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Abstract

Agonists of mouse STING (TMEM173) shrink and even cure solid tumor by activating innate 

immunity; human STING agonists are needed to test this therapeutic hypothesis in man. The 

endogenous STING agonist is 2′3′-cGAMP, a 2nd messenger that signals the presence of cytosolic 

dsDNA. We report activity-guided partial purification and identification of ENPP1 as the 

dominant 2′3′-cGAMP hydrolyzing activity in cultured cells. The hydrolysis activity of ENPP1 

was confirmed using recombinant protein and was depleted in tissue extracts and plasma from 

Enpp1-/- mice. We synthesized a hydrolysis-resistant bis-phosphothioate analog of 2′3′-cGAMP 

(2′3′-cGsAsMP) with similar affinity for human STING in vitro and 10 times more potent at 

inducing IFN-β secretion from human THP1 monocytes. Studies in mouse Enpp1-/- lung 

fibroblasts indicate that resistance to hydrolysis contributes significantly to its higher potency. 

2′3′-cGsAsMP is therefore improved over natural 2′3′-cGAMP as a model agonist, and has 

potential as a vaccine adjuvant and cancer therapeutic.

Introduction

Activation of innate immune signaling is a proven therapeutic strategy in vaccination1,2, 

viral infection3, and cancer (e.g. BCG for bladder cancer and imiquimod for skin cancer). 

Vaccine adjuvants and immune-activating anti-cancer agents have traditionally depended on 

relatively broad or non-specific stimuli, such as attenuated or killed bacteria or alum 

crystals. An improved understanding of innate immune signaling should make it possible to 

design more precise immunostimulants for treating or preventing specific diseases. The 

discovery of the STING pathway, a central pathway in anti-viral innate immunity4,5, and the 
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second messenger cyclic dinucleotides (CDNs) that activate it6 opened up several new 

possibilities in this area. STING agonists would be candidates for clinical testing as 

adjuvants, and as stimulants for anti-cancer immune activity. We and others recently found 

that DMXAA, which dramatically shrinks cancer in mouse model systems by activating the 

innate immune response, is a STING agonist that activates mouse STING (mSTING) but not 

human STING (hSTING)7-9. To test the therapeutic hypothesis that STING agonists will be 

effective for cancer treatment and/or as vaccine adjuvants we need human-active molecules. 

The most potent natural STING agonist in humans is 2′3′-cGAMP (2). We set out to identify 

a stable agonist for hSTING. To do this, we first investigated the major degradation 

mechanism of 2′3′-cGAMP and then constructed 2′3′-cGAMP analogs that are resistant to 

its activity.

STING is an ER transmembrane protein. The cytoplasmic domain of STING forms dimers 

and CDNs bind at the dimer interface10. Upon ligand binding, the cytoplasmic tail of STING 

serves as an adapter for TBK-1 (a kinase) and IRF-3 (a transcription factor), resulting in 

their phosphorylation11. Phosphorylated IRF-3 translocates into the nucleus to induce a 

panel of host response genes including interferon α/β. In bacterial infection, STING is 

activated by conserved bacterial second-messengers, cyclic dinucleotides linked through two 

3′-5′ phosphodiester linkages (3′3′-CDNs), which can contain two guanosines, two 

adenosines, or one of each12. A second, more powerful activation signal results from the 

presence of viral or self dsDNA in the cytoplasm, leading to the synthesis of 2′3′-cGAMP, 

which is a heterodimer linked by one standard 3′-5′ phosphodiester, and one rare 2′-5′ 

phosphodiester13-15. The affinity of 2′3′-cGAMP for hSTING is very high, with a 

dissociation constant of 4.59 nM compared to >1 μM for bacterial 3′3′-CDNs.

CDNs do not resemble typical small molecule drug candidates. Their molecular weight is 

∼700; they have two negative charges; and they are built from potentially labile 

phosphodiester linkages. Nevertheless, they are able to activate the STING pathway, 

presumably after entering the cell by unknown mechanisms9. Moreover, 2′3′-cGAMP has 

shown potential as an immune adjuvant in mouse studies16. These observations and its high 

affinity to hSTING suggest that molecules directly based on 2′3′-cGAMP have therapeutic 

potential. However, important questions remain, including the hydrolytic stability of CDN 

derivatives in the circulation and tissues.

Other 2nd messengers containing phosphodiester linkages are rapidly hydrolyzed by specific 

enzymes, and in some cases the hydrolytic enzymes are important drug targets. For example, 

cAMP and cGMP are degraded by 11 classes of PDEs, and PDE5 is the target of 

Viagra17,18. Intracellular cAMP and cGMP are also exported from the cell by ATPase 

pumps: ABCC4 (MRP4)19, ABCC5 (MRP5)20, and ABCC11 (MRP8)21 have all been 

implicated in cyclic nucleotide export. No degradation or export pathways for 2′3′-cGAMP 

are known. Here, we describe the identification of ecto-nucleotide pyrophosphatase/

phosphodiesterase (ENPP1) as the dominant 2′3′-cGAMP hydrolase in cells, tissue extracts, 

and in blood. We also report hydrolysis resistant CDN analogs that retain strong hSTING 

agonist activity.
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Results

PDE12 does not hydrolyze 2′3′-cGAMP

We enzymatically synthesized 2′3′-cGAMP from GTP and ATP using a mouse cGAS 

construct22,23 and 3′3′-cGAMP (1) using DncV from V. cholerae12. 32P versions were 

synthesized by including trace [α-32P] ATP. Synthesis and hydrolysis of radio-labeled 

CDNs were assayed using a simple thin-layer chromatography (TLC) assay (Fig. 1a). The 

TLC assay separates small molecules by their polarity with less polar compounds migrating 

higher on the plate. We chose a solvent condition, which moves CDN sup while leaving 

ATP/GTP and the final hydrolysis product, inorganic phosphate, at the baseline. Using this 

assay, we first searched for hydrolase activities in cell lines. We used mouse L929 cells and 

human THP-1 cells, both of which are model cell lines for the STING pathway and are 

capable of synthesizing 2′3′-cGAMP in response to dsDNA23. By fractioning cells by 

differential centrifugation, we discovered that the cytosol from these cells contained 

negligible activity. Detergent (NP-40) extracts of the cells had much higher activity, 

suggesting that the activity is located in an organelle or on the plasma membrane 

(Supplementary Results, Supplementary Fig. 1a). We invested considerable effort 

investigating buffer conditions, and found that Ca2+ was required for hydrolase activity, and 

both EDTA and EGTA abolished activity (Supplementary Fig. 1b). Resting cytosolic Ca2+ 

level is in the nano-molar range and can only go up to micromolar range transiently, so this 

observation again suggested that the activity is unlikely to reside in the cytosol. 2′3′-cGAMP 

was degraded much faster than 3′3′-cGAMP, suggesting that the predominant, Ca2+-

requiring hydrolase may prefer the 2′-5′ phosphodiester bond (Fig. 1a).

Although there are 11 classes of phosphodiesterases (PDE1-PDE11) that degrade the 3′-5′ 

phosphodiester bond in cAMP and cGMP, these PDEs are not thought to degrade 2′-5′ 

phosphodiesters. Only PDE12 is known to hydrolyze a 2′-5′ phosphodiester bond24. In 

addition, PDE12 resides in the matrix of mitochondria, consistent with the organelle/

membrane-bound hydrolase activity we observed25. We therefore tested the hypothesis that 

PDE12 might account for the hydrolase activity in detergent extracts of MDA-MB231 cells, 

a metastatic breast cancer cell line that expresses high levels of PDE12. We performed 

differential centrifugation on MDA-MB231 cells and again observed no activity in the 

cytosol, but in the 7000 G pellet, indicative of heavy membranes or heavy organelles (Fig. 

1b). We dissolved the pellet in NP-40 and performed column fractionation. The activity of 

the fractions indicates that there is one dominant hydrolase (Supplementary Fig. 2 upper 

panel). To test whether this activity is due to PDE12, we blotted these fractions using a 

PDE12 antibody (Supplementary Fig. 2 lower panel). Unambiguously, active fractions and 

fractions containing PDE12 do not overlap, suggesting that PDE12 does not account for the 

major hydrolase activity. We further confirmed this conclusion by knocking down PDE12 in 

these cells. All four siRNA sequences effectively knocked down PDE12 on the protein level, 

but had no effect on the hydrolase activity in the cell lysate (Fig. 1c). Using purified PDE12 

protein, we showed that it does not have activity towards 2′3′-cGAMP at concentrations 

much higher than its physiologically concentration (Fig. 1d). Together, our results 

demonstrated that even though the hydrolase activity localizes in heavy membranes or 

organelles, it is not from PDE12.
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ENPP1 is the dominant 2′3′-cGAMP hydrolase

We next sought a bulk tissue source to purify and identify the hydrolase. Liver is a classic 

source for organelle and enzyme purification. We detected high activity in mouse livers, 

again was in the 7000 G pellet (Supplementary Fig. 3a). Because a calf liver provides more 

starting material, we performed differential centrifugation followed by detergent 

solubilization, anion exchange fractionation, and size exclusion fractionation on calf liver 

extract (Supplementary Fig. 3b-h). Fraction 26 from the last purification step has low protein 

concentration undetectable by SDS-PAGE gel, but high hydrolytic activity. Mass 

spectrometry analysis of this fraction revealed 377 proteins and a top ranking protein 

annotated as ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP1) appeared to be 

the most plausible candidate (Supplementary Dataset)26,27. ENPP1 is a plasma membrane 

and ER lumen protein28, which agrees with our cell fractionation results. In addition, the 

structure of ENPP1 revealed that it has a Ca2+ binding domain and chelates two Zn2+ ions in 

the catalytic site29. Consistent with the ion dependency of ENPP1, addition of Ca2+and Zn2+ 

both boosted the hydrolase activity in the active fractions (Fig. 2a and Supplementary Fig. 

4a). Moreover, we found the optimal pH for the liver hydrolase activity to be 9.0, which 

agrees with that of ENPP1 (Fig. 2b and Supplementary Fig. 4b). We noticed that 2′3′-

cGAMP migrates differently at pH 6.5 and 7.0 compared to other pH conditions. This is due 

to changed polarity of 2′3′-cGAMP at these conditions rather than its hydrolysis state 

because the same shift can be observed without lysate (Supplementary Fig. 5a). 

Nevertheless, 2′3′-cGAMP and the hydrolysis product at the baseline are well separated in 

all conditions. Finally, recombinant ENPP1 at nano-molar concentrations efficiently 

degraded 2′3′-cGAMP (Fig. 2c). The degradation product co-migrates with AMP on TLC. 

Addition of alkaline phosphatase converted the product to inorganic phosphate, showing that 

no phosphodiester bonds remained after ENPP1 action (Fig. 2d). Together, our results 

suggest that ENPP1 accounts for the observed hydrolase activity.

ENPP1 has high 2′-3′ cGAMP hydrolase activity

The best-characterized substrate of ENPP1 is ATP, which is hydrolyzed to AMP and PPi29. 

We compared the activity of ENPP1 towards 2′3′-cGAMP and ATP. Kinetic analysis 

showed that ENPP1 efficiently hydrolyzes both ATP (Kcat= 12 s-1, Km= 20 μM) and 2′3′-

cGAMP (Kcat= 4 s-1, Km= 15 μM) (Fig. 2e). Thus it is almost as active on 2′3′-cGAMP as 

on its known substrate ATP.

ENPP1 is necessary for 2′3′-cGAMP hydrolysis

To test whether ENPP1 accounts for the dominant hydrolase activity in cells, we performed 

knockdown experiments in MDA-MB231 cells. siRNA oligos 7-9 against ENPP1 efficiently 

knocked down ENPP1 protein level and also significantly reduced the hydrolase activity in 

the whole cell lysate. Oligo 6 and control siRNA against PDE12 did not affect ENPP1 

protein level and also did not change the hydrolase activity. These results indicate that the 

dominant 2′3′-cGAMP hydrolase in this cell line is ENPP1 (Fig. 3a).

ENPP1 is an ecto-enzyme that can be shed/secreted into the serum30. Indeed, we detected 

high hydrolase activity in fetal bovine serum and human serum (Supplementary Fig. 6). Like 

the hydrolase activity in MDA-MB231 cells and in calf liver fractions, bovine and human 
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serum hydrolase activity was also pH dependent, with peak activity at pH ∼9.0, agreeing 

with the profile of ENPP1. To test whether ENPP1 accounts for most of the serum hydrolase 

activity, we tested plasma from Enpp1-/- mice. While plasma from their wild-type littermates 

exhibited hydrolase activity, plasma from Enpp1-/- mice did not (Fig. 3b). Therefore, ENPP1 

is the dominant hydrolase for 2′3′-cGAMP in mouse plasma. Given the pH profile and 

similar activity, we suspect the same is true in human serum.

We next tested whether ENPP1 is the dominant 2′3′-cGAMP hydrolase in the liver and 

spleen. We chose to study the liver because it is the major site for drug metabolism and the 

spleen because of its important role in the immune system. We compared the hydrolase 

activity of livers and spleens from Enpp1-/- mice and their wild type littermates. Since we 

could have missed other hydrolases during our purification by using conditions not 

optimized for them, we surveyed a wide range of pH values and divalent ion concentrations. 

The migration profile of pure 2′3′-cGAMP at different pH conditions was generated to serve 

as the starting point (Supplementary Fig. 5b). At a point when extracts from wild-type 

counterparts had completely degraded 2′3′-cGAMP, extracts from ENPP1-/-livers and 

spleens showed undetectable levels of degradation (Fig. 3c). Together, our results 

demonstrate that ENPP1 is the dominant 2′3′-cGAMP hydrolase in vivo, at least in mice 

under our assay conditions.

Phosphothioate analogs are resistant to hydrolysis

Phosphothioate diester linkages are often resistant to hydrolysis by phosphodiesterases and 

nucleases, and have been used to build important non-hydrolyzable ATP and GTP analogs. 

We enzymatically synthesized 2′3′-cGAMP analogs that used phosphothioate linkages in 

place of either the 2′-5′ (5, 2′3′-cGAsMP) or the 3′-5′ (4, 2′3′-cGsAMP) phosphodiester 

linkage, or both (6, 2′3′-cGsAsMP) (Fig. 4a and Supplementary Fig. 7-9). A higher enzyme 

concentration was required for 2′3′-cGsAsMP synthesis and 2′3′-cGsAMP synthesis was 

incomplete, indicating that cGAS is less efficient with GTPαS as a starting material. 

Nevertheless, sufficient 2′3′-cGsAMP was made to test its resistance to ENPP1 hydrolysis. 

We did not attempt to separate the diastereomers of these phosphothioate analogs, but rather 

used them as mixtures, which are sufficient for proof of concept. We also synthesized a 3′-

deoxy analog (3, 2′3′-cdGAMP) to evaluate the role of the 3′-hydroxyl group adjacent to the 

2′-5′ phosphodiester bond.

We first tested the stability of these analogs in THP-1 cell lysates. Their relative stability 

ranks as 2′3′-cGsAsMP>3′3′-cGAMP≫2′3′-cGAMP (Supplementary Fig. 10a). We then 

tested their stability towards 1 nM recombinant ENPP1, the concentration used in the kinetic 

analysis, either by itself or coupled with alkaline phosphatase. 2′3′-cGAsMP and 2′3′-

cGsAsMP were stable for at least 1 day, while all the other 2′3′-cGAMP analogs exhibited 

half-lives of around an hour in the presence of ENPP1 (Fig. 4b). 2′3′-cGsAsMP was able to 

inhibit 2′3′-cGAMP hydrolysis suggesting it is capable of binding to ENPP1 and acting as a 

competitive inhibitor (Supplementary Fig. 10b). The increased stability of 2′-5′ 

phosphothioate analogs (at least 40 times more stable than 2′3′-cGAMP) suggest that 

cleavage of the 2′-5′ phosphodiester linkage is the first step and also the rate-limiting step 

catalyzed by ENPP1. This is consistent with our early observation that 3′3′-cGAMP, the 
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bacterial CDN, is stable in the presence of mammalian cell lysate. Testing with pure ENPP1 

confirmed that 3′3′-cGAMP is not a substrate (Fig. 4b). Since 2′3′-cdGAMP is an ENPP 

substrate, the 3′-hydroxyl group is dispensable in the catalytic reaction (Fig. 4b). The 

relative stability of the analogs towards recombinant ENPP1 shares the same trend as in 

whole cell lysates. This structure-activity relationship study suggests that ENPP1 is the 

direct hydrolase of 2′3′-cGAMP rather than indirectly involved in regulation/activation of 

another hydrolase in the cell lysate.

2′3′-cGsAsMP has excellent STING agonist activity

We next tested the hSTING binding activity of 2′3′-cGsAsMP. We previously used 

fluorescence polarization and a fluorescent derivative of cyclic-di-GMP to measure affinity 

of drugs for mSTING7, but this approach failed with hSTING. Instead, we developed a 

scintillation proximity assay (SPA) based competition binding assay (Supplementary Fig. 

11). hSTING was biotinylated and immobilized onto streptavidin coated SPA plates. 35S-

labeled 2′3′-cGsAsMP was used as a probe. The SPA signal increased with increasing 

amount of probe and saturated at 10 nM, with a Kd of ∼ 5 nM. We used 500 pM of the 

probe in the competition assay, a concentration that yielded a high SPA signal, but is well 

below the estimated Kd of the probe (Kdprobe). We then titrated in the analogs to measure 

their IC50s. According to the Cheng-Prusoff equation Kd = IC50/(1 + [probe]/Kdprobe). 

Because [probe]≪Kdprobe, the Kds of the analogs are roughly equal to the measured IC50s in 

this assay (Fig. 4c). We tested four CDN analogs using this assay. Consistent with previous 

reports that used calorimetric readouts13, 3′3′-cGAMP is a much weaker ligand for hSTING 

ligand binding domain in vitro than 2′3′-cGAMP. The affinities of 2′3′-cGsAsMP and 2′3′-

cdGAMP were comparable to that of 2′3′-cGAMP. Thus the non-hydrolyzable double 

phosphothioate analog is a good STING ligand.

We next tested whether the analogs can activate the STING pathway. All four analogs 

induced TBK1 phosphorylation within 2 hours of drug addition in HEK 293 cells that 

express STING, suggesting direct activation (Supplementary Fig. 12a). We also tested HEK 

293T cells, a sub-clone of the HEK 293 cells that do not express STING. 2′3′-cGsAsMP 

activated the TBK1/IRF3 axis in HEK 293, but not in HEK 293T cells, suggesting STING 

dependent signaling (Supplementary Fig. 12b). To test the performances of these analogs in 

inducing IFN-β, monocytic human THP-1 cells were treated with the analogs for 24 hours 

and secreted IFN-β was measured using HEK-Blue™ IFN-α/β Cells, a reporter cell line that 

responds to IFN-β by secreting alkaline phosphatase. The non-hydrolyzeable 2′3′-cGsAsMP 

was the most potent analog at activating IFN-β (Fig. 4d), scoring with an EC50 ∼10-fold 

lower than natural 2′3′-cGAMP. To test whether its higher activity is due to increased 

biostability, we tested lung fibroblast cells from Enpp1-/- mice and their wild type 

littermates. The hydrolysis resistant 3′3′-cGAMP and 2′3′-cGsAsMP activated IFN-β to 

similar levels regardless of ENPP1 expression. On the contrary, 2′3′-cGAMP is more active 

in Enpp1-/- cells, presumably due to prolonged half-life (Fig. 5a-c for female mice and 

Supplementary Fig. 13 for male mice). The advantage of 2′3′-cGsAsMP over 2′3′-cGAMP is 

much smaller in Enpp1-/- cells suggesting that biostability contributes significantly to its 

improved cellular activity.
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Finally, to determine whether ENPP1 is important in shutting down the endogenous 2′3′-

cGAMP pathway, we used HSV-60 (a 60 bp oligonucleotide containing viral DNA motifs) 

to activate this pathway. Enpp1-/- cells expressed significantly more IFN-β in response to 

HSV-60 than wild type cells, demonstrating its role as a negative regulator of the 

endogenous 2′3′-cGAMP pathway (Fig. 5d).

Discussion

We identified a candidate 2′3′-cGAMP hydrolase by partially purify this activity from a calf 

liver. Our purification procedures were remarkably short and the final fraction is rather 

crude. However, mass spectrometry analysis of this crude fraction was sufficient to generate 

the hypothesis that ENPP1 degrades 2′3′-cGAMP. We then used genetics to show that the 

dominant hydrolase activity for 2′3′-cGAMP in cells, tissues, and blood indeed is ENPP1. 

While we cannot rule out the possibility that other enzymes escaped our search because we 

did not find the optimum assay conditions for them, we showed that MDA-MB231 cells 

with ENPP1 knocked down and plasma, livers, and spleens from Enpp1-/- mice all have 

negligible 2′3′-cGAMP hydrolase activity. The modern methods used in this study (early 

proteomic analysis of fractions and testing of mouse knockout tissues) show how proteins 

can be identified by activity-guided fractionation much more easily and more reliably now 

than in the past.

ENPP1 inactivating mutations and overexpression are known to cause a variety of disease 

phenotypes in man and mice. This enzyme has rather broad substrate specificity, including 

ATP and NAD+, and we have now shown that 2′3′-cGAMP is almost as good a substrate for 

recombinant ENPP1 as is ATP. This opens the question of which substrate(s) are involved in 

the ENPP1-related disease phenotypes. For example, ENPP1 is known to play important 

roles in bone mineralization. ENPP1 inactivating mutations are the cause of generalized 

arterial calcification of infancy (GACI), a deadly disease31. The current understanding is 

that ENPP1 hydrolyzes extracellular ATP to AMP and PPi, and PPi is a potent inhibitor of 

bone mineralization and calcification32. ENPP1 is also highly expressed in some breast 

tumors33, and ENPP1 expression has been correlated with tamoxifen resistance34. Finally, a 

three-allelle haplotype of ENPP1 is associated with obesity and higher risk of type-II 

diabetes35, although this linkage has not been found in all ethnic groups. The putative 

molecular mechanism for ENPP1's involvement in insulin signaling is that ENPP1 interacts 

with the insulin receptor directly to inhibit its phosphorylation and activation36. Studies of 

ENPP1 in mice also showed that high levels of ENPP1 suppress insulin signaling37. The 

enzymatic activity of ENPP1 is required for its inhibitory effect on insulin receptor 

signaling38. Our findings raise the question of whether 2′3′-cGAMP hydrolysis is 

responsible for any of these ENPP1 related diseases.

Our discovery of ENPP1 as 2′3′-cGAMP's major hydrolase sheds light on the regulation of 

the dsDNA-cGAS-STING innate immune pathway. This pathway has been shown to be 

downregulated by ULK-1 activation39 and autophagy-mediated degradation of cGAS40. 

Loss of cytosolic 2′3′-cGAMP, either through hydrolysis or export, could provide another 

negative regulation mechanism, but we found no evidence for a 2′3′-cGAMP hydrolase 

activity in the cytosol from tissue culture cells, liver, or spleen. Our data indicate that this 
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novel 2nd messenger must be longer lived than cAMP and cGMP in the cytosol, which are 

rapidly hydrolyzed by PDEs in the cytosol. This hypothesis is consistent with the 

observation that 2′3′-cGAMP can travel long distances through gap junctions41.

ENPP1 activity is not found in the cytosol. Instead it is found both on the basal lateral 

surface of the plasma membrane in hepatocytes and in the rough endoplasmic reticulum 

(ER) fraction from the liver. In the ER, its catalytic domain resides in the lumen28, where 

there is high Ca2+ concentration necessary for its activity. Therefore, 2′3′-cGAMP must be 

transported across a membrane to be degraded, and may have undiscovered activities once 

there. We do not know whether the ER lumen or the extracellular space is the major site for 

2′3′-cGAMP degradation. There is no information on how permeable the ER membrane is to 

2′3′-cGAMP. It is likely that there is an export mechanism for 2′3′-cGAMP, since many 

other nucleotide derivatives (e.g. ATP, NAD, cAMP, and cGMP) have specific efflux 

pumps and have interesting extracellular biology. We (Fig. 4d) and others9 have shown that 

this double negatively charged small molecule functions when added to the media without 

transfecting reagents, suggesting that a specific import mechanism may also exist. Given 

these results, we hypothesize that 2′3′-cGAMP may have interesting extracellular biology 

that is waiting to be explored (Supplementary Fig. 14).

Finally, our findings have major implications for the development of CDN based hSTING 

agonist drugs. Since 2′3′-cGAMP is the best ligand for hSTING (Fig. 4c)13, it is at least in 

principle a good starting point for drug development. 2′3′-cGAMP is active when added to 

the outside of cells, and has shown adjuvant activity in mice when injected 

intramuscularly16, so it is apparently sufficiently stable to show some drug-like activity. 

Consistent with this, we find that it has a half-life in the range of minutes to 1 hour in 

various biofluids and tissue lysates. Our bis-phosphothioate analog 2′3′-cGsAsMP, which is 

∼40 X more resistant to ENPP1 hydrolysis, is expected to last much longer in biofluids, and 

showed ∼10 X higher cell-based activity in culture (Fig. 4d). This higher activity was not 

due to tighter STING binding (Fig. 4c), and is likely to be due to increased biostability (Fig. 

5). We propose that 2′3′-cGsAsMP will be a useful tool compound in further exploring the 

biology and metabolism of 2′3′-cGAMP, and for testing whether CDN analogs deserve 

further development as clinical candidates.

Online methods

Reagents, antibodies, and cell lines

ATP, [α-32P]- 3000 Ci/mmol 10 mCi/ml, and ATPαS, [35S]-1250 Ci/mmol, 12.5 mCi/ml, 

250 μCi were purchased from Perkin Elmer. Adenosine-5′-O-(1-Thiotriphosphate), 

Guanosine-5′-O-(1-Thiotriphosphate), and 3′-Deoxyguanosine-5′-Triphosphate were 

purchased from Trilink Biotechnologies. ATP, GTP, and herring testes DNA were 

purchased from Sigma-Aldrich. EZ-Link Sulfo-NHS-LC-Biotin was purchased from Pierce 

(21335). Set of 4: ON-TARGETplus PDE12 siRNA (LQ-017946-01-0002) and Set of 4: 

ON-TARGETplus ENPP1 siRNA (LQ-003809-00-0002) were purchased from Dharmacon. 

Anti-PDE12 antibody (ab87738) was from Abcam. Anti-ENPP1 Antibody (#2061) was 

from Cell Signaling. Rabbit polyclonal antibodies against TBK, pTBK (S172), pIRF3 

(S396), STING were purchased from Cell Signaling Technology. HSV-60/LyoVec™, HEK-
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Blue™ IFN-α/β cells and B16-Blue™ IFN-α/β cells were purchased from Invivogen. 

Recombinant ENPP1 was purchased from R&D systems (6136-EN-010). Collagenase D 

was from Roche and Trpsin was from Sigma.

Cell culture and siRNA transfection

L929 and HEK-Blue™ IFN-α/β Cells were maintained in DMEM (Cellgro) supplemented 

with 10% FBS (GIBCO) (v/v) and 1% of penicillin-streptomycin (Cellgro). THP-1 cells 

were grown in RPMI (Cellgro) supplemented with 10% FBS, 0.1% β-mercaptoethanol 

(GIBCO), and 1%of penicillin-streptomycin. MDA-MB231 cells were grown in RPMI 

supplemented with 10% FBS and 1% of penicillin-streptomycin.

Expression and purification of recombinant proteins

All procedures involving proteins and cell lysates were conducted at 4 °C unless stated 

otherwise.

DncV expression plasmid was a generous gift from Dr. John J. Mekalanos and the protein 

was produced using the established protocol12.

DNA sequence encoding mouse cGAS (147-507) was amplified from the cDNA library 

generated from L929 cells using the primer pair: mcGAS-147-FWD 

TATTGAGGCTCACAGAGAACAGATTGGTGGT 

CCGGACAAGCTAAAGAAGGTGCT and mcGAS-REV 

GGATCCCCTTCCTGCAGTCACCCGGGCTCGAG 

TCAAAGCTTGTCAAAAATTGGAAA. The PCR product was inserted into the SapI and 

XhoI sites of pTB146 (a generous gift from Dr. Thomas Bernhard) using isothermal 

assembly. His-SUMO tagged mcGAS (147-507) was expressed in Rosetta™ Competent 

Cells. Cells were grown in LB media with Ampicilin (100 ng/mL) and were induced with 

0.5 mM IPTG when OD reached 1 and were allowed to grow overnight at 16 °C. Cells were 

pelleted and lysed. The cell extract was then cleared by ultracentrifugation at 45,000 rpm for 

1 h. The cleared supernatant was incubated with Ni-NTA beads (4 mL of beads per liter of 

bacteria culture). Ni beads were washed with 20 mM imidazole in PBS and protein was 

eluted with step concentrations of 50 mM to 500 mM imidazole in PBS. Fractions 

containing his-SUMO-mcGAS were pooled, concentrated and dialyzed against PBS. The 

protein was further purified by size-exclusion chromatography in running buffer: 20 mM 

Tris HCl (pH 8.0), 150 mM NaCl, and 2 mM Mg2+. Fractions containing mcGAS (147-507) 

was pooled, concentrated, and snap frozen for future use.

DNA encoding full-length human PDE12 was cloned into a modified version of pDB-His-

MBP vector. The protein was expressed in E. coli BL21 DE3 RIPL Codon-Plus cells. E. coli 

cell was induced by 0.4 mM IPTG when cell density reached 0.6 and grew at 20°C 

overnight. Cells were pelleted and lysed. After centrifugation and removal of cell debris, 

supernatant was incubated with Ni-NTA beads. Ni beads were washed extensively and 

protein was eluted in lysis buffer with 300 mM imidazole. After cleavage by PreScission 

protease, the N-terminal His6-MBP was removed by incubation with Ni-NTA beads. PDE12 

protein in the flow-through fractions was further purified by size-exclusion chromatography.
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Enzymatic synthesis of 3′3′-cGAMP and 2′2′-cGAMP analogs

For 3′3′-cGAMP, 50 nM of DncV was incubated with 1 mM ATP and 1 mM GTP in 1 mL 

buffer containing 20 mM Tris-HCl, pH 8.0, 20 mM MgCl2 at room temperature for 3 h. For 

2′3′-cGAMP analogs, 1-10 μM mouse cGAS (amino acid residues 147-507) was incubated 

with 1 mM ATP, 1 mM GTP, and 0.1 mg/mL HT-DNA in 1 mL of the same buffer for 12 h 

at room temperature. The reaction mixtures were then heated at 95 °C for 3 min and filtered 

through a 3 KDa filter. The product was purified using a silica plug with 5 mM NH4HCO3: 

15% H2O: 85% EtOH as the mobile phase. To make the 32P and 35S-labeled CDNs for 

degradation assays, 10 μCi [α-32P] ATP or [35S] ATPαS were mixed in with the cold 

starting materials. The reaction mixture was filtered through a 3 KDa filter and used without 

further purification. To synthesize neat 35S-labeled 2′3′-cGAsMP for the SPA assay, 250 

μCi [35S] ATPαS and 100 μM cold GTP were used as the starting material in 100 μL buffer. 

The product was purified using a silica plug with 5 mM NH4HCO3: 15% H2O: 85% EtOH 

as the mobile phase.

Mice

Generation and characterization has been reported previously for Enpp1-/- mice42,43. 

Genotyping was performed with PCR protocols on genomic DNA. Anesthesia was given 

intraperitonal with Avertin. Blood was collected by cardiac puncture into lithium heparin 

tubes; tissues were frozen immediately in liquid nitrogen. The Institutional Animal Care and 

Use Committee (IACUC) approved all animal procedures.

Preparation of cell and tissue extracts

To determine whether THP-1 cells, L929 cells, and MDA-MB231 possess hydrolase activity 

for 2′3′-cGAMP, the whole cell lysate was generated using lysis buffer:10 mM Tris-HCl, pH 

7.5,150 mM NaCl, 1% NP-40, 1.5 mM MgCl, 2 mM DTT, protease inhibitor tablet (Roche) 

at 1 mL for 100 million cells. To determine the subcellular location of the hydrolase(s), cells 

were lysed by douncing in either a mitochondria friendly buffer: 10 mM Tris-MOPS (pH 

7.4), 10 mM EDTA/Tris, 200 mM sucrose or a hypotonic buffer: 10 mM Tris-HCl, pH 7.5, 

10 mM KCl, 1.5 mM MgCl2, 2 mM DTT, protease inhibitor tablet. The homogenate was 

then subjected to centrifugation at 600 G and 7000 G.

To prepare whole cell lysate, liver, and spleen extracts to test the role of ENPP1, the cells 

and tissue samples were minced and Douce homogenized in detergent containing buffer: 20 

mM Tris-HCl, pH 7.5, 1% NP-40, protease inhibitor tablet. The lysate were tested without 

centrifugation clearance at different pHs in the presence of 150 mM KCl, 2 mM MgCl2, 2 

mM CaCl2, 200 μM ZnCl2. 100 mM NaOAc buffer was used for pH 5.0-6.0; 100 mM 

PIPES buffer was used for pH 6.5 and 7.0; 100 mM Tris-HCl buffer was used for pH 

7.5-9.0; and 100 mM Borate buffer was used pH 9.5.

Thin-Layer Chromatography Analysis of CDN synthesis and degradation

This protocol was modified from established protocol 22. Reaction solution (1.5 μL) was 

spotted onto TLC plates (HPTLC silica gel, 60 Å pores, F254, 1055480001, MERCK 

Millipore) and the nucleotides were separated with 5 mM NH4HCO3: 15% H2O: 85% EtOH 
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as the mobile phase at 25 °C for 30 min. The plates were visualized by UV (254 nm) or by 

autoradiography. Images were processed using Adobe Photoshop and Illustrator CS6.

Partial purification of ENPP1 from a calf liver

The calf liver was homogenized in buffer A: 10 mM Tris-MOPS (pH 7.4), 10 mM EDTA/

Tris, 200 mM sucrose. For subcellular fractionation, the homogenate was centrifuged at 600 

G for 20 min to remove cell debris and nuclei. The supernatant was centrifuged at 7000 G 

for 20 min to precipitate mitochondria and other heavy organelles. The pellet was re-

suspended in 200 mL buffer A and centrifuged at 7000 G for 20 min. Both the supernatant 

and the pellet were analyzed for activity in reaction buffer: 20 mM Tris-HCl, pH 7.5, 

1%NP-40, 1 mM CaCl2. The supernatant was where the activity resided, so was then 

centrifuged at 45000 G for 1 h and all the activity was precipitated. The pellet was extracted 

using the detergent-containing reaction buffer and cleared by centrifuging at 45000 G for 1h. 

The supernatant was subjected to anion exchange fractionation using a 5 mL HiTrap Q 

column followed by size exclusion fractionation using a superose 6 column. Fraction 26 

contained high activity, but undetectable amount of protein by SDS-PAGE gel and 

coomassie staining. The entire lane was subjected to mass spectrometry analysis at the 

Taplin Mass Spectrometry Facility at Harvard Medical School as a standard service, which 

identified 377 proteins (Supplementary Dataset). ENPP1, which ranked #17 on the list, was 

the top candidate because it is the only phosphodiesterase on the list judging by their 

annotations.

Scintillation proximity assay

Wild type hSTING (230G/232R, amino acid residue 139-379) was prepared as described 

before7. The protein was dialyzed in PBS for 3 h to remove trace amount of Tris-HCl that 

would react with the labeling reagent. The protein was labeled at 300 μM with 3 equivalent 

of EZ-Link Sulfo-NHS-LC-Biotin at room temperature for 30 min. Another 3 equivalent of 

the labeling reagent was added and allowed to react for another 30 min. Bovine serum 

albumin was labeled using the same protocol as a control. The proteins were then dialyzed 

in PBS to remove free biotin. To immobilize the proteins onto 96-well streptavidin coated 

SPA plates (Perkin Elmer 1450-551), biotinylated hSTING and the BSA control (100 nM) 

were incubated on the plates for 30 min. The plates were then washed 3 times with PBS. To 

decide the Kd of the probe, serial dilutions of neat 35S-labeled 2′3′-cGAsMP (0.01 nM to 20 

nM) were incubated with immobilized protein for 30 min. The probe was then aspirated and 

read on a 1450 MicroBeta TriLux for 3 min. For the competition assay, 500 pM 35S-labeled 

2′3′-cGAsMP in PBS was used to make the serial dilutions of the CDNs. The cold CDN and 

probe mixtures were incubated with the protein plates for 30 min. The wells were aspirated 

dry and read on the MicroBeta plate reader.

SEAP assay

HEK-Blue™ IFN-α/β Cells were used to measure IFN-α/β produced by THP-1 cells. We 

followed the manufacturer recommended protocols. Briefly, 24 hours after drug treatment, 

conditioned media were collected and added to the HEK-Blue™ reporter cells. After 18 

hours, SEAP activity was measured using a Victor plate reader (Perkin Elmer). B16-Blue™ 
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IFN-α/β cells were used to measure IFN-α/β produced by mouse lung fibroblast cells. The 

assay protocol is the same as that for HEK-Blue™ IFN-α/β cells.

Isolation of lung fibroblast cells

Lungs from each mouse were minced in a Petri dish and digested in 5 mL of DMEM with 

0.1% collagenase D and 0.2% trypsin at 37 °C for 1 h. The mixture was pipetted up and 

down every 10 min. Disassociated cells were washed twice in DMEM and pelleted at 1200 

G, 4°C for 10 min to remove enzymes. Cells were re-suspended in complete media (DMEM, 

10% FBS, Penstrep and Fungizone) and seeded in a 10-cm dish. The fibroblast cells 

attached in one hour and the rest of the cells were washed away by replacing the media.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. There is one dominant hydrolase activity in the plasma membrane/heavy organelles 
and it is not due to PDE12
(a) 2′3′-cGAMP and 3′3′-cGAMP hydrolysis reactions. THP-1 cells were lysed using 1% 

NP-40. The 32P-labeled CDNs were incubated with the cell lysate for 20 hours and the 

reaction was monitored using a TLC assay and visualized by autoradiography. (b) 2′3′-

cGAMP hydrolase activity in differential centrifugation fractions of MDA-MB231 cells. 

Cells were suspended in isotonic buffer and lysed with a Dounce homogenizer. Supernatant 

and pellets from spins at the indicated speeds were solubilized and assayed in 1% NP-40, 20 

mM Tris-HCl, pH 7.5, 1 mM Ca2+. (c) Knockdown of PDE12 does not decrease hydrolase 

activity. MDA-MB231 cells were transfected with four siRNA oligos against PDE12 and a 

control oligo. After 4 days, cells were lysed in the same buffer as (b) and assayed for 

activity. Upper panel: hydrolase activity in cells treated with different siRNA oligos. Lower 

panel: PDE12 levels in these cells. (d) Activity of purified PDE12 compared with that of 

MDA-MB231 whole cell lysate.
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Figure 2. ENPP1 is an efficient hydrolase for 2′3′-cGAMP
(a) Ion dependency and (b) pH preference of the dominant hydrolase activity in MDA-

MB231 cells. (c) Activity of recombinant ENPP1 alone or (d) coupled to alkaline 

phosphatase in buffer condition: 0.2% NP-40, 20 mM Tris-HCl, pH 9.0, 2 mM Ca2+, 200 

μM Zn2+. (e) Kinetics of 2′3′-cGAMP and ATP hydrolysis by recombinant ENPP1. 1 nM 

ENPP1 was tested in the same buffer condition as (f) and (g). Data are presented as mean 

and standard error.
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Figure 3. ENPP1 is the dominant hydrolase activity for 2′3′-cGAMP
(a) Knockdown of ENPP1 in MDA-MB231 cells diminished hydrolase activity. Four siRNA 

oligos against ENPP1 with a control siRNA sequence against PDE12 were used. 4 days after 

siRNA transfection, cells were lysed and assayed for activity (upper panel) and blotted for 

ENPP1 level (lower level). (b) Hydrolase activity in plasma from Enpp1-/- mice and their 

littermates. (c) Western blot characterization of Enpp1-/- mice. (d) Hydrolase activity in 

livers and spleens from Enpp1-/- mice and their littermates. Livers and spleens were minced 

and Dounce homogenized in lysis buffer: 1% NP-40, 20 mM Tris-HCl, pH 7.5, protease 

inhibitor cocktail. The assay was conducted in 0.2% NP-40, 20 mM Tris-HCl, 150 mM KCl, 

2 mM Ca2+, 2 mM Mg2+, 200 μM Zn2+ at the indicated pH. NaOAc buffer was used for pH 

5.0-6.0; PIPES buffer was used for pH 6.5 and 7.0 and 2′3′-cGAMP runs at a lower Rf in 

this buffer; Tris-HCl buffer was used for pH 7.5-9.0, and Borate buffer was used pH 9.5. 

These buffer conditions were also used in liver and spleen extract studies.
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Figure 4. Development of hydrolysis resistant hSTING agonists
(a) Scheme of enzymatic synthesis of 3′3′-cGAMP and 2′3′-cGAMP analogs. For 3′3′-

cGAMP, 50 nM of DncV was incubated with 1 mM ATP and 1 mM GTP in 1 mL buffer 

containing 20 mM Tris-HCl, pH 8.0, 20 mM MgCl2 for 3 h at room temperature. For 2′3′-

cGAMP analogs, 1-10 μM mouse cGAS (amino acid residues 147-507) was incubated with 

1 mM ATP, 1 mM GTP, and 0.1 mg/mL HT-DNA in 1 mL of the same buffer for 12 h at 

room temperature. (b) Hydrolysis reactions of ENPP1 (1 nM) with the analogs (10 μM). (c) 

Scintillation proximity assay to measure the binding affinity of the analogs towards hSTING 

(amino acid residues 139-379). Biotinylated hSTING (100 nM) was immobilized onto 96-

well streptavidin coated SPA plates. Neat 35S-labeled 2′3′-cGAsMP (500 pM) was used as 
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the probe. N=3 samples. Data are presented as mean and standard error. (d) IFN-β 

production in THP-1 cells stimulated with the analogs. THP-1 cells were incubated with the 

analogs at the indicated concentrations for 24 h. IFN-β in the media was measured using a 

HEK-SEAP cell line. Representative data from a biological triplicate is depicted.
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Figure 5. ENPP1 dampens 2′3′-cGAMP signaling
Lung fibroblast cells from wild type and Enpp1-/- female mice were incubated with 2′3′-

cGAMP analogs and HSV-60 at the indicated concentrations for 24 h. IFN-β in the media 

was measured using a B16-SEAP cell line. N=3 samples. Data are presented as mean and 

standard error.
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