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Neutrophil granulocytes form the first line of host defense against invading

pathogens and tissue injury. They are rapidly recruited from the blood to

the affected sites, where they deploy an impressive arsenal of effectors to

eliminate invading microbes and damaged cells. This capacity is endowed

in part by readily mobilizable proteins acquired during granulopoiesis and

stored in multiple types of cytosolic granules with each granule type con-

taining a unique cargo. Once released, granule proteins contribute to killing

bacteria within the phagosome or the extracellular milieu, but are also cap-

able of inflicting collateral tissue damage. Neutrophil-driven inflammation

underlies many common diseases. Research over the last decade has docu-

mented neutrophil heterogeneity and functional versatility far beyond their

antimicrobial function. Emerging evidence indicates that neutrophils utilize

granule proteins to interact with innate and adaptive immune cells and

orchestrate the inflammatory response. Granule proteins have been identi-

fied as important modulators of neutrophil trafficking, reverse

transendothelial migration, phagocytosis, neutrophil life span, neutrophil

extracellular trap formation, efferocytosis, cytokine activity, and autoim-

munity. Hence, defining their roles within the inflammatory locus is critical

for minimizing damage to the neighboring tissue and return to homeosta-

sis. Here, we provide an overview of recent advances in the regulation of

degranulation, granule protein functions, and signaling in modulating neu-

trophil-mediated immunity. We also discuss how targeting granule proteins

and/or signaling could be harnessed for therapeutic benefits.

Introduction

Neutrophil granulocytes are the most abundant white

blood cells in human circulation and play a central

role in host defense against invading pathogens and

tissue injury. Typically, neutrophils are rapidly

recruited to sites of infection or injury, where they

deploy an impressive chemical and enzymatic array of
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mechanisms, resulting in the elimination of the offend-

ing agents and necrotic tissues [1,2]. A key component

of this weaponry is the mobilization and release of

preformed cytosolic granules with each granule type

containing multiple microbicide proteins and proteases

at unique signaling thresholds [3,4]. Granules can fuse

with pathogen-containing phagosomes to destroy

ingested microorganisms. Neutrophil granules can also

fuse with the plasma membrane in response to patho-

gens that cannot be phagocytosed, leading to extracel-

lular release of their content [1,5]. Release of granule

proteins to the extracellular milieu can inflict damage

to the surrounding tissues and prolong the inflamma-

tory reaction [6–8]. Over the past two decades, neu-

trophil-driven inflammation has been recognized as a

common mechanism underlying many pathological

conditions, including atherosclerosis, cardiovascular,

respiratory, autoimmune and neurodegenerative dis-

eases, sepsis, and cancer [8,9]. Neutrophils are also

involved in the resolution of inflammation [10]; hence,

the balance between their deleterious and beneficial

effects will likely be one of the key determinants of the

outcome of the inflammatory response.

Research over the last decade has documented the

heterogeneity of neutrophils and their functional versa-

tility, extending far beyond their antimicrobial func-

tion [11,12]. Neutrophils interact with innate and

adaptive immune cells and orchestrate immune

responses [9]. Emerging evidence indicates the involve-

ment of granule proteins, in addition to de novo syn-

thesis of cytokines in this crosstalk [4]. In this paper,

we aim to summarize recent advances in our under-

standing of degranulation, granule protein function,

and signaling in neutrophil-mediated immunity. We

also discuss how targeting granule proteins and/or sig-

naling could be harnessed for therapeutic benefits.

Granule formation and composition

Neutrophils contain different granule subsets that are

mobilized by stimulation. Based on physical properties

and expression markers, at least four different types of

secretory compartments have been identified: azurophi-

lic or primary granules [specific markers: myeloperoxi-

dase (MPO) and CD63], specific or secondary granules

(markers: lipocalin 2 and CD66b), gelatinase (GG) or

tertiary granules (markers: gelatinase B and CD11b),

and secretory vesicles (SV) (Fig. 1) [13]. Neutrophils

acquire granules and SV sequentially during their mat-

uration in the bone marrow. The ‘targeting by timing’

hypothesis postulates that the synthesis of granule pro-

teins at the time of formation of granule subset would

determine granule content [14]. Appropriate timing of

mRNA expression during granulopoiesis coincides

with granule protein distribution in most proteins used

to identify granule subsets [3]. However, the discrep-

ancy in the timing of mRNA expression for a minority

of proteins and overlaps in granule content among dif-

ferent subsets (e.g., lysozyme in all three granule types)

suggest the involvement of mechanisms in addition to

the timing of protein synthesis in the regulation of

granule content. Primary granules are the earliest to be

formed in promyelocytes (hence their name), stain by

the dye azure A (i.e., azurophilic). They contain a

large number of antimicrobial proteins, including

MPO, serine proteases (elastase, proteinase 3, cathep-

sin G, and azurocidin), a-defensins, lysozyme, and

Cap57 (bactericidal/permeability-increasing protein,

BPI) [3,15]. Azurophilic granule proteases are activated

by proteolytic processing prior to incorporation into

granules, resulting in a highly toxic readily available

cargo upon release [16]. Proteomic analysis has identi-

fied at least 850 proteins associated with azurophilic

granules, of which 135 show the highest relative

amounts among granules or are exclusively expressed

in this granule subset [3]. Azurophilic granules are

heterogeneous in their protein content, which may

determine their trafficking to the cell surface or fusion

with phagosomes. Plasma membrane-targeted azuro-

philic granules express Rab27 and Slp1/JFC1, whereas

primary granules targeted to the phagosome lack these

proteins [17]. Intriguingly, a subset of primary granules

does not contain a-defensin, while expressing all other

granule proteins [18]. The origin and function of this

subset remain to be investigated.

Specific and GG granules are peroxidase-negative

and are formed throughout myelocyte, metamyelocyte,

and band stages. These granules share similar contents

and functions, though heterogeneity within these sub-

sets is well recognized. Specific (secondary) granules

contain lactoferrin and lipocalin (NGAL), but no GG

[matrix metalloproteinase 9 (MMP-9)], whereas GG

(tertiary) granules contain MMP-9, but lack lactoferrin

and lipocalin [18]. Of 1024 proteins associated with

specific granules (SG), 111 are maximally expressed in

this subset [3]. GG granules express only 30 of 1123

proteins maximally. A hybrid type granule, constitut-

ing about two-thirds of the total peroxidase-negative

granules, contains lactoferrin, lipocalin, and MMP-9

[18]. GG granules containing the microbe-binding lec-

tin ficolin 1 have been proposed as a separate granule

subset, termed ficolin 1-rich granules [19]. Besides the

rapid exocytosis of these granules in response to the

bacterial chemoattractant formyl-Met-Leu-Phe [19,20],

little is known about the function of this granule type.

SV are formed by endocytosis during the band and
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segmented stages [21]. These vesicles (markers: albu-

min, CD45, Mac-1/CD11b, and CD13) are enriched in

numerous proteins also present in the cell membrane,

including phagocytic, chemoattractant and cytokine

receptors, adhesion molecules, membrane components

of NADPH oxidase, and plasma proteins [3,22]. Like

specific and GG granules, the release of the content of

SV is restricted to the plasma membrane [21] and is

thought to facilitate neutrophil adherence to the acti-

vated vascular endothelial cells (EC), the initial step in
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Fig. 1. Main constituents of neutrophil granules and secretory vesicles. The list depicts the most abundant proteins in human resting

neutrophils. There are some species differences. For example, while mouse neutrophils contain most of these proteins, azurocidin, a-

defensin 3, and Cap57 are specific for human neutrophils. In contrast, mouse neutrophils harbor abundant expression of neutrophil granular

protein, high-mobility group 1, heat-shock protein A8, and chitinase-like protein 3 [4]. In human neutrophils, specific and gelatinase granules

exist as a continuum bearing markers of SG (lactoferrin+, gelatinase�), gelatinase granules (lactoferrin�, gelatinase+), and hybrid granules

(lactoferrin+, gelatinase+) [3]. A fourth granule type, ficolin 1-enriched granules have also been described [19].
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neutrophil trafficking into inflamed or injured tissues.

Following firm adhesion of neutrophils to the endothe-

lium, chemokine signaling and outside-in signaling

through b2 integrins induce exocytosis of GG and SG

[18].

A recent case report shows apical polarization of

neutrophil granules in both mature and band neu-

trophils from patients with severe sepsis [23], which

may coincide with their antimicrobial activity. Several

granule proteins, such as MPO, lactoferrin, lysozyme,

cathepsin G, and a-defensin, were detected in thin cel-

lular protrusions (termed cytonemes) that are likely

specialized for delivering signaling proteins to neigh-

boring cells [24,25]. Another communication structure,

extracellular vesicles also contain granule proteins,

including MPO, lactoferrin, cathepsin G, and a-de-
fensin in a context-dependent fashion [26]. Little is

known of the molecular links between the formation

of these structures and neutrophil granules.

Regulation of degranulation

Neutrophil granules can fuse with the nascent phago-

some, releasing their cargo into the vacuole to destroy

ingested pathogens or with the plasma membrane,

resulting in secretion of granule proteins extracellularly

(degranulation). The release of granule contents is a

tightly regulated receptor-coupled process that is medi-

ated by distinct signaling events for each granule type,

allowing the selective release of granule subsets

(Fig. 2) [27]. Ligation of G protein-coupled receptors

(GPCRs), Fcc receptors, or the b2 integrin Mac-1

(CD11b or CR3) by a wide range of stimuli, such as

bacterial formyl-peptides, chemokines, cytokines, com-

plement fragments, or EC adhesion molecules, triggers

a degranulation response [28], which is markedly

enhanced by prior exposure of neutrophils to a prim-

ing stimulus, such as granulocyte–macrophage colony-

stimulating factor, tumor necrosis factor (TNF), or

platelet-activating factor [29]. Although these receptors

activate different sets of downstream signaling mole-

cules, they converge on two signaling pathways, the

activation of Rac2 and the induction of a calcium flux

[30]. Importantly, the different granule subsets can be

selectively released for each granule type requires a dif-

ferent intracellular calcium concentration to trigger its

exocytosis [18,30]. SV have the highest sensitivity to

calcium followed in order of decreasing calcium sensi-

tivity by GG, SG, and azurophilic granules.

Rac2 is a member of the Rho GTPase subfamily,

which plays multiple roles in degranulation. It medi-

ates the remodeling of the actin cytoskeleton required

for mobilization of granules from the cytosol to the

target membrane and clearing of the cortical actin

cytoskeleton that would otherwise block granule dock-

ing to the plasma membrane [31–34]. Genetic deletion

of Rac2 in mice leads to a loss of primary granule

release without affecting degranulation of specific and

GG granules, suggesting a role restricted to primary

granules [31,32,35]. However, actin reorganization is

required for the degranulation of all granule types [36],

but it likely depends on granule-specific signaling

mechanisms, such as the Src family of nonreceptor tyr-

osine kinases. Neutrophils express 3 Src-family mem-

bers, Hck, Fgr, and Lyn. Ligation of GPCRs or the

phagocytic receptor FccRIIA (CD64) induces Hck

translocation to azurophilic granules and Fgr to SG,

albeit some degree of functional overlap between these

kinases has also been reported [37–39]. Hck activates

the ELMO-Dock2 pathway leading to Rac2 activation

and degranulation of azurophilic granules [40]. Src-

family kinases also activate p38 MAPK, which

through a yet unidentified pathway mediates degranu-

lation of azurophilic and specific/ GG granules [41].

Of note, p38 MAPK can induce actin rearrangements

via Hsp27 [42]; hence, it may function in a manner

similar to Rac2. Recent results indicate that Hck acti-

vation following ligation of Toll-like receptor 9

(TLR9) with bacterial DNA, a pathogen-associated

molecular pattern or the damage-associated molecular

pattern mitochondrial DNA, leads to the release of

primary granule contents, MPO, neutrophil elastase

(NE), and proteinase 3 [43]. TLR9 activation induces

NF-jB-mediated transcription of inducible nitric oxide

synthase (iNOS) in human neutrophils [44], which, in

turn, could activate Src kinases as observed in macro-

phages [45]. TLR9 signaling does not activate Lyn or

Fgr and does not require neutrophil priming [43].

An increase in intracellular calcium is indispensable

for degranulation of all granule subtypes and is

required to form the fusion pore between granules and

cell or phagosome membranes. Calcium signaling can

be induced at multiple points during neutrophil traf-

ficking to inflamed loci and phagocytosis. The most

studied receptors driving calcium release are GPCRs.

Ligation of GPCRs induces the dissociation of the b/c
heterodimer from the Ga subunit [46]. The ß/c subunit

transduces the majority of the neutrophil signaling

through activation of phospholipase C (PLC), which

generates inositol-trisphosphate (IP3) and diacylglyc-

erol (DAG). IP3 releases calcium stored in the endo-

plasmic reticulum (ER), leading to modest increases in

cytosolic calcium [47]. DAG induces protein kinase C

(PKC)-mediated activation of store-operated channels

(SOCs), producing a more robust and prolonged

increase in intracellular calcium. Activation of GPCRs
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also generates phosphatidylinositol-(3,4,5)-trisphos-

phate (PIP3) via protein kinase AKT. Hypoxia

through activation of PI3Kc also evokes PIP3 and

AKT signaling and enhances degranulation [48]. A

hierarchy of granule exocytosis exists in response to

elevated intracellular calcium concentrations with an

order of release of SV > GG granules > SG > azuro-

philic granules [49,50]. The exocytosis of primary gran-

ules depends on ATP and high cytosolic calcium

concentration [50]. Activation of neutrophil receptors

other than GPCRs also induces calcium fluxes. For

instance, FccRIIA-mediated phagocytosis of antibody-

opsonized pathogens induces a potent calcium flux

through the recruitment of Src-family kinases, which

activates the Syk-PLC pathway, leading to IP3 and

DAG synthesis [51]. Engagement of complement

receptor 1 (CR1) and CR3 with C3b-opsonized patho-

gens induces phospholipase D (PLD)-mediated release

of phosphatidic acid (PA), which is readily converted

into DAG [18].

Rapid mobilization of granules is controlled by

effector molecules that include small GTPases and

their interacting proteins [52]. The final step of degran-

ulation, docking, and fusion of granule membrane to

the target membrane is mediated by the binding of

vesicle soluble N-ethylmaleimide-sensitive factor
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CR3 triggers degranulation through multiple, partially overlapping downstream signaling pathways, converging on activation of Rac2, and

increasing intracellular calcium. Rac2 is activated through GPCR-activated guanine nucleotide exchange factors or the SFK (Src family of

tyrosine kinases)-Syk-DOCK2 pathway following ligation of Fcc receptors. Calcium signaling is driven by influx of extracellular calcium via

DAG/PKC-regulated SOCs or calcium release from intracellular stores via the IP3 receptor. Chemokine binding to GPCRs leads to direct
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induces actin remodeling and granule transport from the cytosol to the plasma membrane. Fusion of granules with the plasma membrane is

governed by calcium-dependent formation of SNARE complexes, consisting of granule VAMPs and cognate SNAPs/syntaxins on the plasma

membrane. The Rab GTPase, Rab5, expressed on a subset of azurophilic granules, mediates their fusion with endosomes. AG, azurophilic

(primary) granules; IP3R, IP3 receptor; SG, secretory (secondary) granules.
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attachment protein receptors (SNAREs, also referred

to as vesicle-associated membrane protein or VAMP)

to a cognate SNARE (t-SNARE) expressed at the

plasma membrane or phagosome at a ratio of 1 : 3

[53]. Human neutrophils express a range of vSNARES,

including VAMP-2 and VAMP-7, and t-SNARES,

such as syntaxin A1, 3, 4, 5, 6, 7, 9, 11, and SNAP-23

[54], though degranulation largely depends on SNAP-

23 and syntaxin 6. VAMPs may impart granule-speci-

fic degranulation. Thus, VAMP-2 mediates exocytosis

of GG granules [55], whereas VAMP-1 and VAMP-7

direct release of azurophilic granules [56,57]. The selec-

tive recruitment of VAMP-7 to azurophilic granules

may account for their capability to fuse with both the

plasma membrane and phagosomes [56]. VAMP-7 is

thought to interact with phagosome-resident syntaxin

7, syntaxin 8, and/or Vti-1B to mediate azurophilic

granule–phagosome fusion [18].

The Rab GTPases Rab5 and Rab27a have also been

implicated in controlling the degranulation of human

neutrophils. Rab5 appears to be selectively associated

with azurophilic granules and mediates their fusion

with phagosomes, although the underlying mechanism

has not been explored in detail [38]. In contrast,

Rab27a and its two effectors Munc-13-4 and JFC1 are

required for extracellular release of azurophilic, SG,

and GG granules [18]. JFC1 transports granules to the

plasma membrane, where it docks granules to the

plasma membrane through bridging Rab27a. Munc13-

4 immobilizes Rab271-positive granules at the plasma

membrane and controls the secretion of azurophilic

and tertiary granules, for example MPO release in

response to bacterial lipopolysaccharide. Deficiency in

Rab27a and Munc13-4 has been linked to impaired

neutrophil functions in some hereditary immune defi-

ciency diseases such as the Griscelli syndrome type 2

and familial hemophagocytic lymphohistiocytosis type

3 [58]. Munc13-4 was also reported to regulate TLR9

activation directly, upregulate surface expression of

Mac-1 (CD11b), and bind to Rab11, enabling Rab11a-

positive vesicles to dock and presumably fuse with the

plasma membrane [59,60]. At least four additional

Rab GTPases have been identified in neutrophils, but

their function remains largely unexplored [18,52].

Biological roles of granule proteins

Much has been written on the mechanisms of neu-

trophil trafficking into inflamed tissues and the roles

of emigrated neutrophils in host defense and inflicting

tissue injury [1,2,6,28,61–64]. While degranulation at

specific times during neutrophil transendothelial migra-

tion (TEM) and engagement with invading pathogens

equips neutrophils with efficient effectors, the roles of

granule proteins are not restricted to antimicrobial and

tissue-damaging actions. In the following sections, we

aim to provide a focus on how neutrophils utilize

granule proteins to interact with innate and adaptive

immune cells and shape innate and adaptive immunity

(Fig. 3).

Neutrophil trafficking into tissues and
reverse transendothelial migration

Rapid neutrophil infiltration into microbe-infected and

damaged tissues is a critical component of the innate

immune response and a hallmark of acute inflamma-

tory reactions. Neutrophils egress from the blood to

tissues is a multistep process involving a sequence of

events orchestrated by well-characterized adhesive and

stimulatory pathways, followed by migration through

the EC barrier via both paracellular and transcellular

paths and chemotactic migration toward the inflamma-

tory locus [61–64].
Neutrophil activation results in secretion of NE,

proteinase 3, and cathepsin G from the azurophilic

granules, leading to degradation of extracellular matrix

and neutrophil transmigration [1,63]. In vivo, the activ-

ity of these proteases is inhibited by protease inhibi-

tors, such as leukocyte protease inhibitor (SLPI),

antichymotrypsin, and a1-antitrypsin [4], thereby

restricting protease activity to the infected or injured

locus. Proteinase 3 binds to the neutrophil surface

through an association with NB1 (CD177), a hetero-

philic binding partner for platelet–EC adhesion mole-

cule 1 [65,66]. This interaction protects proteinase 3

from proteolytic inactivation. Thus, NB1 may direct

proteinase 3 to EC junctions where transmigration

occurs [67] and facilitates neutrophil diapedesis

through degradation of junctional proteins or the

extracellular matrix [66] or by proteolysis of endothe-

lial cadherin [68]. Acting through the endothelial pro-

tease-activated receptor 2 (PAR-2), proteinase 3

counters the actions of PAR-1 agonists on the

endothelium and contributes to restoring junctional

integrity and barrier function following neutrophil

TEM [69]. Proteinase 3 was also reported to maintain

calcium transients in EC independent of its proteolytic

activity [69]. This action may contribute to protecting

ECs from permeability changes, though the underlying

molecular mechanism requires future investigations.

Studies in zebrafish embryos [70] and mouse cremas-

ter circulation [71] reported the ability of neutrophils

to exhibit motility away from inflamed tissues back to

the vessel lumen, known as reverse TEM [71,72]. Neu-

trophil reverse TEM is most prevalent in tissues
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subjected to ischemia–reperfusion injury and is driven

by a leukotriene B4 (LTB4)- NE axis [72] in a paracel-

lular manner [73]. Under ischemia-reperfusion, locally

generated LTB4, through the LTB4 receptor BLT1,

induces elastase release from neutrophils [72]. NE

binds to Mac-1 [74], which is also a ligand for junc-

tional adhesion molecule-C (JAM-C), and then cleaves

JAM-C [72]. Reversely transmigrated neutrophils dis-

play a phenotype (ICAM-1high, CXCR1low) distinct

from tissue-resident (ICAM-1low, CXCR1low) or circu-

lating neutrophils (ICAM-1low, CXCR1high) and have

increased capacity to produce superoxide [71,75]. The

pathophysiological relevance of neutrophils undergoing

reverse TEM remains unclear. Reverse TEM might be

a protective response as it may dampen the inflamma-

tory response through facilitating the removal of

neutrophils from the inflamed site [70,76]. Alterna-

tively, retrograde neutrophil migration might dissemi-

nate local inflammation and lead to distant organ

injury [71,72].

Regulation of neutrophil life span,
apoptosis, and efferocytosis

Neutrophils are typically short-lived with a half-life in

the range of 1–8 h in the circulation [77,78]; however,

some reports estimated that their life span can extend

to 5.4 days [79], especially once activated. Blood neu-

trophils die via apoptosis [80]. At sites of inflamma-

tion, neutrophil life span is extended through delaying

intrinsic apoptosis by prosurvival cues from neutrophil

adhesion to ECs, inflammatory mediators, and
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microbial constituents [4,12]. Upon their release, gran-

ule proteins act in an autocrine/paracrine fashion to

modulate neutrophil function, life span, and mode of

cell death. Neutrophil subsets may undergo apoptosis,

NETosis [81], or necroptosis [82]. Cell death is an

important mechanism to remove neutrophils from

inflamed tissues for assuring the timely resolution of

inflammation. Pathways that lead to apoptosis have

been extensively studied, and the execution of this

intrinsic death program depends on activation of the

caspase cascade [83,84]. However, in mouse neu-

trophils, activation of caspase 3 may occur indepen-

dently of the canonical caspase 8 or caspase 9-

triggered pathway. Instead, proteinase 3 was detected

in the cytosol of aging neutrophils, where it cleaves

procaspase 3 at a site upstream of the canonical cas-

pase 9 cleavage site [85]. Consistently, pharmacological

inhibition or knockdown of proteinase 3 delays neu-

trophil death in vitro and in a murine model of peri-

tonitis [85].

MPO can regulate neutrophil function through its

nonenzymatic actions. MPO binds to Mac-1 on human

neutrophils [86]. Ligation of Mac-1 evokes release of

additional MPO and leads to upregulation of Mac-1

expression [86,87]. MPO also activates the MAPK/

ERK and PI3K/Akt pathways, resulting in the preser-

vation of the expression of the anti-apoptotic protein

Mcl-1, a key regulator of neutrophil life span [88], and

delay of intrinsic apoptosis [87]. Thus, activation of a

MPO-centered feed-forward loop would amplify neu-

trophil responses and perpetuate the inflammatory

response [87]. Consistently, genetic deletion of MPO in

mice attenuates local neutrophil accumulation and dis-

tant organ damage after renal ischemia–reperfusion
[89] and reduces Escherichia coli septicemia-induced

lung injury and mortality [90]. Administration of

exogenous MPO prolongs neutrophil-mediated acute

lung injury in mice [87]. Decomposition of MPO,

which consists of two identical protomers, into the

monomers results in a partial loss in prolonging neu-

trophil life span and inducing degranulation [91], sug-

gesting a mechanism that may control MPO-mediated

neutrophil activation. Such mechanism may be opera-

tional in vivo as suggested by the detection of mono-

meric MPO in the serum of patients with acute

inflammation [91]. However, the mechanism of MPO

decomposition remains to be investigated.

Proteinase 3 is constitutively expressed on the sur-

face of a subset of human neutrophils [92,93] and is

externalized through association with phospholipid

scramblase 1 in neutrophils undergoing apoptosis [94].

Membrane-bound proteinase 3 decreases macrophage

phagocytosis, indicating that proteinase 3 may

function as a ‘don’t eat me’ signal, thereby delaying

neutrophil clearance [94].

Prompt removal of apoptotic cells, including neu-

trophils by tissue-resident phagocytes (such as macro-

phages and dendritic cells), is central for returning to

homeostasis. The molecular mechanisms that underpin

the recognition and clearance of apoptotic cells are

increasingly better defined [95]. Recent data imply the

involvement of granule proteins in this process. During

the resolution of experimental peritonitis, macrophages

process and cleave lactoferrin initially released by neu-

trophils [96]. A 17 kDa lactoferrin fragment was found

to enhance efferocytosis of apoptotic neutrophils and

to stimulate secretion of the proresolution cytokine IL-

10 from macrophages, thereby facilitating the resolu-

tion of peritonitis in mice [96]. Apoptotic human cells

of diverse lineage can also secrete lactoferrin, which

selectively inhibits migration and activation of neu-

trophils but not mononuclear phagocytes [97], suggest-

ing a regulatory role for lactoferrin in dampening the

inflammatory response.

Neutrophil apoptosis and subsequent efferocytosis

are important mechanisms of removing neutrophils

from inflamed sites. Clinical studies documented

extended neutrophil life span through delayed apopto-

sis in a wide range of pathologies, including acute

coronary artery disease [98], severe asthma [99], acute

respiratory distress syndrome [100], and sepsis [101]

and its association with disease severity and poor

prognosis. Consistent with the clinical observations, in

experimental models, delaying neutrophil apoptosis,

for example with administration of exogenous MPO,

can adversely affect the outcome of the inflammatory

response [87,102].

Phagocytosis and phagocytosis-
induced cell death

Phagocytosis of opsonized bacteria or necrotic cells is

initiated by lateral clustering of Mac-1 (complement

receptor 3 or CR3) [51] and governed by a delicate

balance between Mac-1 and the complement C5a

receptor (C5aR or CD88) [103,104]. C5aR is highly

expressed in cells of myeloid origin [105]. Diminished

expression of Mac-1 [106] or pharmacological block-

ade or genetic deletion of C5aR leads to defective

phagocytosis and intracellular killing of bacteria by

both human and mouse neutrophils [104]. Neutrophil

serine proteases have been shown to proteolytically

reduce the expression of several molecules involved in

immunity, including CXCR1 (IL-8 receptor), CD16,

CR1, and C5aR. NE, proteinase 3, and cathepsin G

can also cleave C5aR [43,107], though their
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involvement appears to be context-dependent. For

example, C5a reduces C5aR expression through induc-

ing NE release [107], whereas TLR9 activation-induced

reduction of C5aR and defective phagocytosis are

mediated by the release of NE and proteinase 3 [43].

Bronchoalveolar lavage fluid from patients with cystic

fibrosis was found to contain NE and cathepsin G at

concentrations sufficient to cleave C5aR [107]. Typi-

cally, phagocytosis of opsonized bacteria accelerates

neutrophil apoptosis through ROS-dependent activa-

tion of caspase 8, which counters the survival signals

generated by ligation of Mac-1 [12,108,109]. Consis-

tently, activation of TLR9 with either bacterial or

mitochondrial DNA impaired bacterial phagocytosis

and delayed apoptosis in both human and mouse neu-

trophils, and prolonged E. coli-evoked lung injury in

mice [43].

Reduced C5aR expression is a common finding

ex vivo in neutrophils from patients with sepsis

[110,111] and in experimental models of sepsis

[112,113]. C5a-induced neutrophil serine protease-me-

diated cleavage of C5aR may explain why high levels

of activated C5a in the serum are associated with neu-

trophil unresponsiveness to C5a in sepsis [103]. TLR9-

evoked cleavage of C5aR may explain defects in neu-

trophil function to clear bacteria under pathological

conditions that are associated with release of bacterial

or mitochondrial DNA, as observed in sepsis [114],

acute respiratory distress syndrome [115], inflamma-

tion, and tissue injury [116,117].

Neutrophil extracellular trap
formation

Neutrophils target invading pathogens through several

processes, including phagocytosis, degranulation, and

formation of neutrophil extracellular traps (NETs)

[1,118]. NETs capture and kill an extensive range of

microbes [119], degrade cytokines and chemokines

[120], and immobilize activated platelets [121],

microparticles [122], and coagulation factors [123].

NETs are a meshwork of chromatin decorated with

granule proteins, including MPO, NE, azurocidin, pro-

teinase 3, and LL-37 (cathelicidin), and absorb pene-

trating 3 [124] and complement [125]. Recent reviews

detail NADPH oxidase 2-dependent and NADPH oxi-

dase 2-independent pathways leading to NET forma-

tion as well as differences in its composition [126–128].
Quantitative proteomics of NET proteins produced by

neutrophils from healthy subjects and patients with

rheumatoid arthritis or systemic lupus erythematosus

indicates that the nature of the stimulant rather than

neutrophil physiology may determine NET protein

profiles irrespective of the disease background [129].

Neutrophil extracellular traps may be formed by the

release of a DNA scaffold consisting of mitochondrial

DNA that binds granule proteins without affecting cell

viability [130]. This process depends on glycolytic ATP

production for cytoskeletal rearrangements that are

essential for releasing both mitochondrial DNA and

granule proteins. By contrast, the process commonly

designated as NETosis is a form of programmed

necrotic cell death, involving the release of nuclear

DNA [131]. This process involves ROS generation

through PKC-dependent activation of NADPH oxi-

dase, followed by MPO-dependent release and migra-

tion of elastase from azurophilic granules to the

nucleus [131], where it cleaves histones to elicit chro-

matin decondensation [132]. While the molecular

mechanisms eliciting the release of nuclear or mito-

chondrial DNA appear to differ [130], the pathological

relevance of these processes to innate immunity

remains to be investigated. Of note, phagocytosis of

bulky phosphatidylserine-exposing particles, such as

apoptotic bodies or platelets, renders neutrophils

unable to release NET [121,133]. Hence, impaired

phagocytosis by MPO, proteinase 3, or NE may repre-

sent another mechanism to govern NET formation.

Complexes of extracellular DNA and LL-37 can form

stable structures that protect NET against degradation

by bacterial nucleases and activate TLR9 in monocytes

and dendritic cells [134,135]. NETs can trigger throm-

bus formation, which prevents the dissemination of

microorganisms [123,136]. Neutrophil serine proteases

may function as a reciprocal link between coagulation

and innate immunity [123]. However, the role of serine

proteases may be context-dependent. For instance, NE

is not required to form NETs in a mouse model of deep

vein thrombosis [137]. NETs are eventually degraded by

DNase 1 released predominantly from dendritic cells

[138,139] or following engulfment by macrophages

through the cytosolic exonuclease TREX1 (DNase III)

[139,140]. LL-37 is required for the uptake of NET by

macrophages [139].

Neutrophil extracellular traps formation plays an

important role in host defense and limits the extent of

infected areas [136,141]. However, aberrant NET for-

mation is increasingly being recognized to participate

in a range of human pathologies, including atheroscle-

rosis, thrombosis [142], and sepsis-associated or

COVID-19-associated acute respiratory distress syn-

drome [143–145]. Excessive NET formation and/or

impaired NET degradation have also been implicated

as a trigger of autoimmune diseases [119].
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Autoimmunity

Many granule proteins (e.g., MPO, proteinase 3) are

recognized autoantigens in autoimmunity [119,146].

Since these molecules are externalized through NETo-

sis together with other well-known autoantigens, such

as double-stranded DNA and histones, aberrant NET

formation, or degradation has been implicated in the

initiation of systemic autoimmune responses in suscep-

tible individuals [119]. Some granule proteins are tar-

get antigens in antineutrophil cytoplasmic antibody

(ANCA)-associated vasculitides. MPO is the main tar-

get antigen in microscopic polyangiitis and Churg–
Strauss syndrome, whereas Wegener’s granulomatosis

is predominantly associated with ANCA directed

against proteinase 3 [147]. MPO might trigger autoim-

munity during uncontrolled inflammation [148],

though it is unclear whether this response would also

involve NET formation. The functions of proteinase 3

depend on its localization [92,93]. Membrane-bound

proteinase 3 likely contributes to neutrophil activation

in co-operation with its binding partners, CD16, Mac-

1, and CD177 [93,149], and inhibits macrophage

phagocytosis [94]. Proteinase 3 on apoptotic neu-

trophils instructs plasmocytoid dendritic cell-driven

generation of Th9/Th2 cells, disrupting immune silenc-

ing [150]. Antiproteinase 3 ANCA can be triggered by

cPR3(105-201), a complimentary protein translated

from proteinase 3 antisense DNA [151]. Neutrophils

from vasculitis patients exhibit an altered gene expres-

sion profile (e.g., re-expression of mRNA for several

azurophilic granule proteins), and newly synthesized

proteinase 3 partner proteins that are not expressed in

neutrophils from healthy subjects might associate with

proteinase 3 and function as autoantigens [93]. An

alternative possibility is that NET-associated pro-

teinase 3 or proteinase 3 released during cell death

other than apoptosis [152] could act as sources of

modified autoantigens.

The antimicrobial protein LL-37 (cathelicidin) was

identified as an autoantigen in psoriasis [153]. Recent

studies with the cathelicidin protein CRAMP (a trun-

cated form of the mouse homolog of human CAP18)

have linked this protein to atherosclerosis as a poten-

tial self-antigen in ApoE-deficient mice [154]. Immu-

nization with CRAMP resulted in differential

outcomes depending on the dose used; at a lower dose

reducing atherosclerosis, whereas at a higher dose

exacerbating the disease. While clinical studies indicate

an association between psoriasis and cardiovascular

disease, the pathological relevance of LL-37 to human

atherosclerosis remains to be investigated.

Regulation of cytokine/chemokine
activity

Human neutrophils produce cytokines belonging to dif-

ferent families, including pro- and anti-inflammatory

cytokines, chemokines, colony-stimulating factors (e.g.,

G-CSF), angiogenic, and fibrinogenic factors [4,155]. A

peculiar characteristic of neutrophils is their ability to

regulate cytokine activity extracellularly through the

release of serine proteases. Neutrophil serine proteases

can either negatively or positively modulate the activity

of cytokines/chemokines produced by neutrophils or

other cells. For example, elastase, cathepsin G, and pro-

teinase 3 bound to aggregated NETs degrade cytokines

and chemokines and protect from antiproteases, thereby

facilitating the resolution of inflammation [156]. These

serine proteases, either individually or collectively, can

inactivate mature IL-1b and IL-33, while they process

immature IL-1a, IL-33, and IL-36 to yield mature active

cytokines [157]. Other studies showed proteinase 3 to

cleave IL-32 synthesized by natural killer cells, T lym-

phocytes, and epithelial cells, yielding a more potent

form than the parent molecule to stimulate macrophage

differentiation [158]. Upregulation of cathepsin G

expression in neutrophils led to increased formation of

active IL-1b, which, in turn, promoted tumor progres-

sion in a murine model of lung cancer [159]. NET

released during inflammation can also awaken dormant

cancer cells. Thus, NET-bound elastase and MMP-9

were shown to sequentially cleave laminin, uncovering

an epitope that triggered the proliferation of dormant

tumor cells in a mouse model of lung injury [160]. These

findings suggest another intriguing link between chronic

inflammation and cancer.

Neutrophil granule proteins can also synergize with

chemokines. For example, MMP-9 (gelatinase B)

cleaves the chemoattractant cytokine CXCL8 (inter-

leukin-8) at the N terminus to yield a truncated form

that displays increased binding affinity to its cognate

receptor and more potent biological activities than the

parent chemokine [161,162]. The truncated CXCL8

enhances MMP-9 release and promotes neutrophil

chemotaxis, forming a feed-forward circuit to amplify

the inflammatory response [163]. Cathepsin G or

cathelicidin immobilized on the surface of ECs pro-

motes firm adhesion of rolling monocytes in the vascu-

lature [164,165] as reported in mouse models of

atherosclerosis [166]. Another granule protein a-de-
fensin (also known as HNP1) forms a heterodimer

with platelet-derived C-C motif ligand 5 (aka

RANTES) (CCL5), which enhances monocyte adher-

ence in the mouse microvasculature [167].
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Granule constituents and neutrophil
phenotypic heterogeneity

Consideration of neutrophil functional versatility and

novel paradigms in neutrophil biology (as discussed

above and reviewed in [4,11,12]) provide clues to char-

acterizing neutrophil phenotypic heterogeneity. Recent

reviews detailed distinct neutrophils subsets, character-

ized by expression of various surface markers, such as

NB1 (CD177), olfactomedin 4, IL-17+, CD63+, or vari-

able T-cell receptor-like immune receptors [11,12].

Neutrophil populations with different density proper-

ties have also been identified (reviewed in Ref.

[168,169]). The spectrum of neutrophil density may

partially link to their stage of maturation with high-

density and low-density populations representing

mature and immature neutrophils, respectively [169].

Low-density neutrophils (also known as granulocytic

myeloid-derived suppressor cells) consist of a heteroge-

neous population, which may either indicate in vivo

activation/degranulation of mature neutrophils or rep-

resent a distinct lineage of cells (i.e., immature neu-

trophils released from the bone marrow) [169].

Expression of certain granule markers on the surface

of neutrophils, such as CD63 (azurophilic granules),

CD66b (SG), or CD11b (GG granules), has been pro-

posed as indicators of cell activation [169]. Alterna-

tively, the activated phenotype might be acquired

within inflamed tissues, thus indicating neutrophils

that underwent reverse TEM [71,75]. Low-density neu-

trophils have been detected in pregnancy [170] and in

patients with sepsis [171], diabetes [172], cancer

[173,174], or autoimmune diseases [168]. Intriguingly,

some low-density neutrophil subsets share the ability

to suppress immune response, whereas systemic lupus

erythematosus-associated low-density neutrophils dis-

play pro-inflammatory properties and are highly sus-

ceptible to form NET [168]. The phenotypical and

functional divergence of low-density neutrophil subsets

requires further investigations.

Potential therapeutic modulation of
granule proteins

The role of neutrophils in the initiation and progres-

sion of pathological processes underlying tissue dam-

age makes these cells attractive therapeutic targets.

However, global reduction of neutrophil numbers or

functional responses limits the usefulness of these ther-

apies because of compromised host defense to bacterial

infections. Considering the importance of granule pro-

teins in mediating neutrophil responses, an attractive

alternative approach may be targeting the release of

these proteins and/or their actions without impairing

the ability of neutrophils to contain the microbial

invasion. Accumulating data indicate the feasibility of

this approach.

Inhibition of granule trafficking and
docking

Azurophilic granules contain the most toxic protein

cargo and their exocytosis is selectively regulated by

Rab27a through interaction with the effector Slp1/

JFC1 [18]. Structural modeling and high-throughput

screening analysis led to identifying small molecule

neutrophil-specific exocytosis inhibitors, termed Nexin-

hibs, which selectively interrupt the Rab27a-JFC1

interaction and release of the azurophilic granule cargo

without interfering with phagocytosis [57,175]. Nexin-

hib 20-treated mice were reported to exhibit decreases

in plasma levels of neutrophil granule proteins [176]

and reduced neutrophil accumulation in the kidney

and liver in a mouse model of LPS-induced systemic

inflammation [175], similar to the phenotype observed

in Rab27a-deficient mice [177]. Peptide aptamers

derived from SNARE domains that compete for bind-

ing between intact SNARE proteins have also been

developed [57]. SNARE mimicking peptides were fused

with the cell-penetrating peptide HIV TAT to facilitate

uptake by neutrophils [57]. Fusion proteins containing

the N-terminal SNAP-23 SNARE domain (TAT-

SNAP-23) efficiently inhibited formyl-Met-Leu-Phe-

stimulated degranulation of SG, GG granules, and SV,

but not azurophilic granule exocytosis, whereas fusion

proteins containing syntaxin 4 SNARE domain (TAT-

STX-4) inhibited degranulation of all four granule sub-

sets in vitro [57]. In preclinical models, TAT-SNAP-23

reduced neutrophil-mediated acute lung injury induced

by pulmonary immune complex deposition [178] or

sepsis [179]. Since SNARES expression is not restricted

to neutrophils, SNARE inhibitors lack selectivity for

neutrophils [57]. Further studies are needed to define

the cell types other than neutrophils affected by

SNARE inhibitors in vivo.

Modulation of NET formation or
degradation

Neutrophil extracellular traps formation may con-

tribute to the pathophysiology of many diseases; hence,

modulating this process opens potential avenues for

therapy. Preclinical studies showed that ROS scav-

engers, such as N-acetyl cysteine [180], and MPO inhibi-

tors [180,181] could reduce NET release both in vitro

and in vivo. Similar to MPO inhibitors, TLR4 [182] or
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peptidyl arginine deiminase (PAD) inhibitors [183–185]
reduced NET formation and tissue damage in murine

models of arthritis, atherosclerosis, and lupus. Studies

in PAD4-knockout mice [186,187], however, suggest

that bacterial infections may shift the balance of the

protective and deleterious effects of NETs in host

defense. Another potential approach is to facilitate the

degradation of already formed NETs with DNase 1 and

enhance their clearance. Indeed, treatment with exoge-

nous DNase 1 reduced tissue damage and mortality in

tumor-bearing mice [188], lupus-prone mice [189], acid

inspiration-induced lung injury [190], and transplanta-

tion-associated lung injury in mice [191]. Of note, the

synthetic DNase 1 analog dornase-a is currently being

tested in a phase III clinical trial in patients with severe

trauma-associated respiratory failure [192].

Blocking the actions of granule
proteins

Disrupting granule protein-mediated crosstalk and sig-

naling circuits is another promising therapeutic ave-

nue. Of particular interest is the members of the

superfamily of specialized pro-resolving lipid mediators

(SPMs), including lipoxins, resolvins, protectins, and

maresins [193–195]. SPMs are formed within the

inflammatory environment during the resolution phase

of acute inflammation [193,195] and resolution of clots

in venous thrombosis [196]. SPMs are typically gener-

ated from arachidonic acid and polyunsaturated fatty

acids by transcellular biosynthesis in inflammatory

exudates and by neutrophils and macrophages [195].

Aspirin and statins trigger the biosynthesis of R-epi-

meric forms of SPMs [193,197]. In addition to tran-

scellular mechanisms, macrophages can also produce

various SPMs when interacting with apoptotic neu-

trophils [198], pro-resolving microparticles [199], or

high-density lipoprotein [200]. While each mediator

carries defining biological functions with specific recep-

tors and cell and organ-specific properties, their pri-

mary cellular targets are myeloid cells [201]. This

intricate signaling network is mapped onto the search-

able Atlas of Inflammation Resolution [202]. SPMs

attenuate neutrophil accumulation in inflamed tissues

partly by preventing upregulation of Mac-1 [193–
195,202]. Resolvin D1 may limit neutrophil trafficking

into tissues through countering the exocytosis of SV

[203]. Aspirin triggered 15-epi-lipoxin A4, acting

through the lipoxin A4/formyl peptide receptor 2, dis-

rupts the MPO-based self-amplifying loop by attenuat-

ing MPO-induced Mac-1 upregulation and

degranulation and redirects neutrophil to apoptosis

[204]. 15-epi-lipoxin A4 and 17-epi-resolvin D1 counter

TLR9 activation-triggered release of NE and pro-

teinase 3 and restore the balance between Mac-1 and

C5aR expression to enhance phagocytosis of bacteria

and phagocytosis-induced apoptosis in human neu-

trophils [43]. The therapeutic potential of these lipids

is illustrated by the observations that treatment with

these lipids limits neutrophil accumulation, accelerates

bacterial clearance, and enhances neutrophil apoptosis

and efferocytosis, resulting in accelerated resolution of

inflammation in mouse models of MPO [204] or

E. coli-induced acute lung injury [43]. Select SPMs,

such as resolvin D4, limit NETosis in the formation of

clots in murine models of deep vein thrombosis [196].

Other SPMs, such as resolvin E1, which signals

through the LTB4 receptor BLT1 [205], and resolvin

D5, which acts through GPR32 [206], facilitate phago-

cytosis of bacteria by na€ıve neutrophils via distinct

receptors and molecular mechanisms. Whether these

SPMs could also modulate the actions of granule pro-

teins remain to be investigated.

Due to the ability of NE to degrade extracellular

matrix proteins, a critical event in the development of

chronic inflammatory diseases, such as pulmonary

emphysema, adult respiratory distress syndrome, cystic

fibrosis, chronic obstructive pulmonary disease, and

rheumatoid arthritis [57,207], extensive research efforts

have been directed to develop inhibitors. Recombinant

endogenous elastase inhibitors, including recombinant

a1-proteinase inhibitor and secretory leukocyte inhibi-

tor, became available [208], and some (e.g., sivelestat)

were evaluated in clinical trials [209]. However, the

toxicity and off-target effects of synthetic inhibitors

considerably limit their clinical use. Several natural

compounds (for example, flavonoids, tannins, and cin-

namic acid derivatives) were found to exert direct inhi-

bitory activity on NE in vitro [210], though little

information is available on their in vivo actions. Of

note, by degrading various pro-inflammatory cytoki-

nes, including IL-1, TNF, and IL-6 [211] and mediat-

ing neutrophil reverse TEM [72], NE may play a role

in dampening the inflammatory reactions. In addition

to NE, preclinical data imply a role for proteinase 3 in

the development of chronic obstructive pulmonary dis-

ease [212] and possibly other chronic diseases charac-

terized by tissue destruction. However, validating

proteinase 3 as a relevant therapeutic target in patients

requires additional investigation and development of

selective inhibitors.

Concluding remarks

Proteins expressed and stored in neutrophils during

granulopoiesis represent a readily mobilizable pool of
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molecules that mediate neutrophil effector functions.

In addition to microbicidal and tissue-damaging

actions, neutrophil granule proteins are increasingly

being recognized as mediators of neutrophil orchestra-

tion of innate and adaptive immunity.

Consideration of novel paradigms in functions of

granule proteins provides a different vantage point of

the neutrophils’ roles in host defense, causing local tis-

sue damage and systemic complications, in particular

under chronic inflammatory conditions. However,

whether neutrophil subsets (identified by phenotypic

markers) exhibit differences in granule protein content

and secretion remains to be defined. A better under-

standing of the roles of neutrophil granule proteins is

essential to further the development of neutrophil

granule-specific therapies. Results from preclinical

models indicate that this can be accomplished by selec-

tive targeting of granule exocytosis or interference with

signaling from granule constituents released to the

extracellular environment with small molecule inhibi-

tors, recombinant protein inhibitors, and SPMs, such

as lipoxins and resolvins, which can dampen neu-

trophil-mediated inflammation without interfering with

antimicrobial defense. Clinical trials with synthetic NE

inhibitors yielded disappointing results due to toxicity.

While large-scale clinical trials with selective inhibitors

of other granule proteins seem distant, results from an

ongoing trial targeting granule protein functions (i.e.,

promoting degradation of NETs) hold promise as a

disease-modifying intervention. Further studies are

needed to investigate whether therapeutic interventions

aimed to counter the actions of individual granule pro-

teins could limit the deleterious actions of neutrophils

in inflamed tissues, perhaps in a partial tissue-specific

manner, and whether this will facilitate the resolution

of inflammation underlying many chronic diseases.
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