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Abstract Natural killer (NK) cells are a diverse population of
lymphocytes with a range of biological roles including essen-
tial immune functions. NK cell diversity is in part created by
the differential expression of cell surface receptors which mod-
ulate activation and function, including multiple subfamilies of
C-type lectin receptors encoded within the NK complex
(NKC). Little is known about the gene content of the NKC
beyond rodent and primate lineages, other than it appears to be
extremely variable between mammalian groups. We compared
the NKC structure between mammalian species using new
high-quality draft genome assemblies for cattle and goat; re-
annotated sheep, pig, and horse genome assemblies; and the
published human, rat, and mouse lemur NKC. The major NKC
genes are largely in the equivalent positions in all eight species,
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with significant independent expansions and deletions between
species, allowing us to propose a model for NKC evolution
during mammalian radiation. The ruminant species, cattle and
goats, have independently evolved a second KLRC locus
flanked by KLRA and KLRJ, and a novel KLRH-like gene
has acquired an activating tail. This novel gene has duplicated
several times within cattle, while other activating receptor
genes have been selectively disrupted. Targeted genome en-
richment in cattle identified varying levels of allelic polymor-
phism between the NKC genes concentrated in the predicted
extracellular ligand-binding domains. This novel recombina-
tion and allelic polymorphism is consistent with NKC evolu-
tion under balancing selection, suggesting that this diversity
influences individual immune responses and may impact on
differential outcomes of pathogen infection and vaccination.

Keywords Natural killer cells - C-type lectin - Natural killer
complex - Leukocyte receptor complex - KLRA - KLRC

Introduction

Natural killer (NK) cells are a diverse population of circulating
lymphoid cells with cytotoxic and cytokine-secreting func-
tions, particularly in response to intracellular pathogen infec-
tions and neoplasms. Although rare, primary NK cell immu-
nodeficiency leads to complications and/or death from severe
herpesviral infections, virus-associated tumor growth, leuke-
mia, and mycobacterial infections (Orange 2013).
Dysregulated MHC class I expression on nucleated cells, such
as during viral infection, is recognized by a diverse repertoire
of NK cell surface receptors which mediate their immune
functions through direct recognition of equally diverse MHC
class I molecules. In mammals, NK cell receptors for MHC
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class I are encoded within two unrelated and independently
segregating gene complexes, the leukocyte receptor complex
(LRC) containing genes encoding the killer cell
immunoglobulin-like receptors (K/R) and the natural killer
complex (NKC) containing multiple members of killer cell
lectin-like receptor genes (KLR). Both gene complexes evolve
rapidly, vary in gene content within and between species, and
can encode both activating and inhibitory polymorphic recep-
tors. Thus, a highly diverse NK cell repertoire containing mul-
tiple highly similar receptors allows for a finely-tuned ability
to discriminate MHC class I expression between healthy and
damaged cells.

The number of KIR and KLR genes is highly variable be-
tween mammalian species, with primate and rodent species
the best studied to date (Guethlein et al. 2015). Humans and
other higher primates have an expanded, highly polymorphic
and gene variable KIR locus, and possess four functional
KLRC genes (NKG2A, C, E, and F) and a single KLRA
(Ly49) gene or pseudogene (Trowsdale et al. 2001; Wende
et al. 1999; Wilson et al. 2000). In contrast, rats (Rattus
norvegicus) possess a single KIR in their LRC, whereas mice
(Mus musculus) possess two KIR genes on chromosome X and
which are thought to have alternative functions (Hoelsbrekken
et al. 2003). However, rodents have a highly expanded and
diverse repertoire of KLRA genes (Anderson et al. 2001;
Higuchi et al. 2010) and a unique, yet related KLRH gene
(Naper et al. 2002). The primate K/R and the rodent KLRA
and KLRH bind classical MHC class I molecules to control
NK cell function (Daniels et al. 1994; Daws et al. 2012), a rare
example of convergent evolution that illustrates the funda-
mental importance of this receptor-ligand system.

Beyond rodents and higher primates, a few other species
have been studied in some detail. Horses (Equus caballus), for
example, possess an expanded KLRA repertoire of five poly-
morphic genes and a single putatively functional KIR3DL-like
gene (Futas and Horin 2013; Takahashi et al. 2004). The
mouse lemur (Microcebus murinus) has expanded a different
NKC gene family, possessing five functional KLRC and three
functional KLRD (CD94) (Averdam et al. 2009). Together,
KLRC and KLRD form a heterodimeric pair providing the
mouse lemur with a substantially expanded KLRC/KLRD
combinatorial repertoire. However, NK receptor diversifica-
tion is not always a prerequisite for a species survival. Several
marine carnivores, (seals and sea lions), possess a single func-
tional K/R and single functional KLRA, while their terrestrial
relatives, cats (Felis catus) and dogs (Canis lupus), only ap-
pear to have a functional KLRA, with the K/R gene being
disrupted or deleted, respectively (Hammond et al. 2009).
Pigs (Sus scrofa) also possess a single K/IR and a single
KLRA, yet it is uncertain if either of these genes are functional
(Gagnier et al. 2003; Sambrook et al. 2006). For many of these
species, however, the remainder of their KLR repertoire re-
mains unresolved.
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Findings to date indicate that cattle (Bos faurus) are unique
in having expanded and diversified NK cell receptor genes
within both the NKC and LRC (Birch and Ellis 2007;
Guethlein et al. 2007; McQueen et al. 2002; Storset et al.
2003). Cattle possess at least seven KLRC, two KLRD, and a
single but polymorphic KLRA within the NKC (Birch and
Ellis 2007; Dobromylskyj et al. 2009), and eight functional
KIR genes in the LRC (Sanderson et al. 2014). However, the
characterization of the NKC relies largely on the current pub-
lic genome assembly (Elsik et al. 2009). Immune gene com-
plexes, however, are often highly repetitive due to the pres-
ence of many very similar genes often with small intergenic
intervals that are enriched with interspersed repetitive ele-
ments. Together with allelic polymorphism, this can create
significant assembly problems during whole-genome se-
quencing attempts. As a consequence, several draft genome
assemblies indicate that the NKC has had a complex and dy-
namic evolutionary history during mammalian radiation, a
hallmark of strong positive selection, but the genome se-
quence of these regions and associated annotation is either
preliminary or lacking.

An accurate NKC genome sequence and correct annotation
is essential to inform functional genomic studies. In an age of
heightened concern for food security, this is particularly im-
portant for immunogenetic variation in food-producing spe-
cies that could be exploited to improve resilience to infectious
diseases. To address this, we have improved and confirmed
the assembly of the cattle and goat (Capra hircus) NKC using
bacterial artificial chromosomes (BACs) and recent long-read
genome assemblies (Smith and Medrano, unpublished)
(Bickhart et al. 2016). These were newly annotated, as were
the available draft reference genomes for the sheep (Ovis
aries) (The International Sheep Genomics Consortium et al.
2010), pig (Groenen et al. 2012), and horse (Wade et al. 2009).
These were then compared to the well-characterized NKC
structures of the rat (Flornes et al. 2010), human (Hofer
etal. 2001), and mouse lemur (Averdam et al. 2009), allowing
us to propose a model for the NKC evolution during the past
approximately 92 Myr. To additionally assess the level of
intraspecies variability in cattle and genes under selection,
we investigated polymorphism within the NKC of 23 individ-
uals including breeds from both B. taurus and B. indicus,
whose wild ancestors began to diverge approximately 2 Ma
(Hiendleder et al. 2008) and which were domesticated sepa-
rately about 10,000 years ago.

Materials and methods

Ethics statement

Peripheral blood samples from B. taurus and B. indicus cattle
were collected in accordance with the UK Animal (Scientific
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Procedures) Act 1986 and approved by either The Pirbright
Institute Ethics Committee or The Roslin Institute’s Animal
Welfare and Ethics Committee. The Chillingham samples
were from animals culled for welfare reasons. Blood sampling
of Kuchinoshima-Ushi cattle was carried out in accordance
with the Regulations for Animal Experiments in Nagoya
University and the Guidelines for the Care and Use of
Laboratory Animals by the Tokyo University of Agriculture.

Genome assemblies

The region spanning the NKC from immediately upstream of
KLRA to immediately downstream of KLRE was extracted
from the current genome builds within Ensembl
(Cunningham et al. 2015) for cattle (UMD 3.1, chr 5
99,387,020-100,235,099), sheep (Oar v3.1, chr 3
203,826,025-204,418,113), pig (Sscrofal0.2, chr 5
64,112,755-64,634,584), and horse (Equ Cab 2, chr 6
37,209,165-38,556,956) and from the National Center for
Biotechnology Information (NCBI) for goat (CHIR 1.0,
CMO001714 91,233,093-91,817,092). Additional scaffolds
for goat and cattle were generated using long reads (NCBI
accession numbers PRINA290100 and KX592814, respec-
tively) and represent the first livestock genomes assembled
de novo from PacBio reads alone. The specifics of sequence
generation, contig assembly, scaffolding, and validation to
create the long-read assemblies are extensive and are de-
scribed elsewhere for goat (Bickhart et al. 2016) and will be
for cattle (Smith and Medrano, unpublished). Genes within
the NKC builds as well as on individual BAC clones were
identified using the Basic Local Alignment Search Tool
(BLAST) against GenBank and known NKC genes
(Altschul et al. 1990). Exonic structure was informed using
BLAST within NCBI against the reference RNA sequence
database (i.e., RefSeq RNA). HMMgene was additionally
used to hunt for putative open reading frames (Krogh 1997).

Bacterial artificial chromosomes and sequencing

A BAC library was previously developed from a Friesian
dairy bull (Di Palma 1999; Di Palma et al. 2002) and was
screened for NKC-containing genes. Primers were designed
to amplify KLRCI, KLRDI1, KLRD?2, KLRJ, and the flanking
genes gamma-aminobutyric acid receptor-associated protein-
like 1 (GABARAPLI) and serine/threonine/tyrosine kinase 1
(STYK1) (Table S1). A PCR-based screen of 39,936 BAC
clones (~1.5% genome coverage) identified three clones over-
lapping the NKC region, which are TP14222-309A12,
TPI4222—-102F7, and TPI4222-343E2. Despite positive re-
sults with whole genomic DNA (gDNA) to verify primer
specificity, however, no clones were PCR positive for KLRJ
or STYKI. The NCBI genome viewer was queried to identify
four additional BAC clones from two animals, which are two

BAC clones from a different Friesian bull (RP42-154D6 and
RP42-162P15) and two clones from the Hereford bull L1
Domino 99375 (CH240-60G5 and CH240-239G9). The
GenBank accessions for the BAC clones used in the present
study are TP14222-343E2 (KX611578), TP14222-309A12
(KX611577), TP14222-102F7 (KX611576), RP42-162P15
(KX698608), RP42-154D6 (KX698607), CH240-239G9
(AC170009), and CH240-60G5 (AC156849).

BAC clones were expanded overnight and BAC DNA was
purified using the Qiagen Large Construct Kit (Qiagen,
GmbH). Purified DNA from three clones (TPI4222-309A12,
TPI14222-102F7, and TP14222-343E2) was sequenced using
[lumina MiSeq with 250 x 250-bp paired-end reads (Source
Biosciences Inc., Nottingham, UK) and de novo assembled
using Velvet (Zerbino and Bimey 2008). As the resultant as-
semblies failed to yield single contigs, the assembled se-
quences were manually scaffolded and supported by BLAST
comparisons of individual contigs. These final, manual assem-
blies resulted in single contigs for each of the three clones.
Band sizes generated by HindIIl endonuclease digestion of
BAC DNA matched those predicted by assembly, suggesting
that the BAC assemblies were accurate.

The remaining clones were sequenced at the USDA-ARS
Meat Animal Research Center (Clay Center, NE) using the
PacBio RSII platform (Pacific Biosciences of California,
Inc.). To further confirm the Illumina assemblies, TP14222-
309A12 and TPI4222-102F7 were re-sequenced in this man-
ner, and these assemblies matched those generated using the
[llumina data. Read filtering and assembly were conducted
using the Pacific Biosciences SMRT Analysis software (ver-
sion 2.3.0; http://www.pacb.com/devnet/). The resulting
contigs were circularized by comparing the contig ends
against the whole contigs to identify overlap, then the
cloning vector was identified and removed to produce
contigs with the first base being the first beyond the 3’ end of
the cloning vector accession sequence (AY487252). Potential
errors remaining in the contig sequence were removed by re-
mapping all of the subreads to the edited contigs, producing
high-quality (<0.01% error) genomic sequences.

Nomenclature, manual annotation, and phylogenetics

Where possible, the Human Genome Organization (HUGO)
Gene Nomenclature Committee (HGNC)-approved gene no-
menclature is used. For ease of reference, common gene syn-
onyms are also provided upon first usage for many of the
NKC genes. KLRC gene subgroup nomenclature is main-
tained based on the previous identification of KLRC/ and
KLRC2-like complementary DNA (cDNA) sequences in cat-
tle (Birch and Ellis 2007). All NKC genome builds and indi-
vidual BAC clones were manually annotated using Artemis
(Rutherford et al. 2000). Where possible, gene structure was
informed using cDNA evidence. Pseudogenes were defined
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based on the presence of frameshifts and premature stop co-
dons that would prevent the production of a functional protein.
Repetitive elements were identified using RepeatMasker ver-
sion open-4.0.5 (Smit et al. 2015). Recurrence plot sequence
identity comparisons of genome assemblies were made using
DOTTER (Sonnhammer and Durbin 1995) and a sliding win-
dow of 200 bp. Predictions of transmembrane (TM) regions
were made using TMHMM (Krogh et al. 2001). Alignments
of NKC genes were generated using ClustalW (Thompson
etal. 1994), and phylogenetic analyses were performed within
MEGAG6 (Tamura et al. 2013) using maximum likelihood
based on the Tamura three-parameter model and the partial
deletion method using a 95% cutoff and 100 bootstrap itera-
tions (Tamura 1992). Complete mitochondrial genomes were
used to show species divergence (cattle, V00654; goat,
KP271023; sheep, AF010406; pig, NC 000845; horse,
AB859014; rat, X14848; mouse lemur, NC 028718; and hu-
man, AP008824). Divergence times are based on relative
branch lengths and estimated using the reported divergence
estimates for simians and prosimians (68.2—81.2 Ma (Pozzi
et al. 2014)), sheep and cattle (30 Ma (Hiendleder et al.
1998)), and cattle and pigs (60 Ma (Meredith et al. 2011)).
Gene structure and organization was compared to human
(Hofer et al. 2001), mouse lemur (Averdam et al. 2009), and
rat (Flornes et al. 2010), as high-quality assemblies and anno-
tations exist for all these species. Rats were chosen as the
representative of rodents, as apart from variability in the num-
ber of KLRA, there is little known structural variation between
mice and rats (Dissen et al. 2008).

Animals used for SNP analysis

Heparinized peripheral blood was acquired from 15 Friesian
cattle (B. taurus) belonging to an MHC defined herd at The
Pirbright Institute (Ellis et al. 1999). Semen from two Friesian
breeding bulls (Blackisle Garve and Nerewater Tiptop) was
purchased from Genus UK. Additional gDNA was obtained
from two individuals from the feral Chillingham Park herd
(Alnwick, Northumberland, UK), which have been genetical-
ly isolated for ~300 years (Visscher et al. 2001), an individual
from a genetically isolated cattle population on Kuchinoshima
Island (Japan) (Kawahara-Miki et al. 2011), two Sahiwal cat-
tle (B. indicus), and a single Nelore (B. indicus). The gDNA
sourced from each of the B. taurus and B. indicus animals
was whole genome amplified using the REPLI-g Mini Kit
(Qiagen, GmbH) following manufacturers’ instructions.

Genomic enrichment of cattle NKC
Mononuclear cells (PBMCs) were separated from the hepa-
rinized peripheral blood using Histopaque-1083 (Sigma-

Aldrich Corporation), and gDNA was isolated using
the QIAamp DNA Mini Kit (Qiagen, GmbH) following
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the manufacturers’ instructions. The quantity of purified
gDNA was assessed for each animal with the Quant-iT
PicoGreen dsDNA assay (Thermo Fisher Scientific) using
the low-range standard curve. An aliquot of gDNA from every
animal was sheared using a Covaris S220 Focused-
ultrasonicator (Covaris, Inc.). Instrument parameters provided
by the manufacturer were used to fragment the DNA to insert
sizes between 500 and 650 bp. Indexed paired-end gDNA
libraries were constructed using a low-throughput, low-
sample number TruSeq DNA sample preparation kit
(Illumina, Inc.). Four multiplexed sequencing libraries were
prepared, one for each of four independent genome enrich-
ment experiments. Each multiplexed library was constructed
using 1-pg input DNA per animal, and ligation products were
size selected (>500 bp) on an agarose gel and purified as
described in the TruSeq protocol. An aliquot was removed
from each and used as PCR template to assess the quality of
the constructed sample library. PCR amplification was carried
out as described in the TruSeq DNA Sample Preparation
Guide. Sample library quality assessment was carried out by
running PCR products on a DNA1000 chip using a 2100
Bioanalyzer instrument (Agilent Technologies).
Amplification of each multiplexed sample library was per-
formed as described in the NimbleGen SeqCap EZ Library
SR User’s Guide (version 4.1). To enrich cattle gDNA from
the NKC, custom oligonucleotide probes were designed and
synthesized as a SeqCap EZ Developer Library (Roche
Sequencing) and enrichment was performed as described in
the manufacturers’ protocol. Human Cot-1 DNA was used to
block repetitive regions of the cattle genome. DNA was puri-
fied at each stage of the Roche protocol using Agencourt
AMPure XP DNA purification beads (Beckman Coulter,
Inc.). The captured multiplex DNA sample was washed and
recovered as outlined in the Roche protocol. Amplification of
the enriched multiplex DNA sample libraries used LM-PCR
as described in the Roche protocol. To determine how suc-
cessful the enrichment was, DNA was analyzed on a
DNA1000 chip using a 2100 Bioanalyzer instrument
(Agilent Technologies) and using qPCR. The degree of en-
richment measured across the four independent captures indi-
cated that each library was successfully generated.

Sequencing and variant calling

The four enriched multiplex DNA sample libraries were inde-
pendently sequenced using a MiSeq desktop sequencer
(Illumina, Inc.) at The Pirbright Institute. The MiSeq Reagent
Kit version 2 (Illumina, Inc.) was used to produce either
2 x 230- or 2 x 250-bp paired-end reads per run.
Multiplexed DNA sample libraries were diluted and se-
quenced at a final concentration of 8 pM. Each sequencing
run used a PhiX control spike which was denatured and dilut-
ed to 12.5 pM. The final pool of sequenced DNA was
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comprised of 99% sample library and 1% PhiX. Library prep-
aration, sample loading, and MiSeq preparation steps were
carried out as described in the manufacturers’ protocol.
Resultant reads were mapped to the cattle genome build
UMD 3.1 using the Burrows-Wheeler Aligner (BWA; ver-
sion 0.7.5a) (Li and Durbin 2009), and variant sites were iden-
tified using SAMtools (version 0.1.18) (Li et al. 2009) and
VarScan (version 2.3.6) (Koboldt et al. 2012).

Results
Re-assembly of the cattle and goat NKC

Highly repetitive gene complexes are notoriously difficult to
assemble and annotate during whole-genome sequencing at-
tempts. In the best current public cattle genome assembly
(UMD _3.1), the NKC region spanning KLRA to KLRE is a
730-kb scaffold containing 14 gaps (Fig. 1a). The region ap-
pears largely intact, but there are clear annotation errors and
small contigs that are likely erroneous. Recent resequencing
efforts using long-read sequencing technology have produced
an improved genome assembly (ARS-UCDvO0.1) with >50x
higher contiguity than the UMD 3.1 or Btau 5.1 public as-
semblies (Smith and Medrano, unpublished). Contigs contain-
ing the NKC region from the ARS-UCDvO0.1 assembly were
identified via BLASTN, revealing a single ungapped contig of
approximately 12.7 mb containing 785 kb between KLRA and
KLRE. Comparison of this contig to the UMD 3.1 scaffold
revealed that the overall structure is almost identical; however,
within the UMD 3.1 assembly, we identified three mis-
ordered contigs, a 16-kb contig containing olfactory receptors,
and a sizeable sequence gap of approximately 70 kb down-
stream from KLRA (Fig. 1a). To confirm which NKC assem-
bly was accurate, we sequenced and assembled seven BAC
clones containing cattle NKC sequence. Five clones were
from two Friesian bulls (three from the TPI-4222 library (Di
Palma 1999) and two from the RPCI-42 library; http://bacpac.
chori.org/), and two clones were from a Hereford bull
(CHORI-240 library; http://bacpac.chori.org/). The Hereford
BAC library was the source for the minimum BAC tiling path
sequenced as the primary basis for the existing UMD 3.1
assembly, supplemented by whole-genome shotgun sequence
from a daughter (L1 Dominette 01449) of the same bull (Elsik
et al. 2009), who in turn was the source of the ARS-UCDv0.1
long-read assembly. BAC assemblies for the TPI clones were
confirmed by comparing their restriction digest band sizes to
their in silico predictions. All seven clones mapped with high
identity to both assemblies but no structural differences were
identified between the BAC clones and the ARS-UCDvO0.1
genome assembly (Fig. 1a). This confirmed that the sequence
gaps, contig mis-ordering, and placement of putative olfactory
receptor genes are errors in UMD _3.1.

We performed a similar analysis with the current public
goat genome assembly (CHIR 1.0) and a new long-read de
novo goat assembly, ARSI, that has also used PacBio se-
quencing to improve assembly contiguity (Bickhart et al.
2016). In the CHIR 1.0 assembly, the NKC region from
KLRA to KLRE spans approximately 584 kb and contains a
total of 53 sequence gaps (Fig. 1b). In contrast, a single con-
tiguous region of approximately 600 kb was identified on a
scaffold of approximately 113 mb in the ARSI assembly.
Although these regions are structurally very similar, the
long-read assembly resolved the numerous gaps in
CHIR 1.0 and included an extra 15 kb of sequence containing
a unique NKC gene (KLRCI-2; Fig. 1b). Our findings with
the cattle long-read assembly provide high confidence that the
goat ARSI assembly is accurate, and the scaffolds have been
verified by both optical map and chromatin conformation
analysis (Bickhart et al. 2016). Therefore, we did not repeat
the BAC-based analysis that was performed for cattle. The com-
plete cattle and goat NKC from the long-read assemblies were
manually annotated at high resolution to identify all of the
exons related to NKC genes and examine which had the po-
tential to encode functional genes.

Repetitive elements within the cattle NKC

Repetitive elements are believed to play an important role in
NKC evolution as potential hot spots for unequal crossover
(Carlyle et al. 2008). Across the cattle NKC, interspersed el-
ements were found to comprise approximately 51.35% of the
entire nucleotide sequence, compared to approximately
44.16% reported across the whole genome (Elsik et al.
2009). The number of long-interspersed elements (LINESs) is
particularly enriched, accounting for approximately 36.4% of
NKC sequence compared to 23.29% for the whole genome.
These values are consistent with those reported for the mouse
KLRA region (Carlyle et al. 2008), suggesting that similar
recombinatorial mechanisms are conserved between species
across the NKC.

The unique organization and gene expansions
within the ruminant NKC

We compared our cattle and goat assemblies to the well-
characterized human and rat NKC (Flornes et al. 2010;
Hofer et al. 2001) to examine the evolution of the ruminant
NKC. The general organization of the NKC is largely con-
served across the four species, with species-specific expan-
sions and contractions within relatively defined zones.
Notably, the human NKC is relatively compact and encodes
only six functional genes, KLRK, KLRD, and four copies of
KLRC, and lacks KLRI and KLRE genes (Fig. 2 and
Supplementary Table S2). Multiple copies of KLRC are also
encoded between KLRA and KLRK in all four species. KLRJ, a
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Fig. 1 Comparison of NKC
genome assemblies. a Recurrence
plots of cattle and b goat NKC
regions comparing the sequence
identities of the reference genome
assemblies (x axes) with the
current respective long-read
assemblies (y axes). Gene
annotation is shown at the /eft.
Genes which are either putatively
functional (closed arrows) or non-
functional (open arrows) are
indicated and point in the
direction of transcription. Genes
which encode receptors that
possess inhibitory (negative) and/
or activating components
(positive) are indicated, and open
symbols denote non-functional
genes. Gaps within the reference
assemblies are represented by
black bars below the x axes. No
sequence gaps were present
within either long-read assembly.
Tick marks at the top and right are
separated by 100 kb. Misplaced
and olfactory receptor (OR)-
containing contigs are indicated
for the cattle genome as gray
boxes. BAC clones used in the
current analyses are represented at
the right
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Fig. 2 Comparative organization cattle KLRA
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gene most closely related to KLRA, is localized telomerically
from KLRA and centromerically from the KLRI genes in both
the cattle and goat genomes. Encoding both a TM region and a
cytoplasmic tail, KLRJ lacks either activating or inhibitory
components making its function ambiguous, suggestive of a
heterodimeric role as seen with KLRD and KLRE (Saether
et al. 2008), albeit with an unknown partner.

Immediately downstream from KLRA in both cattle and
goats are two ~150-bp vestigial KLRH-like exons (approxi-
mately 72% sequence identity with rat KLRHI). Recurrence
plot sequence identity analysis revealed the presence of a
highly repetitive region approximately 280 kb in size midway
between KLRA and KLRJ (Fig. 1a). Most interestingly, this
region in both cattle and goats contains a novel, expanded
assortment of C-type lectin-like genes encoded in the opposite
orientation to KLRA. In cattle, this includes 16 novel genes, 9
of which are KLRC-like (Fig. 3a, b), interspersed with 7 genes
most closely related to rat KLRH1 by phylogenetic analysis of
their extracellular C-type lectin domain (Fig. 3b and
Supplementary Fig. S1). Five of these seven KLRH-like genes
bear activating KLRC2-like cytoplasmic and TM domains
(Fig. 3a). This region in goats has likewise expanded to in-
clude four KLRC genes and two KLRH-like genes (Fig. 2),

2040 kb

600 kb

one of which possesses exons 1 and 3 of a KLRC2-like acti-
vating tail. It is therefore apparent that KLRC expansion into
this region as well as recombination with KLRH preceded the
Bovinae-Caprinae divergence ~30 Ma (Hiendleder et al.
1998).

Five of the six KLRCI genes in this expanded region of
cattle are >95% identical to one another, indicative of more
recent evolutionary expansion. All six inhibitory KLRC!
genes and all three activating KLRC2 genes are putatively
functional, based on their open reading frame sequences and
the conservation of canonical splice site motifs. An unusual
feature was previously reported, in which a cattle KLRC/
cDNA (NKG2A-07) possessed a cytoplasmic tail containing
two immunoreceptor tyrosine-based inhibition motifs (ITIMs)
and a predicted TM region containing an arginine residue
creating the potential for both inhibitory and activating func-
tions, respectively (Birch and Ellis 2007). The existence of
this gene was confirmed in the ARS-UCDv0.1 genome as-
sembly, as it matches to bota KLRCI—4, which is located in
the center of the expanded cattle KLRC region (Fig. 2).

The other cluster of KLRC genes flanked by KLRK and
KLRI in rat, goat, and cattle appears more conserved across
these species. Both the cattle and goat genomes contain a
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a exons 1-3 (intracellular, TM, and stalk regions)
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Fig. 3 Phylogenetic relationships of nucleotide coding region sequence
for KLRC and KLRH in cattle, goats, humans, and rats. a Cytoplasmic and
TM regions encoded by exons 1 to 3. b C-type lectin domain encoded by
exons 4 to 6. The first three exons of rat KLRH were excluded as the

single inhibitory KLRC1 gene and a KLRC?2 pseudogene,
while cattle possess an additional likely functional KLRC?2
(Fig. 2). The KLRC2 pseudogenes of cattle and goats share
the same disabling features and are both missing the last two
exons, indicating that functionality was lost prior to their di-
vergence from a common ruminant ancestor. Importantly,
KLRD has duplicated in both cattle and goats
(Supplementary Table S2), consistent with an expanded
KLRC repertoire in other species and suggesting that the het-
erodimeric KLRC/KLRD partnership has been preserved and
subject to similar diversification pressures.

KLRH has been reactivated and expanded in cattle

The existence of KLRH-like genes in ruminants is intriguing,
as KLRH has not yet been described beyond the rodent line-
age. Five such genes in cattle possess activating TM and cy-
toplasmic domains (bota KLRH2, bota KLRH3,
bota KLRH4, bota KLRHS, and bota KLRHG6), of which
three are putatively functional (bota KLRH?2, bota KLRHS,
and bota KLRHG), although one of these contains two non-
canonical splice sites (bota_KLRHG6). Furthermore, one of two
KLRH genes in the goat has likewise aquired a KLRC-like tail
(cahi_KLRH?). However, exon 2 of this tail appears to have
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goat KLRC1-1
cattie KLRC1-1

73 _ cattle KLRC1-4
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b exons 4-6 (C-lectin domain)
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sequence was too divergent to be aligned. Bootstrap values (out of 100)
are indicated at branch points. Dashed boxes indicate the ruminant genes
found within the expanded region flanked by KLRA and KLRJ. To ease
visualization, KLRH genes are shown in bold

been subsequently deleted from cahi KLRH2. Moreover, two
non-canonical splice sites in exons 3 and 4 and a frameshift in
exon 5 have likely destroyed its functionality, despite mainte-
nance of an open reading frame across exon 1 to exon 3.
Two additional genes in cattle (bota KLRHI and
bota KLRH?7) and one in goats (cahi KLRHI) do not appear
to be associated with exons encoding the N-terminal intracel-
lular and TM domains. An 80-bp fragment most similar to a
KLRA-like N-terminal region was identified approximately
4 kb upstream of cahi KLRHI using the NCBI conserved
domain database (Marchler-Bauer et al. 2015), whereas
BLASTN, BLASTX, and HMMgene failed to predict this
portion of the gene. Despite this, both cahi KLRHI and
bota KLRHI intriguingly form an intact open reading frame
across the exons encoding the C-terminal lectin domain.
Together, these findings indicate that KLRH was functionally
resurrected with the acquisition of an activating tail prior to the
Bovinae-Caprinae divergence and further expanded in the bo-
vine lineage.

Receptors with activating potential have been disrupted

All four of the cattle pseudogenes and both goat pseudogenes
that contain the full complement of exons (bota KLRH3,
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bota KLRH4, bota KLRC2-1, cahi KLRH2, cahi KLRC2—
I) encode potentially activating receptors (Fig. 2). It is inter-
esting to note that none of the genes share the same disrupting
features. Whereas bota KLRH4 contains a single frameshift
in exon 5, bota KLRH3 contains no disabling genetic lesions
within the lectin domain-encoding exons but contains a frame-
shift within exon 3 and non-canonical splice site in exon 2.
The cattle bota KLRH7 gene is disabled by nonsense muta-
tions in both exons 4 and 5 and a non-canonical splice site and
frameshift in exon 5, while the other KLRH-like gene lacking
a tail (bota KLRHT) possesses an intact open reading frame
with canonical splice sites. We conclude from this diversity of
disabling mutations that both the recombinant KLRH genes
with activating KLRC?2-like tails and those apparently lacking
tails were independently disrupted after their expansion.

The initiation codon of bota KLRI2 is mutated (ATG— >
AAQG) in both the UMD 3.1 and ARS-UCDvO0.1 assem-
blies. Although a potential alternative start site exists sev-
eral codons downstream, a non-canonical splice site at the
end of exon 1 may additionally disrupt the gene. We ob-
served an additional 2-bp frameshift that results in multiple
downstream stop codons in both of the overlapping RPCI-
42 BAC clones, arguing that this gene has become non-
functional in the cattle genome. In contrast, no disabling
mutations were observed within the genes encoding inhib-
itory receptors. This type of selective disruption of activat-
ing genes is also a feature of the cattle K/R (Sanderson
et al. 2014), as well as human K/R and mouse KLRA
(Abi-Rached and Parham 2005).

Allelic polymorphism is concentrated in the predicted
extracellular and ligand-binding domains

Allelic polymorphism is a feature of expanded NK cell
receptor complexes (Trowsdale et al. 2001). We used the
fact that the cattle BAC clones were derived from three
different individuals to examine the allelic variability be-
tween the overlapping sequences. No SNP variation was
identified between the Friesian-derived TPI4222-102F7
and TPI4222-309A12 clones, suggesting that they were
derived from the same haplotype, which may be a con-
sequence of the historically or current low effective pop-
ulation size for this breed. More surprisingly, there was
little polymorphism between these clones and the ARS-
UCDvVO0.1 assembly, despite the latter being derived from
a Hereford individual. Across 180 kb of overlap between
the assembly and TPI14222-309A12, there were a total of
177 SNPs and 78 insertions/deletions (indels). Only one
of these was located within an exon, a synonymous SNP
within exon 2 of bota KLRH3. Similarly, none of the
713 SNPs between TPI4222-343E2 and the genome as-
sembly were within the coding regions of bota KLRE or
bota KLRD2. The CHORI-240 clones, which were used

as a major part of the UMD_3.1 assembly and were
derived from L1 Domino 99375, the sire of the animal
used for the long-read assembly, contained no SNPs rel-
ative to the ARS-UCDv0.1 assembly, perhaps because
they came from the same haplotype assembled from his
daughter’s genome. However, the CH240-239G9 and
RP42-154D6 sequences share a 3-bp insertion within
one of the lectin domain-encoding exons of bota KLRJ.
Three additional non-synonymous changes were further
observed in the lectin region of bofa KLRJ on RP42-
162P15, but not on RP42-154D6, relative to the genome
assembly. Thus, both overlapping RPCI-42 clones derive
from different haplotypes. Despite this, both of these
clones possess a shared, identical copy of bota KLRI2,
indicating that these two haplotypes have either
recombined or that the bota KLRI2 paralog common to
both has undergone gene conversion.

The identification of allelic variability in the BAC clones
and genome motivated further investigation of polymor-
phisms within the NKC. We therefore enriched, sequenced,
and mapped NKC genomic DNA representing husbanded and
feral cattle from 20 B. taurus and 3 B. indicus (estimated
divergence time, 1.7-2.0 Ma (Hiendleder et al. 2008)).
Accurate detection of polymorphism in the expanded 300-kb
KLRC/H region was not practical using these short reads due
to the highly similar and repetitive nature of these genes and
pseudogenes that complicates accurate read mapping.
However, high-confidence mapping was possible outside of
this region, which revealed substantial allelic variation among
the remainder of the NKC genes. In total, 77 SNPs (55 non-
synonymous) were identified within the coding regions of
KLRA, KLRJ, KLRI2, KLRIl, KLRK, KLRDI, KLRD2, and
KLRE (Fig. 4). Notably, we observed no sequence variation
within the lectin domain of KLRK across all 23 animals.
Similarly, KLRD2 and KLRE were almost monomorphic, the
exception being an apparent divergent KLRE genotype ob-
served in all three B. indicus animals. In contrast, 14 non-
synomymous SNPs were identified within the coding regions
for KLRA and 11 in KLRD1. The former of which confirms a
previous report identifying two divergent KLRA allelic line-
ages in cattle (Dobromylskyj et al. 2009). For each of these
two genes, there appeared to be two major haplogroups, sug-
gesting that they may have distinct functional properties.
There was no clear relationship between KLRDI or KLRA
genotypes, and individuals from different breeds within both
B. taurus and B. indicus share almost identical alleles (Fig. 4).
Furthermore, as our probes captured the flanking genes
STYKI and MAGOHB, we assessed heterozygosity in the
flanking region upstream from KLRA. Although the diversity
of these genes is somewhat limited compared to those of the
NKC, their heterozygosity largely corresponds to that ob-
served across the NKC for the 23 animals we assessed
(Fig. 4).
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Fig.4 Genetic variation within the cattle NKC coding regions. Genomic
orientation is preserved with gene orientation shown at the /left with
arrows pointing in the direction of transcription. Black-shaded regions
of genes indicate the lectin-coding domains, and gray-shaded regions
indicate cytoplasmic, TM, and stalk regions. Shaded bars at the left
indicate whether the SNP at that position is synonymous (gray) or non-
synonymous (black) when compared to the reference genome (UMD _
3.1). Red-colored bars indicate the homozygous SNPs (approximately

Comparison to other mammalian genome drafts confirms
the plasticity of NKC genes and the unique organization
in ruminants

To better understand the history of NKC evolution, we com-
pared the cattle and goat long-read assemblies with the available
reference genomes for sheep (Oar_v3.1), pig (Sscrofal0.2), and
horse (Equ Cab 2) that are all based on short sequence reads. As
expected based on our findings with the UMD 3.1 and
CHIR 1.0 assemblies, the NKCs of these reference genomes
contain numerous sequence gaps, making conclusions about
detailed genomic structure and allele content provisional
(Supplementary Fig. S2). However, the sheep NKC assembly
is consistent with the goat and cattle, with the only substantial
differences being within the highly variable region containing
the expanded KLRC and KLRH, which is heavily fragmented
into 17 contigs. Furthermore, while there are numerous KLRC-
like fragments present on various contigs in the sheep assembly,
it is impossible to determine whether any of them are associated
with a KLRH-like gene, as seen in cattle and goat.
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100% of reads), yellow-colored bars indicate the heterozygous SNPs
(approximately 50% of reads), and gray-colored bars indicate the
identity to the reference. Nerewater Tiptop, Blackisle Garve, 159, 766,
252, 183, 405, 652, 982, 4222, 598, 818, 805, 204, 882, 206, and 375
represent the Friesian cattle. Samples from Kuchinoshima and
Chillingham cattle were obtained from genetically isolated herds in
Japan and the UK, respectively. B. indicus is represented by three
individuals from either the Sahiwal or Nelore breed

The pig is a more distantly related artiodactyl to rumi-
nants, sharing a common ancestor approximately 60 Ma
(Meredith et al. 2011). They possess a single inhibitory
KLRA and KLRJ with two small KLRH-like fragments
proximal to and in the same orientation as KLRA, similar
to the ruminant genomes. In addition, a single KLRH gene
lacking the first three exons is proximal to KLRJ in the
same position and in the same orientation as KLRHI in
ruminants. Overall, the pig NKC is considerably more
compact and shows little evidence of gene expansion
(Supplementary Fig. S2 and Supplementary Table S2).
Notably, the porcine NKC has only a single activating
gene, KLRK. A single inhibitory KLRII, a single inhibi-
tory KLRCI, and a single gene each of KLRD and KLRE
complete this region of the porcine NKC.

The horse shared a common ancestor with cattle ap-
proximately 80 Ma (Meredith et al. 2011). In the current
genome assembly, we identified NKC genes spanning a
large region of approximately 1260 kb, which contains
13 sequence assembly gaps. We identified five functional
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inhibitory KLRA genes and a single KLRA pseudogene,
which is consistent with previous studies based on cDNA
evidence (Takahashi et al. 2004). Two KLRH-like genes
are also present in the same positions to those found in
the artiodactyl genomes and likewise lack the first three
exons. As in pigs, horses appear to possess a single
functional gene each of KLRJ, KLRD, KLRE, inhibitory
KLRII, and activating KLRK. Intriguingly, the KLRC lo-
cus flanked by KLRI! and KLRK appears to be substan-
tially expanded compared to all other known genomes.
Seven putatively functional inhibitory KLRCI genes,
three KLRC2 genes (of which only two have activating
motifs), and three KLRC/ pseudogenes were identified in
total. Thus, despite expansion, the horse KLRC gene
cluster has retained only two putatively functional acti-
vating members.

Due to the presence of KLRJ within the genomes of the
species we studied, we revisited the well-characterized NKC
of the human, mouse lemur, and rat. Although not previously
described in the mouse lemur NKC BAC assembly (Averdam
et al. 2009) (GenBank FP236838), we found that KLRJ is
indeed present in the mouse lemur and in the same position
as in other species (Supplementary Fig. S2). In contrast, KLRJ
was not found in either the human (GRCh38.p5) or the rat
(Rnor_6.0) genomes (Supplementary Fig. S2). Interestingly,
we also identified two KLRH genes in the mouse lemur (but
not in the human) in the opposite orientation as KLRA and
KLRJ, as seen in the other species (Supplementary Fig. S2).
As in the other non-human, non-rodent genomes that we in-
vestigated, neither of these KLRH genes appear to be associ-
ated with coding sequence for intracellular or TM regions.
Using the annotation of NKC genes in this study in combina-
tion with the divergence times between the common ancestors
of each species, we are able to propose a model for the expan-
sion and contraction of the NKC during mammalian radiation
(Fig. 5).

s
= = cattle
= goats
common . |— sheep
ancestor: * pigs
kira -
KLRH % horses
KLR) @ DS
KR * rats
KLRC W *
. = lemurs
S humans
mya: 90 60 30 0

Fig. 5 NKC evolution between selected mammalian lineages using
mtDNA sequence. All five KLR gene subgroups indicated were carried
by the last common ancestor of the species presented at the right. Gene
subgroup expansion (up arrows) or contraction (down arrows) for
individual species or clades is indicated at nodes. Divergence time
estimates are shown below and with dashed lines at 30-Myr intervals

Discussion
The evolution of the NKC

This study examined the structure and gene content of the
KLR region of the NKC in the following eight mammalian
species: cattle, sheep, goats, pigs, horses, rats, lemurs, and
humans. Upstream from KLRE exist closely related C-type
lectin (i.e., CLEC) genes, for which the gene content is not
substantially different between these species apart from ro-
dents, which have expanded their CLEC2D and KLRB loci.
However, within the KLR gene cluster, our analyses revealed
extensive species-specific expansions and contractions within
a generally conserved framework of genes. In particular, the
KLRA locus has undergone extensive expansion and contrac-
tion during mammalian evolution, as evidenced by its highly
variable gene content between species and the duplication and
subsequent divergence of the closely related KLRH and KLRJ
genes. All three of these genes originated prior to the diver-
gence of the Laurasiatheria (e.g., cattle, pigs, whales, horses,
and dogs) and the Euarchontoglires (e.g., humans, lemurs,
rabbits, and rats) approximately 92 Ma (Meredith et al.
2011). Within the human lineage, both KLRH and KLRJ were
deleted (as well as KLRI and KLRE among all primates).
Although different in rodents, KLRH is structurally similar
in the mouse lemur and the Laurasiatherians, indicating that
its sequence inverted and the intracellular and TM domains
were deleted prior to the divergence of these two major clades.
KLRH in rodents, on the other hand, is encoded in the same
orientation as KLRA and possesses an inhibitory intracellular
tail. This suggests either a duplication and subsequent contrac-
tion or that a recombination occurred between the lectin do-
mains of KLRH and a KLRA gene during rodent evolution. In
either case, the inverted KLRH-like sequences were deleted in
the rodent lineage. It seems likely that in early ruminant evo-
lution, this inverted region became a template for non-allelic
homologous recombination (NAHR), in which sequence sim-
ilarity between the regions containing KLRC! and KLRH
established a conversion tract with KLRC! in the new loca-
tion. The locus was then further expanded by duplication
events and additional conversions.

Phylogenetic analysis of the C-type lectin domains of the
ruminant KLRC genes was unable to resolve the sequence of
duplications, although it is likely to have initially occurred
with an ancestor homologous to bota KLRCI-7. Shortly after
the initial expansion, one of the now duplicated KLRH genes
acquired the intracellular tail from an activating KLRC?2 gene.
This new KLRH/KLRC?2 hybrid then subsequently duplicated
along with the rest of the locus, giving rise to five such hybrids
in cattle (KLRH2, KLRH3, KLRH4, KLRHS5, and KLRH6) and
one in goats (cahi_KLRH?). Three of these in cattle (KLRH?2,
KLRHS, and KLRH6) are putatively functional. As the knock-
out mutations differ between the remaining three full-length
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pseudogenes, it is apparent that following the initial recombi-
nation event and subsequent expansion, these genes were in-
dependently disabled. This suggests that the KLRH/KLRC?
hybrids were functional following the recombination event
and prior to their expansion. Intriguingly, the open reading
frame for the C-type lectin domain of KLRH remains func-
tionally preserved in cattle, sheep, goats, pigs, horses, and
mouse lemurs, despite the lack of recognizable intracellular
and TM domains. As it seems unlikely for this preservation to
be coincidence, this gene may be functional, perhaps
expressed as a soluble receptor.

The apparent conversion of activating receptors to
pseudogenes in ruminants fits with a paradigm that activating
genes are quickly expanded in response to strong selection
pressure, then quickly lost once beneficial function is lost
(Abi-Rached and Parham 2005). In this hypothesis, retention
of activating genes which are no longer useful to host survival
and reproduction may be detrimental by permitting inappro-
priate NK cell stimulation, cytotoxicity, and autoimmunity.
On the other hand, in the horse, all four identified
pseudogenes contain inhibitory motifs. However, the three
equine KLRC1 subgroup pseudogenes appear to have under-
gone block duplication along with a functional KLRC, thus
expanding a net inhibitory receptor reservoir. The disruption
of activating KLRC2-1 in both cattle and goats appears to
predate species divergence, as they share the same loss of
the last two lectin domain exons. In cattle, the loss of activat-
ing KLRI2 function is either relatively recent or ongoing due
to the less obvious nature of the knockout mutations. That this
gene is missing in pigs and horses suggests that it has either
been lost or its expansion has never occurred in their ancestry.
The most parsimonius explanation, however, is that they
evolved once and subsequently homogenized within their re-
spective species. Thus, as a result of gene conversion, the
origin of many paired NK cell receptors is ambiguous.

Use of long-read sequencing to elucidate highly repetitive
genomic regions

Much of the work described was motivated by the draft qual-
ity of the public genome assemblies for livestock species.
Auvailable methods using short-read sequencing data have dif-
ficulty forming high-quality assembly of repetitive areas of
the genome such as the NKC. This difficulty is compounded
when the two alleles present in the animal whose genome was
sequenced may be substantially different in gene content in
specific areas, since the assembly attempts to project a haploid
presentation of the diploid genome. Some assemblers have
tendency to collapse similar repeats on the assumption that
they are allelic differences, while others expand the haploid
genome to include more or all of the sequence from both
alleles. In both instances, uncertainty usually results in a frac-
tured assembly in the area of tandemly duplicated genes. This
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is simplified by sequencing haploid representations of the ge-
nome such as in large-insert clones in bacterial vectors.
Indeed, the bovine and porcine genome assemblies that in-
cluded substantial content of sequence from individual BAC
clones provided significantly better (but still incomplete) rep-
resentations of repetitive regions. But even with relatively
short stretches of haploid DNA, short-read technologies have
difficulty creating unbroken assemblies when the repeat
length greatly exceeds the read length. Recently, long-read
technologies have overcome many of the constraints of as-
sembling these types of genomic regions (Berlin et al. 2015;
Koren et al. 2013), and we employed these methods on some
of the BAC clones used to obtain bovine genome sequence.

Our results also indicate the utility of using a probe-based
capture method to enrich and sequence genomic regions to
elucidate allelic variation. However, given the highly repeti-
tive nature of the recently expanded KLRC genes in cattle,
short-read paired-end (i.e. 250 x 250 bp) sequencing was in-
sufficient for mapping and assessing the diversity across this
region. Furthermore, the potential for genes containing do-
mains that have recombined from other genes, such as the case
for the cattle KLRH/KLRC?2 hybrids, may complicate efforts
to transcriptomically assess gene expression when using stan-
dard short-read sequencing. To resolve these problems, we
recommend that such repetitive immune gene clusters be se-
quenced and transcriptomically analyzed using long-read
technology.

Conclusions

Our annotations of the cattle, goat, sheep, pig, and horse NKC
regions have identified a large proportion of NK cell receptor
gene family members that may have been subjected to expan-
sion and contraction due to NAHR. We described the exten-
sive KLRC expansions in cattle and horses, the discovery of
KLRFE and KLRI outside of rodents, the presence of KLRJ in
the described species, and the identification of novel KLRH
genes bearing KLRC2-like activating tails in cattle and goats.
Finally, polymorphisms across the cattle NKC, and likely oth-
er species, further expands the available NK cell receptor rep-
ertoire, particularly in the KLRC/D and KLRA systems. These
results fill an important evolutionary link in our understanding
of the NKC and will inform future investigations of NK cell
receptor diversity, assist in identifying their potential ligands,
and aid in the identification of genotypes associated with dif-
ferential disease outcome.
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