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Digital tissue and what it may reveal about ®

the brain

Josh L. Morgan"" and Jeff W. Lichtman®"

Abstract

Imaging as a means of scientific data storage has evolved
rapidly over the past century from hand drawings, to
photography, to digital images. Only recently can
sufficiently large datasets be acquired, stored, and
processed such that tissue digitization can actually reveal
more than direct observation of tissue. One field where
this transformation is occurring is connectomics: the
mapping of neural connections in large volumes of
digitized brain tissue.

From drawings to digitization: the emergence of
images as data
In terms of imaging the world, the transition from painting
to photography was a profound step as the image became,
for the first time, an objective rendering of the world. No-
where was this change more evident than in microscopy. In
the first centuries after microscopes were built, scientists
drew the new and previously invisible world based on their
impressions. As a result, scientists as formidable as Golgi
and Cajal could look at the same kind of material and re-
port different things. This interpretive problem was partly
overcome by the invention of the camera obscura and later
the camera lucida, which allowed microscopists to trace
exactly what was being viewed (Fig. 1a). But the skill of the
tracer was still an obstacle to getting reliable information.
The development of photosensitive silver halide crystals
as a medium for the capture and storage of visual infor-
mation (Fig. 1b) marked a turning point in biological sci-
ence. It allowed many people, who might disagree, to at
least be interpreting the exact same data. Photography
flourished in the last century and photo-microscopy be-
came a central feature of nearly all publications related to
the biology of cells—which is a vast literature.
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The advent of television marked the birth of the ‘elec-
tronic’ image. In microscopy, light amplifying intensifiers
that had been used in the military for low light imaging
were combined with TV style cameras and high signal to
noise ratio methods of fluorescence to render cellular events
over time where the absolute intensity of the specimen was,
until then, limiting. The analogue electronic image was a
profound advance as it could be adjusted, for example, to
change the image’s contrast or gamma in reproducible ways
[1]. It also marked the birth of synthetic images where an
optical path that produced a ‘real’ image was no longer a re-
quirement. Thus, the scanning electron microscope, Min-
sky’s initial invention of the confocal, or Roberts and
Young’s invention of the flying spot microscope all pro-
duced microscopy images by rendering serially obtained
image data from a single point detector on a spatially dis-
tributed device like a TV monitor (Fig. 1c) [2, 3]. This scan-
ning was an important advance because the image was now
a pointillistic series of data values, each independent and
measurable separately, the harbinger of true digital micros-
copy. This approach allowed the first digital images to be
acquired (Fig. 1d)

Beginning in the 1990s, commercialization of computers
and the exponential increase in their power brought about
another revolution in biological imaging, one that is still
going on and one that we think is as important as the
transition from drawing to photography. Electronic im-
aging devices can now stream large amounts of image data
directly to hard drive storage. Image data acquisition has
thus become separated from the rendering of images with
profound consequences.

One of these consequences is that much larger amounts
of image data can be acquired than was possible with film.
This particular kind of ‘big data’ is already having a big ef-
fect on biological microscopy. Indeed we are reaching the
point where imaging, and storage and retrieval of digital
image data, is so easy that it justifies a shoot first ask ques-
tions later approach to microscopy. As a consequence the
work style of microscopists will change. Rather than
searching tissue samples to find example images to make
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Fig. 1. Changes in the way researchers render biological images. a The camera lucida is an optical device that projects a semitransparent image
of a microscopic field of view onto the same plane as a sheet of drawing paper. Using this device, a scientist can trace exactly what they see in
the microscope onto paper (illustration from 1857 catalogue of Messrs Ross). b Once photography was invented, it was obvious that microscopes
should be equipped with a more automated way of generating a lasting rendering of what is in the field of view of a microscope objective.
Shown here is the Zeiss Ultraphot |, the company’s first commercial photomicroscope (courtesy of Carl Zeiss Microscopy GmbH). ¢ The first
scanning confocal microscope as described by Marvin Minsky in his patent of 1957 [28]. This device used electromagnets (see labels 46 and 54)
to move a sample (11a) in a raster pattern. The sample was illuminated with a focused spot of light and the return reflected light passed through
a pinhole and was detected by a photomultiplier tube (PMT). The analog output of the PMT was displayed on an oscilloscope. d The first digital
image shows Walden Kirsch in 1957 (lower right), son of the team leader that built the first image scanner [29]. The image is the sum of two
binary scans set at different thresholds to produce approximate gray levels. This panel also shows a digital camera image that Walden himself
took 40 years later of his own daughter at much higher resolution than the 176 x 176 pixels of the image of him and 24 bit depth rather than
the binary (1 bit) depth. © 1998 IEEE. Reprinted, with permission, from Kirsch RA. SEAC and the start of image processing at the National Bureau
of Standards. IEEE Ann History Comput. 1998,20(2);7-13; all rights reserved

a particular point, the vast data of digitized biological
specimens will be mined after, sometimes long after, image
acquisition. These large data sets are also shareable, giving
potentially any interested party access to entire tissues
rather than just type-example images. Mass collection
and mass distribution of biological data offer unprece-
dented opportunities for both reaching consensus and
collaborative examination of data to detect complex or
rare patterns that would otherwise be impossible to
find.

We believe large volumes of three-dimensional digital
image data will be especially useful for study of the cel-
lular organization of the brain, the most complex tissue
known. Because spatially extended neuronal networks
are the basis of the brain’s functions, describing such
networks requires access to digital versions of large tis-
sue volumes but at resolutions sulfficient to resolve sub-
cellular synaptic details, in other words, big data.

A big data view of the brain: connectomes
At the end of the 19th century, while Ramon y Cajal was
working out his ‘neuron doctrine’ [4], Charles Sherrington
was beginning to identify physiological discontinuities in
the flow of information that mediated reflexive behaviors
which he ascribed to ‘synapsis’ between axons and
their targets [5]. Sherrington’s ideas found a strong
anatomical correlate in Cajal’s work on the law of dynamic
polarization (Fig. 2). It must have been a great aha mo-
ment when the worlds of physiology and neuroanatomy
seized upon the idea that they were in fact studying the
same thing, synapses, from different perspectives. The
idea that physical connectivity of neurons could underlie
neural function was the grand synthesis of 20th century
neurobiology.

Despite the promising beginnings in anatomy and
physiology, the conceptual links between cellular con-
nections and behavior have perhaps not evolved as much
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Fig. 2. Grand synthesis of structure and function based on Cajal’s law of dynamic polarization. Left panel: Sherrington’s definition of synapses was first
stated in 1897 and illustrated using this figure in Foster’s Textbook of Physiology, Part 3, which he co-wrote [30]. This illustration shows the influence of
Cajal’s ideas with an axon drawn (A) to terminate in close proximity to the dendrites and soma of a motor neuron and provide information to them
(bottom arrow). The motor neuron then passes this signal to the periphery via its axon (upper arrow). Right panel- Four years earlier [31] Cajal provided
the connectionist viewpoint for behavior showing how sensory information originating in the skin (D7) might pass from one cell to another from
spinal cord (B) to the cortex (A) and back down the spinal cord leading eventually to action as muscle fibers become activated by a motor neuron
axon (O). This conception is the foundation of the connectomics approach: tracing out all the synaptic connections between neurons

as one might have hoped. Many modern findings, in
fact, seem to emphasize almost the opposite idea: that
anatomical connectivity per se is an inadequate platform
to understand an organism’s behavior [6]. For example,
the fact that synapses can strengthen or weaken or even
be silent; the fact that hormonal and paracrine effects
can change a neural circuit’s behavior; and the fact that
the behavioral state of an organism can change rapidly
all suggest that the wiring diagram is insufficient to get
at the physical underpinnings of a functioning brain [7].
But these caveats are not the main reason that synaptic
networks have not been intensively studied. Rather, for the
most part, such data have just not been available. The prin-
cipal reason is technical: connectional maps of networks re-
quire high resolution imaging over large volumes, a
challenging mix [8]. However, it appears that neuroscience
is on the cusp of entering a time when direct detailed

information about network connectivity will be readily
available thanks to recent developments in imaging tech-
nologies that reveal neural network organization.

Although connectomics is a nascent field, research is
already moving in several different directions. It may be
useful to formally divide connectional data mapping into
four connectomic categories—projectional, interclass,
intraclass, and saturated (Fig. 3)—because these bodies
of work are asking quite different kinds of questions,
and to some degree require different techniques.

Projectional connectomics

The brain is unlike other organ systems because the prin-
cipal cells (neurons) specifically interact with a large num-
ber of other cells that may be located considerable
distances apart (even meters apart in large animals). Thus,
it is essential to map the pathways by which neurons in
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Fig. 3. Connectivity maps at different levels of organization. a Diagram of region-to-region flow of visual information. b Cell type connectivity
map illustrates which neuronal types and subtypes innervate which. ¢ Intraclass connectome illustrates the patterns of synaptic connections
generated by the relative connectivity of individual neurons (colors) of the same type. For example, the green and orange cell constantly innervate
the same targets. d Network diagram in which the synaptic connections of multiple populations and subpopulations of neurons can be
organized according to their synaptic connectivity. e Tissue digitization. An attempt to capture all anatomical connectivity data within a single
dataset. Digitization includes ultrastructural description of synapses and relative distribution of synapses across arbors of target neurons
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different parts of the brain are connected. Such long-
range connections (Fig. 3a) are most easily mapped by
methods that can cover large expanses such as magnetic
resonance techniques [9] or labeling by axonal transport
[10]. In 2005, the term connectome [11] was coined to
refer to a proposed complete mapping of the connectivity
matrix of the human brain. Progress on “The Human Con-
nectome Project’ has provided a framework for integrating
many different kinds of human brain imaging data from
many different subjects and has resulted in increasingly
more detailed parcellation of human brain regions and
their connectivity [12]. Importantly, however, the current
limiting resolution of techniques that map full human
brains is in the range of a cubic millimeter—a trillion-fold
larger than the resolution required of the techniques used
to generate maps of synaptic connectivity.

Interclass connectomics

The brain is also unlike other organ systems because of the
sheer diversity of its cellular components. In many animals
the matter of neuronal cell diversity is simplified somewhat
because it appears that the same neuron class is used mul-
tiple times in a single animal’s nervous system. Not only sin-
gle cell classes, but also multicellular motifs (Fig. 3b) seem
to be used repeatedly. The use of stereotyped cellular en-
sembles is commonplace in all organs (for example, the
renal nephron) where the inherent redundancy of multiple
copies of the same ensemble improves functional capacity.
In the brain, multiple copies seem to play a different role. In
the visual system, for example, the same cellular motifs are
duplicated many times over in order to analyze each pos-
ition in visual space. There is nothing redundant about this
duplication (damage to a small part of retina leads to a blind
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spot). However, learning how visual signals are passed from
photoreceptors to their downstream targets in one patch of
the retina is often sufficient to explain how such signals are
processed throughout most of the retina. There is wide-
spread belief—as yet unproven—that a similarly stereotyped
circuit might be in use throughout the cerebral cortex.

One challenge in generating and interpreting cell-type
connectome data relates to the cell-type classification
process per se. Cells belong to multiple overlapping classes
depending, in part, on whether the criterion is functional,
structural, or biochemical. While we attempt to create lo-
gical frameworks by placing things in separate cubby holes,
the actual ‘logic’ of animal evolution requires no such tidy
classification structure for a nervous system to do its work.
The lines between fixed neuronal categories can be espe-
cially blurry when the function of a particular neuron is an
emergent property that only manifests itself after a pro-
tracted period of development and learning [13].

Intraclass connectomics

Beyond the identification of cell classes and their canon-
ical connectivity is a more subtle problem that is easily
seen by considering the connectivity of cerebellar cortex.
The cerebellum appears relatively simple: there is only
one type of axonal output (from Purkinje cells) and two
types of axonal inputs (mossy and climbing fibers).
Within the cerebellum there are only a handful of cell
types (granule cells, Purkinje cells, and several types of
interneurons). The connectivity (in a canonical sense)
has been worked out, but both what the cerebellum does
exactly and how it does it remain elusive. Why is this?
The way the cerebellum works probably depends on
how the climbing fibers, parallel fibers, and inhibitory
neurons that innervate Purkinje cells are organized. It is
not sufficient to know that both classes of axons innerv-
ate Purkinje cells. What presumably matters is which
particular neurons among each of these classes co-
innervate the same Purkinje cell. Understanding this
kind of network connectivity is difficult because there
may be no intrinsic molecular markers to help discrim-
inate one parallel fiber from any of perhaps hundreds of
millions of other parallel fibers in the same cerebellum.
Probably some of this connectivity variation is estab-
lished by the effects of neural activity. Hence, we suspect
that it is primarily in the intraclass connectome (Fig. 3c)
where one will find the connectional patterns underlying
long-term memories.

Saturated connectomics: a digital brain

A single dataset could contain projectional, canonical,
and intraclass connectional information (Fig. 3d) if one
were willing (and able) to generate a true digital render-
ing of a brain containing everything down to every last
synapse (or even further to every synaptic vesicle). The
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important point is that a digital brain (Fig. 3e) with a
fully saturated wiring diagram is more useful than an ac-
tual brain in a critical way: it can be mined forever by
virtue of the conversion of tissue into a permanent
digital equivalent.

From inferring synaptic networks to imaging
them

Beginning with Cajal’s use of the Golgi stain, neuroscien-
tists have pursued ever more sophisticated strategies to
uncover the neural circuits that underlie functional fea-
tures of the nervous system. For Cajal the key strategy
was using a stain that labeled a small number of the cells
in any given piece of tissue. With this tool he was able
to identify distinct types of cells by their appearance
and, based on close anatomical proximities of axons of
one cell type and dendrites and somata of others, he
could infer which cell types were likely to be functionally
connected. As long as a cell type could be identified
from one sample tissue to the next, all the observed con-
nectivities collected from the different tissue samples
could be amalgamated into a comprehensive view of
how the cell class interacted with cells of other classes.
A beautiful Cajal drawing describing the circuitry of a
region of the brain is not a single piece of tissue that
was observed through his microscope; rather it is a com-
posite of a large number of observations inferentially
linked together by commonalities between individual
subjects (Fig. 4a).

Despite an expanding array of new labeling and re-
cording approaches, in large part neuroscience still gen-
erates maps of synaptic networks based on accretion
from observations of a small portion of the network in
each of many different samples. The composite circuits
are elevated to the status of ‘canonical’ circuits once they
seem to have properties that are consistent between in-
dividuals and in some cases between species.

What is missing from canonical circuits?

The trouble with the use of canonical circuits as a de-
scriptor of the way the brain is organized is that the
structure of neural tissue is likely not actually canonical.
The notion of canonical circuits in important because it
provides a list out of the cell types that comprise real
circuits and which type is connected to which other
type, but we suspect that description is, in most cases, a
far cry from an actual neural network. Canonical circuits
often ignore the number of different cells of each class
that converge on a postsynaptic cell and the number of
different target cells of one class that are innervated by
an axon. More problematic, they make the implicit as-
sumption that all cells of the same class have the same
connectivity so that showing the average connectivity
between two cell types is a sufficient surrogate for
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elongate profiles)

Fig. 4. Two views of the cellular organization of the cerebellum. a Ramon y Cajal drawing of cell types of the cerebellum based on many
observations of Golgi labeled neurons (Cajal Legacy, Instituteo Cajal, Madrid, Spain). Red box indicates relative scale of image in panel b. b
Electron micrograph showing density of parallel fibers (pf, small, light circular profiles) surrounding the dendrites of a Purkinje cell (pkc; dark

mapping the ensemble. But what if the differences be-
tween the connectivity within cohorts of cells of the
same class are important to circuit function? What hap-
pens when the synaptic connections of one class of neu-
rons individuate in response to differences in the activity
patterns within another class of neurons?

We think the problem with canonical circuit descriptions
becomes clear when we consider why nervous systems in
many animals (and especially vertebrates) opt for using the
same cell type many thousands or even millions of times
over. As mentioned above, adding more cells of the same
type only increases the computational power of the system
if each cell or motif is able to integrate somewhat different
pieces of information. This division of computational labor
within a class of cells may come about by a largely
experience-dependent differentiation in their connectivity.
This intraclass circuit diversity simply cannot be captured
in canonical views of brain circuits.

While some of the diversity in connectivity between
cells of the same class can be produced by random varia-
tions or by the topographic distribution of cells relative
to potential partners, circuit activity also plays an im-
portant role by rewiring neural circuits in development.
This network activity-based remodeling is sometimes
considered to be a modest refinement occurring at the
end of development, as the final opportunity for fine
tuning of an otherwise serviceable wiring diagram. But
in mammals, at least, the role of activity in affecting wir-
ing may be more central than the notion of fine tuning
suggests. Extensive postnatal synaptic remodeling seems

fundamental to circuit wiring throughout the nervous
system [14—22]. In places like the neuromuscular system,
the changes in wiring cannot be considered refinements
in that over ~90% of the synapses present at birth are
eliminated during development [23].

When the connectivity of a neuron is changed as a conse-
quence of the activity of other members of the same neural
population, higher order patterns of network connectivity
will emerge that cannot be captured by a canonical (type to
type) approach to circuit reconstruction. These intraclass
patterns of connectivity are only visible when the connec-
tional patterns of many neurons in the same piece of tissue
are mapped simultaneously. Critically, maps of many cells
in the same piece of tissue are able to reveal the property of
contingency: neuron A innervates neuron C only if neuron
B does as well. When the intraclass convergence pattern of
a dozen or so developing motor neurons is mapped using
Brainbow we see a great deal of this kind of contingency
wiring (Draft, Turney, and Lichtman unpublished). These
ordered connectivity patterns could never be inferred by
sampling one or two neurons at time. Thus, to understand
how populations of neurons organize into circuits, it is not
sufficient to observe one cell’s connectivity and to infer its
relationship to a standardized theoretical network. Rather
all the cells, or at least many of them, have to be assayed in
the same piece of tissue in order to learn the actual network
structure of interconnected neurons. To reiterate: it is pos-
sible that learned information (such as a particular lan-
guage) is stored in a way that is invisible at the level of
canonical circuits.
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Label everything, image everything

As suggested above, an alternative to the accretion
method of reconstructing circuits from many different
samples is to acquire many or all synaptic networks from
the same tissue sample. In the dense neuropil of the cen-
tral nervous system or the fine processes in invertebrate
nervous systems, a complete anatomical description of
synaptic connectivity is perhaps most easily obtained with
serial electron microscopy (EM; Fig. 4b). The high resolv-
ing power of electron microscopes means that tissue can
be stained with nonspecific labels that reveal every cell
membrane and every organelle. Such nonspecific staining
makes electron microscopy fundamentally different from
most uses of fluorescence because all cells and organelles
are visible in the same piece of tissue. Moreover, should
one generate a network map of all the cells that are within
the volume, such a network map reveals circuit details
that cannot be inferred from any number of sparsely an-
notated data sets [7]. The morphology and ultrastructure
of each connected process also provide details that can be
used to classify the types and assay the strengths of the
connections within the networks.

The ability to see everything comes with a cost: scaling
the electron microscopy approach to even moderate
sized volumes is non-trivial. With few exceptions, early
serial electron microscopy approaches used tissue vol-
umes far smaller than the dendritic arbor of the average
mammalian neuron. Many technical obstacles still stand
in the way of acquiring large volume EM data sets, from
the difficulty of uniformly fixing, staining, and embed-
ding large pieces of tissue to the challenges of imaging
large fields of view at suitable resolution in a time scale
compatible with the human lifespan (much less the dur-
ation of a graduate studentship or postdoc). The prob-
lem lies with the joint requirement of large volume and
high resolution. In order for small structures, such as
synaptic vesicles, fine axon branches, and dendritic spine
necks to be visible and traceable, the image voxels (i.e.,
the three-dimensional equivalent of pixels) must be
smaller than the size of these structures. Depending on
the technique being used to section and image the tis-
sue, the size of a serial EM voxel ranges from about
500 nm?® upwards. In our own experience, circuits and
synapses in the mouse brain can be identified and traced
with little ambiguity at a resolution of 4 nm x 4 nm x
30 nm [24]. At this resolution, a hundred micron wide
cube of tissue (large enough to capture about 50 neuron
somata but only parts of a neuronal dendritic arbor)
consist of about 2 x 10" voxels (or about 2 terabytes of
data), a millimeter wide cube of tissue would consist of
2 x 10" voxels (2 petabytes), a whole mouse brain would
be about 2 x 10'® voxels (2 exabytes), and a whole hu-
man brain would be about 2 x 10%! voxels (2 zettabytes).
The two terabytes of storage required to hold even the
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smallest of these volumes is something that was not
available for the first 50 years of electron microscopy.
Two zettabytes is a substantial portion of the estimated
2.7 ZB digital content of the world and it is probably at
least at the moment an unreachable goal.

It is, however, now possible to store and process 100
terabytes or more of digital data (see, for example, [13]).
The result is that it seems possible, for the first time, to
study synaptic networks of a reasonable sized piece of
tissue (hundreds of microns on a side) at any arbitrary
resolution from seeing and counting synaptic vesicles at
one extreme to seeing whole nervous systems at the
other. Of course, acquiring such datasets depends not
only on sufficient digital storage, but on many other
technical advances that increase the throughput of image
acquisition, image processing, and image analysis. New
technologies that increase the throughput and reliability
of electron microscopy imaging are being developed. For
instance, our recent efforts using ATUM-SEM produced
approximately one terabyte a day of high resolution EM
data for data sets of 100 or so terabytes [13, 25]. This
performance is being improved by more than an order
of magnitude with newer imaging strategies that could
image cubic millimeter (petascale) data sets from start
to finish in a matter of months [26].

Exploring these data sets, which consist of trillions of
voxels and thousands of image planes, can no longer be ac-
curately described as looking at an image. Rather, one can
investigate a piece of digital tissue as if it were an actual
brain much the way one can travel anywhere in the digital
Earth just with a help of a browser. Importantly the notion
that the investigator has seen their entire data set becomes
an impossibility. Full resolution images of a cubic milli-
meter of brain would take more than a century to view.

Doing biology on digital tissue

In order to turn gray scale digitized tissue into synaptic
network data, decisions have to be made about which
voxels belong to which cells and which cells form synap-
ses with one another. While human beings are good at
this task, a human staring at a 1000 x 1000 square of
pixels that changes at a rate of 30 frames per second will
be able to view less than a terabyte of data in an 8-hour
day. That is, as mentioned already, EM volumes can
already be acquired faster than a person could look at all
the acquired voxels, much less analyze them. Making
use of terabytes of digital tissue therefore requires differ-
ent image analysis strategies than have been used with
biological image data in the past.

Analyze everything

Ideally, every voxel of a piece of digital tissue would contain
not only the gray value of the raw data, but also annotation
data describing to which cell (and subcellular structure) the
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voxel belongs and, if it is a synapse, some connectivity data
(Fig. 5a—c). As mentioned, humans are very good at recog-
nizing cell boundaries, classifying objects, and building con-
nectional maps. Unfortunately, segmenting large data
volumes requires recruiting large numbers of people to as-
sign voxels to cellular objects. As newer tools emerge that
acquire data at even faster speeds, the cost to hire propor-
tionally more human tracers will be prohibitive. Ultimately,
segmentation solutions will need to scale with advances in
image acquisition capacity and that will require automated
segmentation methods. Methods that in principle will seg-
ment every voxel in a digital tissue.

For EM images, current automated segmentation algo-
rithms are computationally demanding and still require
human correction of the results. The goal of limiting hu-
man editing to almost nothing is still distant, but progress
in the field is rapid. As algorithms improve and processing
speed gets cheaper, the algorithms should be able to re-
place the vast majority of human segmentation.

Targeted exploration

The potential limitations in automatic segmentation
bring to light the question of whether it is actually useful
to acquire large volumes of digital tissue if only a subset
of the image voxels will ultimately be analyzed. Ultra-
structural mapping of even a single neuron requires the
acquisition of large EM volumes simply because of the
long distances traveled by neuronal processes. But if seg-
menting every voxel within a volume is not practical,
targeting reconstruction to a subset of the cells can still
yield important biological results. Critically, this ap-
proach is distinct from traditional sparse circuit mapping
because, after a first round of tracing, additional cells in
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the same digital tissue can be progressively added to the
same network based on their synaptic connectivity.

An example of targeted segmentation would be to first
identify a target neuron cell body according to ultrastruc-
tural cell typing, antibody labeling, or prior optical
characterization of the tissue. The dendritic arbor of the
target cell would then be traced and all of its synapses an-
notated. The boutons on the presynaptic side of each of
the synapses would then serve as seed points for the next
level of tracing. Tracing these first order connections
would reveal the spatial distribution, convergence, and
possibly divergence of the relevant axonal inputs of the
cell. Each of these traced axons could then be used to
identify all of the cells in the tissue that share inputs with
the original target cell. By moving through network con-
nectivity in this way, it is possible to learn about the net-
work organization of part of the circuit while only tracing
a small percentage of the acquired volume. Once a net-
work of interest is identified within a volume, the morpho-
logical and ultrastructural details of its neurons can be
characterized. We found this approach, of targeted net-
work tracing and structural characterization, to be effect-
ive in mapping the synaptic interactions between visual
channels in the mouse thalamus [13] (Fig. 5b, c).

Ultimately, the number of questions that can be asked
about a large piece of digital tissue exceeds what can be
asked by one scientist or even a single lab. The best use
of large EM data sets will, therefore, be achieved by
making these datasets easily available so that many re-
searchers can explore them. In particular, maintaining all
of the published segmentations in an accessible database
will allow questions raised by one round of tracing and
publication to be answered in another round. As the

~N

Fig. 5. Comparison of saturated vs targeted annotation of three-dimensional EM data sets. The images have not been previously published as such, but
are accessible from the datasets [32] published in [13]. a Electron micrograph of mouse lateral geniculate nucleus. b Saturated annotation of cell identities.
Each cell profile from the electron micrograph in panel a is assigned a different color. ¢ Examples of ultrastructural annotation that form additional layers of
information in a saturated annotation of EM volume. Red = nucleus, yellow = glial encapsulation of synaptic glomerulus, green = distinctly light mitochondria
of retinal ganglion cells, blue = synaptic sites between retinal ganglion cell boutons and thalamocortical neurons, and cyan = myelination of axons. d
Synaptically targeted annotation of three-dimensional EM volume in which seed thalamocortical cell is green, the retinal ganglion cells that innervate the
seed cell are red, and the thalamocortical cells that share retinal ganglion cell innervation with the seed cell are blue
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automated algorithms improve, more and more of these
public databases may well include large-scale automated
annotations of the data that can be searched according
to morphology and connectivity.

Reanimating digital tissue

While we have described these new large volume data
sets as ‘digital tissue’ it is of course not strictly correct as
they are not biologically active. In light of large-scale ef-
forts to create models of functioning neural tissue [27],
maybe it would be more accurate to describe these vol-
umes as digital fixed tissue. However, if large volumes of
neural circuits are annotated, complete with cell morph-
ologies, synaptic connectivity, and ultrastructure, how
big of a jump might it be to reanimate this tissue? What
will happen when we can apply the functional modeling
techniques, currently being used to study statistically in-
ferred neural circuits, to the detailed anatomical struc-
ture of an actual neural circuit?

There is considerable debate about how closely such a
digitally reconstructed circuit might be able to recreate
the behavior of the original circuit [7]. For instance, in
order to observe biologically realistic processing in this
neural tissue, it will be necessary to provide biologically
realistic activity to the circuit’s inputs. However, by con-
straining the behavior of a large scale anatomically real-
istic model of a circuit according to the results of large
scale imaging of circuit activity and learning rules, we
may be able to generate functional circuitry. How closely
the behavior of these circuits resembles the functioning
of biological circuits will be a critical test of our under-
standing of neural processing.

Conclusion

Both cellular and systems neuroscience are making steady
progress, but the critical bridge between them, under-
standing how large numbers of neurons organize them-
selves into functional networks, is still unbuilt. The
transition from being able to image one or two neurons at
a time to being able to digitize whole multi-neuronal net-
works may be the solution. In exploring densely recon-
structed networks, we will be able to deal with diversity in
the connectivity of neurons not as noise to be averaged
out, but as the principal phenomena to be understood.
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