29 ± 0.08 0.23 ± 0.07
GSyN 0.54 ± 0.13 0.50 ± 0.14 0.44 ± 0.10 0.32 ± 0.10 0.25 ± 0.07
PVSV 0.54 ± 0.16 0.53 ± 0.19 0.44 ± 0.10 0.35 ± 0.09 0.32 ± 0.08

PLOSL 0.40 ± 0.08 0.39 ± 0.12 0.34 ± 0.07 0.25 ± 0.06 0.21 ± 0.06

Energy of SRI (×106)

SSTVD 0.88 ± 0.20 1.09 ± 0.24 1.19 ± 0.28 1.32 ± 0.33 1.77 ± 0.50
GDR 0.92 ± 0.19 1.14 ± 0.27 1.21 ± 0.30 1.32 ± 0.33 1.75 ± 0.51
GSyN 1.01 ± 0.20 1.24 ± 0.25 1.31 ± 0.29 1.41 ± 0.34 1.85 ± 0.52
PVSV 0.96 ± 0.18 1.16 ± 0.21 1.24 ± 0.26 1.35 ± 0.32 1.67 ± 0.44

PLOSL 0.94 ± 0.18 1.16 ± 0.22 1.24 ± 0.27 1.34 ± 0.32 1.76 ± 0.48
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Appendix B. Sample Difference Images

Figure A1 shows difference images associated with the registrations used to compute
the Jacobian images shown in Figure 5. This figure shows typical difference images for
all five image registration algorithms across GOLD stages. All five image-registration
algorithms performed equally well with respect to difference images except for three
failures of the GDR algorithm. The GDR failed because it contained too many degrees
of freedom and became stuck in local minima. The lungs were segmented from the
original CT before registration. The most obvious registration errors occurred near the
lung mask boundaries. Subtle correspondence errors in the lung parenchyma are difficult
to observe in these difference images since a zero gray-scale intensity does not imply
correct correspondence.

Figure A1. Difference images for the registrations used to compute the Jacobian determinant images
shown in Figure 5. The first column shows a 2D coronal cross section of the lungs before registration.
The last five images in each row show the same coronal cross section of the lungs that resulted from
each registration algorithm. Gray corresponds to a zero difference. Black corresponds to negative
values and white corresponds to positive values. A lung mask was used for registration and is the
reason why the area outside the lungs is gray.
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Appendix C. Quantitative Results for Figure 6

Table A2. Quantitative Results for Figure 6. Comparison of average J across image registration
algorithms as a function of GOLD stages on both a global and lobe-by-lobe basis. Results are
provided in mean ± standard deviation format.

Method Region GOLD 0 GOLD 1 GOLD 2 GOLD 3 GOLD 4

SSTVD

LUNG 1.85 ± 0.24 1.78 ± 0.24 1.65 ± 0.17 1.40 ± 0.14 1.29 ± 0.09
RUL 1.74 ± 0.23 1.66 ± 0.25 1.57 ± 0.18 1.37 ± 0.15 1.25 ± 0.12
RML 1.74 ± 0.23 1.66 ± 0.25 1.57 ± 0.18 1.37 ± 0.15 1.25 ± 0.12
RLL 1.94 ± 0.25 1.98 ± 0.22 1.77 ± 0.22 1.41 ± 0.13 1.32 ± 0.15
LUL 1.87 ± 0.31 1.70 ± 0.26 1.59 ± 0.17 1.39 ± 0.16 1.28 ± 0.13
LLL 1.98 ± 0.25 1.97 ± 0.19 1.75 ± 0.20 1.46 ± 0.26 1.35 ± 0.14

GDR

LUNG 2.01 ± 0.36 1.92 ± 0.35 1.70 ± 0.20 1.40 ± 0.14 1.30 ± 0.09
RUL 1.88 ± 0.35 1.78 ± 0.37 1.63 ± 0.21 1.39 ± 0.17 1.26 ± 0.13
RML 1.76 ± 0.33 1.64 ± 0.23 1.56 ± 0.18 1.32 ± 0.16 1.25 ± 0.12
RLL 2.11 ± 0.38 2.09 ± 0.40 1.84 ± 0.27 1.41 ± 0.14 1.30 ± 0.13
LUL 1.97 ± 0.40 1.81 ± 0.34 1.65 ± 0.20 1.42 ± 0.18 1.30 ± 0.15
LLL 2.18 ± 0.36 2.09 ± 0.37 1.77 ± 0.22 1.47 ± 0.28 1.35 ± 0.13

GSyN

LUNG 2.03 ± 0.35 1.92 ± 0.35 1.71 ± 0.20 1.40 ± 0.14 1.31 ± 0.10
RUL 1.86 ± 0.31 1.73 ± 0.31 1.63 ± 0.22 1.40 ± 0.19 1.28 ± 0.14
RML 1.70 ± 0.30 1.60 ± 0.21 1.52 ± 0.16 1.30 ± 0.14 1.25 ± 0.12
RLL 2.20 ± 0.42 2.15 ± 0.43 1.85 ± 0.30 1.41 ± 0.14 1.31 ± 0.14
LUL 1.94 ± 0.36 1.79 ± 0.33 1.64 ± 0.20 1.42 ± 0.17 1.31 ± 0.15
LLL 2.28 ± 0.41 2.14 ± 0.38 1.83 ± 0.25 1.49 ± 0.29 1.36 ± 0.15

PVSV

LUNG 2.02 ± 0.36 1.93 ± 0.36 1.71 ± 0.21 1.40 ± 0.14 1.30 ± 0.09
RUL 1.89 ± 0.35 1.76 ± 0.34 1.64 ± 0.23 1.40 ± 0.17 1.26 ± 0.13
RML 1.89 ± 0.35 1.76 ± 0.34 1.64 ± 0.23 1.40 ± 0.17 1.26 ± 0.13
RLL 2.18 ± 0.41 2.15 ± 0.43 1.84 ± 0.30 1.42 ± 0.17 1.31 ± 0.14
LUL 1.93 ± 0.37 1.79 ± 0.35 1.64 ± 0.20 1.42 ± 0.18 1.30 ± 0.15
LLL 2.28 ± 0.43 2.16 ± 0.40 1.83 ± 0.26 1.49 ± 0.30 1.35 ± 0.15

PLOSL

LUNG 2.03 ± 0.36 1.92 ± 0.35 1.71 ± 0.20 1.40 ± 0.12 1.31 ± 0.09
RUL 1.90 ± 0.36 1.76 ± 0.35 1.64 ± 0.22 1.40 ± 0.17 1.28 ± 0.12
RML 1.67 ± 0.29 1.58 ± 0.22 1.51 ± 0.15 1.31 ± 0.15 1.26 ± 0.11
RLL 2.18 ± 0.41 2.16 ± 0.43 1.87 ± 0.28 1.41 ± 0.15 1.33 ± 0.13
LUL 1.93 ± 0.36 1.76 ± 0.31 1.64 ± 0.20 1.42 ± 0.17 1.31 ± 0.14
LLL 2.30 ± 0.43 2.17 ± 0.41 1.83 ± 0.25 1.50 ± 0.29 1.37 ± 0.13
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