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The data is obtained from exploring the modulatory activities of
bioflavonoids on P-glycoprotein function by ligand-based approa-
ches. Multivariate Linear-QSAR models for predicting the induced/
inhibitory activities of the flavonoids were created. Molecular
descriptors were initially used as independent variables and a
dependent variable was expressed as pFAR. The variables were
then used in MLR analysis by stepwise regression calculation to
build the linear QSAR data. The entire dataset consisted of 23
bioflavonoids was used as a training set. Regarding the obtained
MLR QSAR model, R of 0.963, R2¼0.927, R2

adj ¼ 0:900, SEE¼0.197,
F¼33.849 and q2¼0.927 were achieved. The true predictabilities
of QSAR model were justified by evaluation with the external
dataset (Table 4). The pFARs of representative flavonoids were
predicted by MLR QSAR modelling. The data showed that internal
and external validations may generate the same conclusion.
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Specifications Table
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ubject area
 Computational Chemistry

ore specific sub-
ject area
Quantitative Structure-Activity Relationship (QSAR) modelling
ype of data
 Equation, tables, graphs

ow data was
acquired
In silico analysis and statistical modelling
ata format
 Analysed

xperimental
factors
Multivariate Linear-QSAR models for predicting the induced/inhibitory activities
of the flavonoids were created. Molecular descriptors were initially used as
independent variables and a dependent variable was expressed as pFAR; � log
(fluorescence activity ratio).
xperimental
features
The molecular descriptors and pFAR values were used in multiple linear
regression (MLR) analysis by stepwise regression calculation to generate the
model. The entire dataset consisted of 23 bioflavonoids was used as a training
set.
ata source
location
Laboratory for Molecular Design and Simulation (LMDS), Department of Phar-
maceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai,
Thailand
ata accessibility
 The data is with this article.
D

Value of the data

� P-gp is an important clinically mediated target of herbal compounds including flavonoids in herb-
drug interactions that physicians must be aware for a safe prescription.

� 3D-QSAR modelling data was constructed for predicting P-gp inhibitory activity as pFAR values of
flavonoids that may allow a primary screening for healthcare providers and benefit for patients
who take more than one medication.

� The model could be utilised to screen the potential herb-drug interaction risks of flavonoids and be
an alternative strategy to scrutinise flavonoids which are used to recover the pharmacological
outcomes of anticancers agents which are P-gp's substrates.
1. Data

The data shown here regarding a QSAR equation construction that is used to predict the induction/
inhibition of P-glycoprotein modulators.
2. Experimental design, materials and methods

2.1. Dataset for analysis

The 23 flavonoids and their induced/inhibitory activities were obtained from two publications
[1,2]. The bioassay (fluorescence activity ratio; FAR at 40 mg/ml which represents P-gp induction or
inhibition) values of the 23 flavonoids cover the range from 0.5 to 46.4. From the preliminary
investigation using bioassay (FAR) as a dependent variable, the obtained correlation was low and
increased higher in models with excessive descriptors. The FAR values were transformed becoming
the corresponding pFAR (� log FAR) values, which is in the range of �1.67 to 0.3. The use of pFAR is to
represent a negative value (�) as a P-gp inhibitory activity and a positive value (þ) as a P-gp induced
activity. Flavonoids with FAR values 41 but o10 (pFARo0 but 4�1) were regarded to be active



P. Wongrattanakamon et al. / Data in Brief 9 (2016) 35–42 37
inhibitors (weak inhibitors) of P-gp and flavonoids with FAR values 410 (pFARo�1) were con-
sidered as potent (or strong) inhibitors [3]. A list of the flavonoid molecular structures are illustrated
in Table 1 and further details on their corresponding experimental FAR and pFAR values [1,2] are
Table 1
Molecular structures of bioflavonoids with FAR values (in the parenthesis) of the training set. 1–21 are from Gyémant et al.
[1], and 22–23 are from Martins et al. [2].
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illustrated in Supplementary material.

2.2. Building of molecular structures

The all the two-dimensional (2D) structures of flavonoids were sketched using the ChemBioDraw
Ultra. And then, the 2D structures were transformed into three-dimensional (3D) structures by using
the ChemBio3D Ultra. Every hydrogen atom is regarded during the computing process for each
molecule. Energy minimisation and optimisation of molecular 3D structure were also carried out
utilising the ChemBio3D Ultra by MM2 forcefield.

2.3. Generation of numerical descriptors for the training set

The ADRIANA.Code programme (Version 2.0) was employed to compute physicochemical para-
meters of the molecular structures of flavonoids. This programme consists of unique combining
procedures for computing molecular structure descriptors on a physicochemical basis and absolute
geometric. A total of 1252 descriptors were computed utilising this programme including 8 global
molecular descriptors, 88 two-dimensional autocorrelation descriptors, 96 three-dimensional auto-
correlation descriptors, 1024 3D property-weighted radial distribution functions (RDF) descriptors
and 36 autocorrelation of surface properties descriptors (see Table S2 [4] in Supplementary material).
All calculated descriptors were standardised into the z-scores and then were selected as independent
parameters using for pFAR prediction. Stepwise multiple linear regression method was applied to
create prediction model and carried out using SPSS Statistics 17.0.

Based on the flavonoid compounds in dataset, all of these 23 compounds were used as the training
set and their molecular descriptors [as standardised values (z-scores)] for the QSAR model con-
struction were selected. Following the analysis method from the research of Yan et al. [5], Pearson's
correlation coefficient (r) analysis merged with stepwise variant selecting manner was utilised to
choose the best descriptor group for modelling. Regarding this task, molecular descriptors whose the
calculated Pearson's correlation coefficient with the P-gp modulatory function was less than 0.1 (r
o0.1) were not utilised.

After that by considering the pairwise correlation coefficients, if the pairwise correlation coeffi-
cient among any two descriptors was higher than 0.85, the descriptor, that had the lower correlation
to the P-gp modulatory activity of a compound, one of them was eliminated. The kept descriptors
were opted utilising stepwise multiple linear regression (MLR) variant selecting manner [5]. First
step, every descriptor chosen with correlation analysis were ranked in a descending sequence in
accordance with their correlation coefficient with activity. Second step, the descriptor which had the
highest correlation coefficient with activity was utilised to create an ordinary linear regression model
as an initial equation. Third step, other descriptors were subsequently admixed to the initial equation
one by one. Subsequent admixing a new descriptor to the initial equation, a new equation was gained,
and it was appraised with a significance test. If a significant accretion was accomplished, the admixed
descriptor was kept, and if a significant accretion was not noticed, the admixed descriptor was
eliminated. The procedure was reiterated till no descriptor could be admixed or eliminated [6].

2.4. Model validation

Many models were generated, but the best model satisfied all of the following parameters:

– The number of compounds should be 3–6 times the number of molecular descriptors used in the
proposed model [7].

– R2, square of regression (40.7) [8].
– q2, cross-validated r2 (40.5) [8].
– SEE, standard error of estimate (smaller is better) [8].
– F-test, F-test for statistical significance of the model (higher is better, for the same set of descriptors

and chemicals) [8].
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To test the predictive and steadiness potentiality of the created QSAR model, the model was
validated utilising internal validation. The leave-one-out (LOO, q2) manner was utilised to validate the
model generated by MLR QSAR. Regarding the calculation of q2, each compound in the training
dataset was consecutive moved away, the equation was refit utilising same descriptors, and the
pharmacological activity of the disposed compound was predicted utilising the refit equation. The q2

was calculated utilising equation;

q2 ¼ 1�
X

ŷi�yi
� �2

=
X

yi�ymean

� �2h i

that yi and ŷi are the actual and predicted activities of the ith compound in the training dataset,
successively, and ymean is the average (P-gp modulatory) activity of all compounds in the training
dataset [9].

2.5. QSAR analysis

The 2 steps for selection of appropriate descriptors to generate a MLR model, first, 376 descriptors
that were not significantly correlated with the P-gp modulatory activity (ro0.1) were not utilised.
Second, the remaining 876 descriptors were determined the pairwise correlation coefficient and then
570 descriptors were disposed. The remaining 306 descriptors were opted utilising stepwise linear
regression variable selection manner. A stepwise multiple linear regression analysis was operated
utilising the remaining descriptors after selection like inputting variables. The 23 flavonoids in the
training dataset were utilised to create a statistical model equation between the P-gp modulatory
(pFAR) values and physicochemical descriptors. In accordance with the criteria, six physicochemical
descriptors were involved in equation, which include RDF_PiChg_86, RDF_SigChg_76, 3DACorr_-
TotChg_9, RDF_LpEN_54, 3DACorr_PiChg_9, and RDF_SigChg_57. The intercorrelations between the
six descriptors are shown in Table 2. The pFAR was represented by the ensuing equation:

pFAR¼
X

CiDið ÞþDc

In the QSAR model, Dc is a constant, Di is a molecular descriptor and C is its corresponding
regression coefficient in multiple linear regression equations. The corresponding regression coeffi-
cients are illustrated in the following model.

The selected model, pFAR¼�0.613(RDF_PiChg_86)þ0.461(RDF_SigChg_76)�0.283(3DACorr
_TotChg_9)þ0.207(RDF_LpEN_54)�0.284(3DACorr_PiChg_9)�0.197(RDF_SigChg_57)�0.416, was
found to have values in the required range and the regression parameters and quality correlation of
Table 2
Correlation matrix indicating intercorrelation among descriptors used in MLR QSAR model.

pFAR RDF_Pi
Chg_86

RDF_SigChg_76 3DACorr_TotChg_9 RDF_LpEN
_54

3DACorr_PiChg_9 RDF_SigChg_57

RDF_Pi Chg_86 1
RDF_SigChg_76 0.288 1
3DACorr_TotChg_9 0.572 0.377 1
RDF_Lp EN_54 0.529 �0.035 0.448 1
3DACorr_PiChg_9 �0.745 �0.315 �0.299 �0.290 1
RDF_SigChg_57 0.444 0.629 0.287 �0.033 �0.477 1

RDF_PiChg_86 is the radial distribution functions weighted by π charges, where r is in the range of 8.5–8.6 Å.
RDF_SigChg_76 is the radial distribution functions weighted by σ atom charges, where r is in the range of 7.5–7.6 Å.
3DACorr_TotChg_9 is the 3D autocorrelation weighted by total atom charges (sum of σ, π charges), where d is in the range of
9–10 Å.
RDF_LpEN_54 is the radial distribution functions weighted by lone pair electronegativities, where r is in the range of 5.3–5.4 Å.
3DACorr_PiChg_9 is the 3D autocorrelation weighted by π atom charges, where d is in the range of 9–10 Å.
RDF_SigChg_57 is the radial distribution function weighted by σ charge, where r is in the range of 5.6–5.7 Å.
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the significant regression equation are N¼23, R¼0.963, R2¼0.927, R2
adj ¼ 0:900, SEE¼0.197, F¼33.849,

po0.001 and internal validation (LOO method) q2¼0.927 (N is the number of compound in the
training dataset, R is the correlation coefficient, R2 is the coefficient of determination, R2

adj is the
adjusted coefficient of determination, SEE is the standard error of estimate, F is the Fisher test and q2

is the cross-validated r2).
In addition, the prediction data of pFAR are listed in Table 3 and the plot of observed (experi-

mental) versus calculated (predicted) pFAR values is shown in Fig. 1.
Table 3
The observed and calculated pFAR values using the developed QSAR equation with associated residuals.

Compound no. Observed pFAR Predicted pFAR Residual

1 �1.26 �1.20 �0.06
2 �1.67 �1.54 �0.13
3 �0.49 �0.63 0.14
4 �0.48 �0.34 �0.13
5 �0.45 �0.52 0.07
6 �1.46 �1.39 �0.07
7 �0.46 �0.47 0.01
8 �0.45 �0.42 �0.03
9 �0.36 �0.16 �0.20
10 �1.16 �1.38 0.22
11 �0.18 �0.27 0.09
12 �0.69 �0.60 �0.09
13 0.22 0.12 0.10
14 0.15 0.03 0.12
15 0.15 �0.09 0.25
16 0.10 0.32 �0.22
17 0.30 0.21 0.10
18 0.22 0.25 �0.03
19 0.10 0.30 �0.20
20 �0.38 �0.34 �0.04
21 �1.56 �1.34 �0.22
22 0.01 �0.44 0.45
23 0.24 0.36 �0.13

Fig. 1. A plot of observed (experimental) versus calculated (predicted) pFAR values of the training set.



Table 4
Comparison between the calculated P-gp modulatory activity values (pFAR) and observed values of 11 flavonoids which
exhibited a significant experimental P-gp inhibitory activity expressed by Inhibitory efficiency.

Compound Inhibitory efficiency
(observed activity)a

Classification (by
observed activity)

Calculated pFAR
(Predicted activity)

Classification (by
predicted activity)

Naringenin 56.93 Active inhibitor �0.39 Active inhibitorb

Quercetin 72.73 Active inhibitor �0.04 Active inhibitorb

Morin 56.63 Active inhibitor �0.07 Active inhibitorc

Silymarin 60 Active inhibitor 0.42 Inducerc

Epigallocatechin
gallate (EGCG)

168.18 Strong inhibitor �1.03 Strong inhibitord

Epicatechin gallate
(ECG)

95.45 Active inhibitor �0.61 Active inhibitord

Biochenin A 198.04 Strong inhibitor �1.30 Strong inhibitorb

Hesperidin 164.41 Strong inhibitor �1.32 Strong inhibitore

Demethylnobiletin 87.43 Active inhibitor �1.13 Strong inhibitore

5HHMF 65.47 Active inhibitor 0.44 Inducere

Nobiletin 45.71 Active inhibitor 1.58 Inducere

Positive control
(verapamil)

100 Strong inhibitor – –

a Inhibitory efficiency calculated as percentage compared to a positive control; verapamil.
b From Chung et al. [10].
c From Zhang and Morris [12].
d From Kitagawa et al. [11].
e From El-Readi et al. [13].
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2.6. P-gp modulation prediction using the external test set of flavonoids for validation of the QSAR model

In order to evaluate the potential health risks related with herb-drug and/or food-drug interac-
tions of some other flavonoids, the P-gp inhibitory activities of flavonoids in a dataset containing all
11 compounds (Table 4) was collected from recent the literatures [10–13] which were not included in
the training set and estimated using the developed QSAR model. The dataset were utilised like an
external test set, which comprises all 11 active (weak) and strong inhibitors of P-gp. The values that
stand for P-gp inhibitory activity of bioflavonoids from 4 literatures were converted into Inhibitory
efficiency [calculated as percentage compared to a positive control (verapamil)]. The all the two-
dimensional (2D) structures of 11 flavonoids were sketched using the ChemBioDraw Ultra. And then,
the 2D structures were transformed into three-dimensional (3D) structures by using the ChemBio3D
Ultra. All hydrogen atoms of each molecule are regarded during the computational process. Energy
minimisation and optimisation of molecular 3D structure were also carried out utilising the Chem-
Bio3D Ultra by MM2 forcefield. The ADRIANA.Code programme (Ver. 2.0) was applied to calculate
physicochemical parameters of the 11 flavonoid molecules in the external test set.

All calculated descriptors were standardised into the z-scores and P-gp modulatory activity as
pFAR values of each flavonoid were estimated using the MLR QSAR model.

The model with 6 selected molecular descriptors, which provided a good prediction operation on
the external test set (Table 4), possessed high prediction accuracy that can predict the P-gp mod-
ulatory activity of 7 (from all 11) flavonoid compounds correctly including naringenin, quercetin,
morin, EGCG, ECG, biochenin A and hesperidin. It could be seen that the most of the predicted fla-
vonoid compounds showed the range of low to high predicted P-gp inhibitory activities.
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