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Various factors, including viral and bacterial infections, autoimmune responses, diabetes,
drugs, alcohol abuse, and fat deposition, can damage liver tissue and impair its function.
These factors affect the liver tissue and lead to acute and chronic liver damage, and if left
untreated, can eventually lead to cirrhosis, fibrosis, and liver carcinoma. The main
treatment for these disorders is liver transplantation. Still, given the few tissue donors,
problems with tissue rejection, immunosuppression caused by medications taken while
receiving tissue, and the high cost of transplantation, liver transplantation have been
limited. Therefore, finding alternative treatments that do not have the mentioned problems
is significant. Cell therapy is one of the treatments that has received a lot of attention today.
Hepatocytes and mesenchymal stromal/stem cells (MSCs) are used in many patients to
treat liver-related diseases. In the meantime, the use of mesenchymal stem cells has been
studied more than other cells due to their favourable characteristics and has reduced the
need for liver transplantation. These cells increase the regeneration and repair of liver
tissue through various mechanisms, including migration to the site of liver injury,
differentiation into liver cells, production of extracellular vesicles (EVs), secretion of
various growth factors, and regulation of the immune system. Notably, cell therapy is
not entirely excellent and has problems such as cell rejection, undesirable differentiation,
accumulation in unwanted locations, and potential tumorigenesis. Therefore, the
application of MSCs derived EVs, including exosomes, can help treat liver disease and
prevent its progression. Exosomes can prevent apoptosis and induce proliferation by
transferring different cargos to the target cell. In addition, these vesicles have been shown
to transport hepatocyte growth factor (HGF) and can promote the hepatocytes’(one of the
most important cells in the liver parenchyma) growths.
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1 INTRODUCTION

Inflammation is an immunological condition that has an
important role in controlling microbial infections and is the
basis of many natural physiological events of the body in healthy
conditions (1). This physiological process plays a vital role in
embryo implantation, tissue repair, fetal growth, etc. (2). These
inflammations must be carefully regulated to maintain the
homeostasis of various tissues and organs. Failure to control
inflammation can lead to multiple injuries to the tissues involved
and lead to the loss of part or all of that tissue (3). Hemostatic
inflammation is an integral part of liver health, and treatment
strategies should focus on reversing pathological inflammation to
hemostatic inflammation (4).

The liver is one of the vital organs that has a great ability to
regenerate itself due to liver cells’ characteristics (5, 6). But when
the amount of damage is so much and exceeds liver cells’ ability
to regenerate, the function of this tissue is impaired (7). Acute
liver failure (ALF) is more common in adolescents and is
associated with high mortality (8). In ALF, the metabolic and
immunological function of the liver is impaired. It presents with
manifestations such as blood coagulation defects, cardiovascular
instability, liver encephalopathy, susceptibility to infection, and
progressive multiple organ failure (9, 10). The interval between
the onset of symptoms and the onset of hepatic encephalopathy
distinguishes different forms of the disease (11). In this way, if the
time between them is a few hours, it is called hyperacute liver
failure (12), but if this interval occurs more slowly and lasts from
a few days to a few weeks, it is called acute or sub-acute damage
(13). Fibrosis is an intrinsic response to injury that maintains the
integrity of the various organs involved in tissue damage due to
extensive necrosis or apoptosis (14). Chronic liver disease occurs
during persistent inflammation and is associated with the
destruction and regeneration of the liver parenchyma, which
eventually leads to fibrosis and cirrhosis. There are many
different causes for chronic liver disease, autoimmune diseases,
including long-term alcohol abuse, toxins, infections, genetic and
metabolic disorders (15). For example, during myocardial
infarction, fibrosis and collagen fibres become apparent by the
end of the first week, preventing heart rupture by maintaining
the heart’s structure (16). Tissue fibrosis is also seen in the kidney
after ischemia (17) and in the lung after H5N1 influenza and
COVID-19 infection (18–20). Figure 1 summarizes some acute
and chronic liver diseases and the main mechanisms involved in
these diseases development (Figure 1). It is worth noting that
various treatments can prevent the progression of liver fibrosis
(21) but do not lead to the reversion offibrous tissue, and there is
no definitive treatment for fibrosis.

There is currently no specific drug for treating liver disease,
and many of the current treatments are used only in very acute
cases due to their side effects (22). Therefore, there is an urgent
need to find appropriate treatment methods to prevent liver
disease progression and repair liver tissue. Today cell therapy is
one of the fields that has raised many hopes and interests in the
field of regenerative medicine. Cells such as mesenchymal
stromal/stem cells, hepatocytes, hematopoietic cells, immune
Frontiers in Immunology | www.frontiersin.org 2
system cells and endothelial progenitor cells have been used in
various studies to treat liver disease (23).

There are advantages and disadvantages to using each of these
cells, which are summarized in Table 1. Among these cells,
mesenchymal stem cells have been used extensively in studies
due to their desirable properties and have shown promising
results. The desirable characteristics of these cells are various
isolation sources, easy isolation methods, easy culture methods,
expansion and storage, low immunogenicity, self-renewal ability,
ability to differentiate into different cell types, immunomodulatory
properties, The ability to produce soluble factors such as exosomes
and growth factors and the ability to migrate to the site of tissue
damage were noted (39, 40). Due to the favourable properties of
MSCs-derived extracellular vesicles (EVs), the therapeutic ability
of these vesicles has been investigated. This review discusses the
effect of inflammation on the progression of liver disease, the role
of liver cells and immune cells in the pathogenesis of the liver
disease, and studies of MSCs and their EVs (mechanisms).
2 INFLAMMATION ROLE IN LIVER
DISEASES (LDS)

Under physiological conditions, the liver constantly contacts
food-derived foreign proteins, drugs, chemicals, toxins, and
intestinal microbiota (41). Kupffer cells (KCs) and dendritic
cells (DCs), as well as circulating immune cells such as bone
marrow-derived macrophages, natural killer (NK) cells, and
neutrophils (42), play an important role in the formation of
the liver immune microenvironment and hepatic immune
responses (43).

Kupffer cells become highly active in the liver during this
disease and produce inflammatory cytokines, including IL-1, IL-
6, and TNF-a. In addition, due to the activation of other immune
system cells that are recruited from the bloodstream to the liver
tissue, systemic inflammation develops that can stimulate
necrosis and apoptosis in hepatocytes (44, 45). Overall,
inflammation, immune cells and liver cells inflammatory
responses play an essential role in developing liver-related
diseases (46).

Hepatic steatosis, or fatty liver disease (FLD), is the most
common liver disease in the United States (47), occurs in
response to alcohol, chemotherapy, toxins such as vanilla
chloride, and insulin-related metabolic syndrome and can lead
to liver tissue damage (48). This damage is associated with
inflammation and fibrosis, alters hepatocyte gene expression,
and leads to increased TLRs ligands, TGF-b, CXCL10, and IL-1A
receptors (49). In hepatitis, activation of the NF-kB signaling
pathway in activated hepatocytes has also been observed. In this
pathway, the activated cells release several pro-inflammatory
cytokines and chemokines such as TNF-a, IL-6, and CCL2,
which mediate liver inflammation (50). Inflammation can lead to
necrosis and necroptosis of liver cells (especially in hepatocytes)
and result in releasing of a group of molecules called alarmin
from them. Alarmins such as the high-mobility group B1
(HMGB1), IL-33, ATP, and formyl peptide is released from
April 2022 | Volume 13 | Article 865888
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necrotic cells (51). In fact, ATP and formyl peptide act as
absorbers for neutrophils to the site of tissue damage in the
liver. Activation of inflammasomes by reactive oxygen species
(ROS) from damaged cells and other damage-associated
molecular patterns (DAMPs) can also play a role in liver
inflammation (52, 53). As a result of liver inflammation,
extensive necrosis and apoptosis in hepatocytes eventually lead
to loss of liver function (54). Therefore, controlling inflammatory
responses is of particular importance and, if left untreated, can
lead to fibrosis (55).

Fibrosis that has occurred in chronic liver disease and
inflammation has been extensively studied, but its underlying
mechanism in acute liver failure is still unclear (56). The
progression of fibrosis leads to cirrhosis, hepatocellular
carcinoma, liver failure, and portal hypertension (57). Liver
fibrosis is caused by the activation of hepatic stellate cells
Frontiers in Immunology | www.frontiersin.org 3
(HSCs) and the extracellular matrix (ECM) deposition (58).
When these cells are activated, the amount of vitamin A and
adipogenic-related transcription factors decreases and leads to
their differentiation into myofibroblasts, which are the main
source of ECM production in liver fibrosis (59). In addition,
HSCs contribute to the progression of liver fibrosis by
producing inflammatory cytokines and chemokines (60).
Immune system cells, especially KCs and circulating
macrophages, play a significant role in the TGF-b1-mediated
activation of the liver HSCs and increase their survival by the
NF-kB-dependent manner (61). reactive oxygen species (ROS)
production by KCs and macrophages is another fibrosis stimulant
in hepatitis that stimulates the production of collagen 1 in HSCs/
myofibroblasts (62).

In response to lipopolysaccharide (LPS), HSCs express
chemokines such as IP-10, MCP-1, MIP-1a, MIP-1b, MIP-2,
FIGURE 1 | Acute and chronic liver diseases. Diseases Different conditions can cause acute and chronic inflammatory conditions in the liver. If the damages are not
controlled in the acute stage, they progress to a chronic state and are associated with fibrosis and cirrhosis of the liver tissue. Failure in acute liver disease treatment
can also lead to the onset and progression of liver cancer; HSC, hepatic stellate cell.
April 2022 | Volume 13 | Article 865888
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RANTES, and adhesive molecules E-selectin, ICAM-1, VCAM-1,
and leading to migration of immune system cells into the liver
(63). If liver fibrosis is left untreated, Cirrhosis develops.
Cirrhosis is the end stage of progressive fibrosis that lacks
effective and comprehensive medical treatment (64). Liver
cancer is another consequence of fibrosis and liver inflammation.

Studies have identified the importance of inflammation-
related signaling pathways and transcription factors, including
STAT3 (55) and NF-kB (65), in liver cancer progression by four
mechanisms. (1) Increases the expression of epithelial-to-
mesenchymal transition (EMT) associated genes, including
matrix metalloproteinases (MMPs) 2 and 9 (in breast cancer),
E-cadherin, TWIST (in nasopharyngeal cancer), and cathepsins
B. (2) Stimulates angiogenesis and increases tumor growth by
regulating the expression of vascular endothelial growth factor
(VEGF) (66). (3) Increases the expression of Bcl-2 members and
cFLIP families and helps neoplastic cells proliferation and inhibit
their apoptosis (67). (4) Increase production of inflammatory
cytokines such as IL-1a, TNF-a, IL-1b, EGF-R, IL-6, and CCL2
(50, 68).
3 THE ROLE OF LIVER CELLS IN LIVER
INFLAMMATION

There are some major types of cells in the liver that regulate liver
different functions, including hepatocytes, hepatic sinusoidal
endothelial cells (LSECs), bile epithelial cells (cholangiocytes),
HSCs, and KCs (69). Each of these cells performs their specific
function, and a defect in their function leads to a defect in the
function of the liver (70). In addition, some of these cells play
vital roles in regulating the liver microenvironment and
participate in inflammation and immune responses (Figure 2).
Frontiers in Immunology | www.frontiersin.org 4
3.1 Hepatocytes
Hepatocytes are the most abundant liver cells, which make up
about 90% of its biomass, and are one of the main culprits in the
liver’s inflammatory response (71). In pathological conditions,
hepatocytes produce different chemokines that trigger the
immune system cells and create a complex local reaction at the
site of infection (72). Hepatocytes express a large number and
variety of pattern recognition receptors and identify different
types of molecular patterns with pathogens and damage (PAMP,
DAMP) (73). (1) Cell surface receptors such as quasi-tuft
receptors such as TLR2,4; (2) Endosomal receptors such as
TLR3 and (3) Cytoplasmic receptors, such as stimulators of
IFN [STING] genes, members of the nucleotide-binding
oligomerization domain (NOD) family, and retinoic acid 1
(RIG-1) induction gene (72). During the acute phase response,
circulating levels of several proinflammatory cytokines,
including IL-1a, TNF-a, and IL-6, increase (74). The most
important cytokine affecting hepatocytes’ function is IL-6 (75)
and induces the expression of acute-phase proteins including
serum amyloid A, reactive protein C, haptoglobin, a1-
antichymotrypsin and fibrinogen (76).

Hepatocytes also interact with innate and acquired immune
cells and activate or inhibit their responses by expressing different
ligands. These cells express MIC-A, MIC-B, and CD1d (in mice,
not humans) and thus interact with NK and NKT cells (76, 77).
There is also evidence that these cells interact with T cells to alter
their responses and regulate their function (78, 79).

3.2 Kpffer Cells (KCs)
Kupffer cells make up 20% of non-parenchymal cells in the liver
and are located around the portal vein (80). Therefore, due to the
potential and different functions of these cells, they play an
important role in liver immunology, tissue homeostasis, as well
as various liver diseases, including liver cancer, ischemia-
TABLE 1 | Advantages and disadvantages of each cell in therapeutic applications.

Cell type Advantage Disadvantage Ref.

Endothelial progenitor cells (EPCs) Anti-fibrotic and pro-regenerative properties Complicated isolation process, unclear clinical efficacy (24, 25)
Hematopoietic stem cells 1. Pluripotency

2. Potential to self-renew
1. Requires bone marrow aspiration
2. Linage derivation (such as derivation to

macrophages)

(26, 27)

Hepatoblasts (Fetal liver Stem Cells) 1. these cells are bipotent, being able to give rise to both
hepatocytes and bile duct cells

1. Rarity of hepatoblasts 0.1% of fetal liver mass
2. Presence of oval cells in adult liver (make isolation

an expansion difficult)

(28–30)

Hepatocytes 1. Key metabolic and synthetic cells of the liver
2. Suitable for replacing enzyme deficiency
3. Suitable for replacing metabolic disorders

1. Donor shortages
2. Limited engraftment and proliferation
3. Infection risk

(31, 32)

Immune cells Relatively easy to isolate and culture Potential ability to induce inflammatory storms (33)
Induced pluripotent stem cells (iPS) 1. an unlimited source to produce hepatocytes-like cells In

vitro
2. Lack of potential issues of allogenic rejection

1. Ethical concern
2. Malignancy potential
3. Low production efficiency

(34, 35)

MSCs 1. Relatively easy to isolate and culture
2. pluripotency
3. immunomodulatory and anti-inflammatory properties
4. Anti-fibrotic function
5. Extracellular signaling
6. Allograft potential
7. Diffreniatonal ability

1. Pro-tumor potential
2. Risks of isolation procedures
3. Malignancy potential
4. Risk of undesired migration to other organs such

as lung and kidney

(36–38)
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reperfusion (I/R) injury, liver fibrosis and infectious diseases
(81). Actually, different signals in the liver microenvironment,
such as PAMPs and DAMPs, affect the function of Kupffer cells.
For example, HMGB1 released by hepatocytes can activate KCs
in Acetaminophen-induced liver injury (AILI), Non-alcoholic
steatohepatitis (NASH), and I/R injury (82, 83).In liver diseases,
KCs interact with other liver cells such as hepatocytes,
cholangiocytes, LSECs, HSCs, and other immune cells. This
interaction can exacerbate tissue damage or help to repair and
regenerate the liver tissue depending on the type of cells and
signalling pathways (81).
Frontiers in Immunology | www.frontiersin.org 5
3.3 Hepatic Stellate Cells
HSCs, as another main cell of liver tissue, make up 13% of
sinusoidal cells and 5 to 8% of all liver cells that perform various
functions (84). Among the physiological roles of these cells is (1)
synthesis of ECM, (2) regulation of sinusoidal blood flow, (3)
storage of vitamin A and (4) synthesis of metalloproteinases (85).
After various damage to liver tissue (cause inappropriate
function) and apoptosis of its cells, HSCs loses their fat-rich
granules and differentiate into trans-smooth muscle alpha-actin
containing myofibroblasts, producing ECM and inflammatory
cytokines (86). Table 2 shows the different functions of these
FIGURE 2 | The role of liver cells in inflammation and liver damage. Liver cells help produce and activate immune cells by producing cytokines and inflammatory
chemokines. On the other hand, hepatic stellate cells produce fibrosis of the liver tissue and lose their function by producing different components of the extracellular
matrix and differentiation into myofibroblasts in inflammatory conditions; HSCs, hepatic stellate cells; KCs, Kupffer cells; LSECs, hepatic sinusoidal endothelial cells;
HEPs, Hepatocytes; DCs, Dendritic cells; ECM, extracellular matrix; TXA2, Thromboxane A2; KLF2, Krüppel factor 2 transcription factor; TIMP, Tissue inhibitors of
matrix metalloproteinases.
April 2022 | Volume 13 | Article 865888
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cells and their role in liver inflammation in various
diseases (Table 2).

3.4 Liver Sinusoidal Endothelial Cells
LSECs are one of the most specialized endothelial cells with high
permeability and have the highest capacity for endocytosis that
interface with blood cells on the one side and hepatocytes and
HSCs on the other (96). Under pathological conditions, the
function of LSECs is changed (97). Capillarization is a process
that LSECs acquire vasoconstrictive, thrombotic, and
proinflammatory properties (98). During I/R injury and
hypoxia due to disruption of blood flow to the liver, LSECs
become rounded cells due to vacuolation of the nuclei and
reduced ATP supply. In addition, stress on blood flow to the
liver leads to a decrease in the Krüppel factor 2 transcription
factor (KLF2) in LSECs and its target genes, including the
endothelial nitric oxide synthase (eNOS) (99). Since the
expression of ICAM-1 and Stabilin-1 in LSECs increases during
inflammation, the transmigration of immune cells increases to the
liver tissue (100, 101). Expression of mentioned adhesion
molecules by LSECs leads to platelet adhesion, vascular
microthrombi formation, and platelet-activating factor (PAF)
production by platelets, which activates neutrophils and
increases ROS production and damages liver tissue (97).

In chronic inflammation, these cells lose their function and
play a key role in the onset and progression of chronic liver
disease through four processes: sinus capillary formation,
angiogenesis, angiocrine signals, and vasoconstriction (102).
Decreased NO produced by eNOS by decreased KLF2 activity
and increased ROS leads to HSC activation, which is associated
with the production and deposition of ECM, increased
vasoconstrictors including TXA2 and endothelin-1, and the
production of proinflammatory cytokines (103–105).
Frontiers in Immunology | www.frontiersin.org 6
4 MESENCHYMAL STEM CELLS
APPLICATION IN LDS

In vitro studies and co-culture of MSCs with liver tissue-derived
cells can increase our understanding of their therapeutic properties
and their effectiveness in the treatment of liver disease (106)
(Figure 3). In vivo injections of MSCs into animals to treat
various liver diseases have shown very promising results (107).
These cells exert their therapeutic functions in laboratory models
through various mechanisms (108), and in many studies, only
some of the therapeutic aspects of these cells have been addressed.
Overall these studies show that MSCs exert their therapeutic effect
by modulating the immune environment and increasing the
regeneration of liver tissue.

4.1 The Role of MSCs in Modulating
Immune and Inflammatory Responses
Considering the significant role of immune cells in inflammation-
induced liver damage, it is very important to evaluate the
therapeutic effects of MSCs on localized hepatic inflammatory
responses. MSCs perform their immunomodulatory functions by
cell-cell interaction or by producing soluble factors such as
cytokines and extracellular vesicles (Figure 4).

4.1.1 Impact on Differentiation and Function of DCs
A study by Yi Zhang et al. (109) Showed that injection of MSCs in
the model of liver tissue damage induced by LPS and P. acnes (in
mice) stimulates the differentiation of CD11c+ B220- precursors
to CD11c+, MHCIIhi, CD80low, CD86low tolerogenic dendritic
cells. Further studies showed that MSC-derived prostaglandin E2
(PGE2) binds to the EP4 receptor on the surface of precursors of
DCs and plays a key role in their differentiation into regulatory
DCs in a phosphoinositide-3-kinase-dependent manner. These
TABLE 2 | Hepatic satellite cells role in different liver disease.

Type of
disease

Inducing factors Mechanism Ref.

HCC Hepatitis, Alcoholic liver diseases, and NASH 1. contribute to the formation of tumor microenvironment favorable for tumor growth
2. Activated HSCs in the tumor stroma continuously produce ECM
3. production of soluble factors favoring tumor growth, such as hepatocyte growth factor

and TGF-b
4. production of proangiogenic factors such as vascular endothelial growth factor-A

(VEGF-A) and MMP9

(87)

I/R liver injury Ischemia and reperfusion in liver transplantation,
imbalances in pH and electrolytes

1. interaction of CD4+ T cells with HSCs before entering the hepatic parenchyma
2. induce the expansion of regulatory T cells (Protective)

(88–90)

Immune-
induced
hepatitis

Concanavalin A (ConA) and LPS 1. control CD4+ T cell trafficking to liver parenchyma
2. contribution of HSCs to massive production of inflammatory cytokines and

chemokines by intra- and extrahepatic immune cells in a paracrine manner

(91–93)

NASH Increased intestinal permeability 1. The activation of HSCs by TLR4 (the production of chemokines and the expression of
adhesion molecules ICAM-1 and VCAM-1

2. incensement in the interaction between HSCs and Kupffer cells

(94)

Viral hepatitis Hepatitis B and C virus 1. inflammatory and fibrogenic responses by HSCs
2. cell proliferation and nonstructural proteins augment ICAM-1 expression and

chemokine production through the NF-kB
3. induction cell migration and activation of several inflammatory pathways in response to

CCL21 secreted by activated dendritic cells

(95)
April 2022 | Volume 13 | Artic
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DCs produce more TGF-b and IL-10 than conventional DCs and
stimulate the differentiation of CD4 + T cells into Treg cells (110).
Therefore, these dendritic cells help improve inflammatory
damage in the liver by suppressing the activity and
differentiation of inflammatory T cells, including Th1 cells (109).
Frontiers in Immunology | www.frontiersin.org 7
4.1.2 Impact on Macrophages
MSCs play an essential role in modulating macrophages’M1/M2
axis. It has been shown that the co-culture of bone marrow-
derived macrophages with MSCs directs their differentiation
through the Hippo-dependent pathway to M2 (111).
FIGURE 3 | The effect of using mesenchymal stem cells and extracellular vesicles on the important axis of the immune system in the liver. Immunomodulatory
properties of mesenchymal stem cells and their extracellular vesicles lead to the suppression of inflammatory responses in the liver’s microenvironment and increase
anti-inflammatory responses. Some of the most important axis of the immune system involved in liver disease is TH17/Treg, NKT17/NKTreg, and M1/M2. The use of
mesenchymal stem cells and extracellular vesicles leads to suppression of function Th17, NKT17, M1, and IDC and increase the differentiation and function of Treg,
NKTreg, M2, and Tol DCs; HSCs, hepatic stellate cells; KCs, Kupffer cells; LSECs, hepatic sinusoidal endothelial cells; HEPs, Hepatocytes; Tol DCs, Tolerogenic
dendritic cells; cDC, Classic dendritic cells; ECM, extracellular matrix; MSCs, Mesenchymal stromal/stem cells;, M1 Macrophage type 1; M2, Macrophage type 2;
MMPs, Matrix metalloproteinase; EVs, Extracellular vesicles.
April 2022 | Volume 13 | Article 865888
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As mentioned, monocytes/macrophages play a very
important role in liver fibrosis. In mice, Ly6Chi macrophages
activate HSCs by producing various cytokines and chemokines,
including TGF-b, TNF-a, PDGF, MCP1, IL-1b, CCL5, and
CCL3 (62). However, Ly6Clo macrophages suppress the
functions of HSCs and stimulate apoptosis in these cells by
Frontiers in Immunology | www.frontiersin.org 8
producing and secreting MMPs 12 and 13 and positive
regulation of TNF-induced apoptosis ligand (TRAIL) (112). A
study by Yuan-hui Li et al. Showed that transplantation of bone
marrow-derived MSCs (BM-MSCs) in C57BL/6 J mice with liver
fibrosis reduces serum alanine aminotransferase (ALT) levels
and collagen deposition in the liver tissue. A sharp decrease in
FIGURE 4 | Therapeutic mechanisms involved in using mesenchymal stem cells and their extracellular vesicles on the function of liver cells and immune system
cells. MSC-EVs exert their therapeutic functions through 3 mechanisms that have been studied in vitro, pre-clinical, and clinical trials. These mechanisms include (1)
proliferation induction/apoptosis suppression, (2) modulation of immune system responses, (3) reduction of fibrosis; HSCs, hepatic stellate cells; KCs, Kupffer cells;
LSECs, hepatic sinusoidal endothelial cells; HEPs, Hepatocytes; TolDCs, Tolerogenic dendritic cells; cDC, Classic dendritic cells; ECM, extracellular matrix; MSCs,
Mesenchymal stromal/stem cells;, M1 Macrophage type 1; M2, Macrophage type 2; MMPs, Matrix metalloproteinase; EVs, Extracellular vesicles.
April 2022 | Volume 13 | Article 865888
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profibrogenic cytokines including IL-1b, TNF-a, and PDGF
derived from profibrotic cells such as Ly6Chi macrophages has
also been observed in mice receiving MSCs (113). In fact,
transplantation of BM-MSCs has prevented the activation of
HSCs through an indirect mechanism by inhibiting Ly6Chi

macrophages’ function. These macrophages are the most
common cells in the fibrotic liver, which increase in
proportion to the healthy liver as the liver fibrosis. It is
noteworthy that during the treatment of these mice with BM-
MSCs, a phenotypic change occurs in macrophages from the
Ly6Chi profibrotic subtype to the regenerative Ly6Clow, IL-4, IL-
10 producing subtype. After BM-MSC transplantation in these
mice, the ratio of Ly6Chi/Ly6Clow macrophages was reduced by
51% compared to the PBS-treated control group. Therefore,
treatment of mouse liver fibrosis model with allogeneic BM-
MSCs helps improve liver tissue by suppressing cells involved in
liver fibrosis on the one hand and by expanding fibrosis
inhibitory cells on the other hand (113).

4.1.3 Neutrophils Migration Suppression
The results of previous studies show that in IRI-related liver
injury, innate immune responses play a significant role in
inflammatory responses (114). Neutrophils are the most
abundant in the bloodstream and reach the site of liver
damage as the first leukocytes (115). It has been reported that
the severity of the disease and liver damage in I/R and alcoholic
liver disease, the amount of neutrophils in the liver tissue is
directly related to the severity of the injury (115, 116). However,
the induction of liver damage in animals whose neutrophils
decreased before induction leads to the limitation of liver damage
(117). Therefore, suppressing the harmful responses of these cells
can help improve the disease condition (118). The results of a
study conducted in 2018 by Shihui Li et al. Show that the use of
mesenchymal stem cells in rats with induced liver damage
reduces liver damage by lowering neutrophil recruitment and
chemotaxis compared to the control group (119).

A chemokine receptor called CXC chemokine receptor 2
(CXCR2) regulates the neutrophil release from bone marrow
and its chemotaxis to the inflammation site (120). This study
shows that the expression of this receptor on neutrophils in rats
with liver damage is significantly reduced after the injection of
MSCs (119). In addition, the expression of CXCL2, which is one
of the most important chemokines in neutrophil recruitment,
decreases in liver ischemic lobes compared to the control group
in the experiment. Further analysis of neutrophils isolated from
rats with liver damage treated with MSCs showed that p38
MAPK phosphorylation in these neutrophils was the main
cause of decreased CXCR2 expression at the cell surface.
Interestingly, inhibition of the MAPK p38 phosphorylating
enzyme reduces the therapeutic potential of MSCs (119). In
addition, since liver macrophages are the main sources of
CXCL2-producing and neutrophil recruiting (94), treatment
with MSCs by inhibiting NF-kB p65 phosphorylation has been
shown to reduce the expression and production of CXCL2 by
these cells. Therefore, in general, the use of MSCs reduces the
migration of neutrophils to the liver and limits liver damage by
reducing the expression of CXCR2 on the surface of neutrophils
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and reducing the CXCL2 expression and production by liver
macrophages. As a result of MSCs therapy, the concentration of
liver enzymes in plasma reduces (119). Also, a reduction in
hepatocyte apoptosis, improvement in liver function, and a
pathological improvement in liver tissue are seen.

4.1.4 Suppression of Activation and Migration of
CD4+ T Cells
In general, the use of MSCs to treat liver disease has been shown
to reduce the activation and chemotaxis of TCD4+ cells (121).
Examination of the expression of different markers of TCD4+

cells isolated from liver injury mice treated with MSCs shows
that the expression of CCR7, CXCR3 and CCR5 chemokine
receptors is significantly reduced. Also, the production of
CXCL9, CCL3, CXCL10, and CCL21 chemokines in the mice’s
damaged liver is reduced in the treatment with MSCs. In
addition, CD69 and CD44 expression are reduced in MSCs
treated mice, thereby suppressing TCD4 + cell activation.
Serum concentrations of IFN-g and TNF-a cytokines in these
mice also indicate suppression of CD4 + T cell differentiation
into Th1 cells (109, 122).

4.1.5 Impact on the Th17/Treg Axis
Due to the importance of the proven role of IL-17 in liver disease
(123), the study of MSCs’ effects on the IL-17 producing cells is
of particular significance. As shown in previous studies, the
imbalance in Treg/TH17 is associated with many liver diseases,
including autoimmune hepatitis, alcoholic liver disease, and
chronic hepatitis B (124).

A study by Qi-Hong Chen et al. Shows that the co-culture of
MSCs with LPS-stimulated CD4 + T cell populations can induce
plasticity in completely differentiated Th17 cells and convert
them into functional Treg cells. The use of an anti-HGF antibody
to eliminate and inhibit the effects of this factor leads to the
inhibition of the modulatory effects of MSCs by regulating the
Th17/Treg equilibrium (125).

In a study by Neda Milosavljevic et al., The effect of
transplanted MSCs on Th17 cell responses in liver injury was
investigated. IL-17 produced by Th17 cells by activating HSCs
increases their production of a-SMA, type 1 collagen and TGF-
b1. Intravascular injection of BM-MSCs in the calcium
tetrachloride(CCL4)-induced fibrotic liver C57BL/6 mice
showed a decrease in the number of IL-17 producing Th17
cells and IL-17 serum level, and also an increase in the serum
level immune system suppressory factors such as IL-10, IDO and
quinornine. Evaluation of liver tissue damage by H&E staining
(to evaluate hepatocyte damage and lobular centre congestion
with inflammatory cell infiltration) and Sirius red staining (to
assess collagen deposition) in hepatic tissue of MSCs treated
mice compared with CCL4-induced mice showed a significant
reduction in the size of the stained area in dense fibrous
tissue (126).

4.1.6 Impact on the NKT17/NKTreg Axis
In addition to Th17 cells, NKT cells also play a role in the
production of IL-17 involved in the pathogenesis of the liver
disease (127). Intracellular staining of mononuclear cells
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(MNCs) isolated from damaged liver indicates that most of the
IL17-producing cells in liver damage are NKT cells. A study by
Neda Milosavljevic et al. showed that intravenous injection of
MSCs into liver induced injuries with CCL4 and (a-GalCer) a-
galactoceramide in C57BL/6 mice decreases inflammatory NKT
cell function. The study results show that serum IL-17 levels are
reduced in disease-induced mice treated with MSCs. Further
studies show that in mice treated with MSCs compared to
disease-induced mice, there was a significant reduction in IL-
17-producing NKT CD49b+ CD31+ (NKT17) cells (128).

Interestingly, the application of MSCs to treat liver disease
in mice treated with a-GalCer1MSC is associated with a
significantly higher number of regulatory NKT FOXP3+ IL10+

(NKTreg) cells (128). Therefore, the results of this study suggest
that MSCs help improve liver treatment by modulating the
NKT17/NKTreg axis and reducing the harmful inflammatory
responses (128). It is noteworthy that the co-culture of hepatic
NKT cells in vitro also confirms the results obtained from the In
Vivo studies. This function of MSCs is related to IDO and iNOS
because of the presence of methyl‐DL‐tryptophan-1 (IDO
inhibitor) and L‐NG‐monomethyl arginine citrate (iNOS
inhibitor) in the cells and supernatant of injected MSCs imped
the protective effect of MSCs on mice. As a result, MSC protects
against acute liver damage by reducing the cytotoxicity and
capacity of liver NKT17 cells to produce inflammatory
cytokines in an IDO-dependent manner (128) (Figure 3).

4.2 The Role of MSCs in Liver Tissue
Repair and Regeneration
Mesenchymal stem cells help repair liver tissue through various
mechanisms, and there is a very complex relationship to their
therapeutic function, which is discussed in more detail below.

4.2.1 Reduction of Fibrosis and Impact on the
Function of HSCs
MSCs co-culture with HSCs promotes their apoptosis and reduce
the production of ECM components such as collagen from these
cells. Reducing the synthesis of ECM components is very
important in preventing fibrosis progression and can play an
essential role in improving the disease (87, 129). In addition, the
indirect culture of MSCs with HSC-related LX2 cell lines has
been shown to reduce the proliferation of these cells by
producing and secreting inflammatory factors such as IL-6, IL-
8, and HGF (130). The results of recent studies show that MSCs
suppress the activation of HSCs by producing TNFa-stimulated
gene-6 (TSG6) and increase the expression of some stem cell
markers in these cells (131). In vitro studies show that HSCs-
derived stem cell-like cells can form organoids that help liver
tissue regeneration.

4.2.2 Impact on LSECs
Co-culture of MSCs with endothelial progenitor cells to
investigate the effects of these cells on hepatic sinusoidal
epithelial cells has been shown to increase endothelial
precursor cell proliferation and angiogenic capacity by affecting
PDGF and Notch-associated receptors and their downstream
signaling pathways (132).
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Injection of MSCs into concanavalin-A (Con-A) induced liver
disease mice improves liver disease by suppressing apoptosis in
LSECs and hepatocytes and lowering serum transaminase
enzyme levels (133).

4.2.3 Effect on Hepatocytes
The ability of MSC to differentiate into hepatocyte-like cells has
been demonstrated in the in vivo and in vitro studies. This ability
compensates for hepatocyte reduction through apoptosis during
various liver damage. Experimental results show that MSCs can
differentiate into hepatocyte-like cells (HLCs) in the presence of
specific growth factors such as EGF, OSM, HGF and FGF (134,
135). Also, mimicry of the hepatic fibrosis microenvironment
stimulates the differentiation of MSCs into hepatocyte-like cells
by using 50 g/l of fibrotic tissue extract of rat liver at a faster rate
than growth factors (136).

After differentiation, MSCs exhibit the morphology
and function of hepatocytes. Analysis of differentiated cells
after human Wharton’s jelly-derived MSCs (hWJ-MSCs)
transplantation in rats shows the presence of cells in rat liver
with the expression of human hepatocyte markers such as alpha
photoprotein (AFP), CK18, CK19 and albumin. These newly
differentiated cells have no sign of rat hepatocyte markers,
indicating that hWJ-MSCs differentiate into hepatocyte-like
cells after migration to the liver (137, 138). Also, the results of
a study conducted by Jae Yeon Kim show that injection of MSCs
and their supernatant into (D-galactosamine (D-gal) mediated
liver damage) rats reduces hepatocytes apoptosis, and a threefold
increase occurs in their proliferation. MSCs appear to increase
hepatocyte proliferation by activating the IL-6 signaling pathway
mediated by rno-miR-21-5p (139).

Therefore, in general, it can be said that the use of MSCs
induces the repair and regeneration of liver tissue through
immune responses modulation, differentiation into HLCs,
increased proliferation and decreased apoptosis in hepatocytes,
increased apoptosis and reduced function of HSCs and improve
the function of LSECs.
5 CLINICAL APPLICATIONS OF MSCS
FOR THE TREATMENT OF LIVER DISEASE

5.1 Cell Source, Injection Method and
Injection Dose
According to our search in the National Institutes of Health
(NIH), there are currently 61 active clinical trials using MSCs to
treat various liver diseases, including Cirrhosis, fibrosis, acute-
on-chronic Liver Failure, and hepatitis viruses related liver
failure. Table 3 summarizes some of these studies. MSCs in
these studies were isolated from various tissues, including
umbilical cord (UC), bone marrow (BM) and adipose tissue
(AD). According to the results of multiple studies on the
function of MSCs derived from different tissues, UC-MSCs are
used in clinical applications more than others due to features
such as (1) providing significant amounts of MSCs compared to
BM (2) non-invasive isolation method (3) higher self-
renewability and differentiation capacity of UC-MSCs in
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comparison with BM-MSCs and (4) lower immunogenicity
(140, 141).

Injection methods such as intravenous (portal vein or
peripheral), intrahepatic artery and intrasplenic injection are
used in the transplantation of MSCs. The intravenous (IV)
peripheral injection is more used in studies due to ease of
identification and less invasive method. However, animal
studies have shown that approximately 60% of IV-injected cells
never reach the liver and accumulate in tissues like the lungs and
kidneys. Due to the existence of different injection methods, in a
study conducted by MEM Amer et al., It was shown that
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injection of MSCs through the portal vein shows better
therapeutic results in patients compared to intrasplenic
injection (142). As shown in Table 3, the number of injections
doses, the time interval between injections, and the number of
injection cells in the studies vary depending on the different
groups’ set-up protocols.

5.2 Mechanisms Involved in Liver Disease
Treatment After MSCs Transplantation
A phase 1 clinical trial conducted by Kharaziha et al. Showed that
the use of BM-MSCs improved patients’ symptoms of
TABLE 3 | MSCs based clinical trails.

Liver diseases Intervention
Model

Estimated
Enrollment

Source of
MSCs

Route Phase Dose Date NTC number

Acute-on-Chronic Liver
Failure

Parallel
Assignment

45 N/A Intravenous (peripheral
vein)

Phase 1
and Phase
2

once a week for 4 weeks, 1-
10 × 105 cell/kg

2019 NCT03863002

Acute-on-chronic Liver
Failure

Parallel
Assignment

200 N/A Intravenous (peripheral
vein)

N/A 3 times at week 0, 4 and 8,
1 × 106 cell/kg

2018 NCT03668171

Alcoholic Liver Cirrhosis Single Group
Assignment

10 Bone
Marrow

Hepatic Artery
injection

Phase 1 A single dose of 4.5-5.5 ×
107 cell

2019 NCT03838250

Decompensate Cirrhotic
Patients With Pioglitazone

Single Group
Assignment

3 Bone
Marrow

Intravenous (portal
vein)

Phase 1 2 doses at with week
intervals

2014 NCT01454336

Decompensated Alcoholic
Cirrhosis

Sequential
Assignment

36 Umbilical
Cord

Intravenous Phase 1 0.5-2 × 106 cell/kg 2021 NCT05155657

Decompensated Hepatitis B
Cirrhosis

Single Group
Assignment

30 Umbilical
Cord

Intravenous N/A 2 doses with 24 week
intervals, 1 × 108 cell

2021 NCT05106972

Decompensated liver
Cirrhosis

Parallel
Assignment

240 Umbilical
Cord

Intravenous Phase 2 3 doses at week 0, week 4,
week 8, 6 × 107 cell/kg

2021 NCT05121870

Decompensated Liver
Cirrhosis

Parallel
Assignment

45 Umbilical
Cord

Intravenous Phase 1
and Phase
2

3 doses with 4 week
intervals, 0.5 × 106 cell/kg

2011 NCT01342250

End-stage Liver Disease
(Cirrhosis)

Single Group
Assignment

30 N/A Intravenous Phase 1
and Phase
2

N/A 2018 NCT03460795

HBV-Related Acute-on-
Chronic Liver Failure

Parallel
Assignment

261 Umbilical
Cord Blood

Intravenous (peripheral
vein)

Phase 2 1. 1.once a week for
4 weeks

2. once a week for 8 weeks

2016 NCT02812121

HBV-related Liver Cirrhosis Parallel
Assignment

240 Umbilical
cord

Intravenous Phase 1
and Phase
2

1 × 106 cell/kg 2012 NCT01728727

Hepatitis B mediated Liver
Cirrhosis

Single Group
Assignment

12 Umbilical
Cord

Intravenous Phase 1
and Phase
2

A single dose of 1 × 108 cell 2020 NCT04357600

Liver Cirrhosis Single Group
Assignment

30 Bone
marrow

Intravenous (peripheral
or the portal vein)

Phase 1
and Phase
2

3-4 × 107 2007 NCT00420134

Liver Cirrhosis Single Group
Assignment

50 Menstrual
Blood

Intravenous Phase 1
and Phase
2

4 time in 2 week 1 × 106

cell/kg
2012 NCT01483248

Liver Cirrhosis Parallel
Assignment

200 Umbilical
Cord

Intravenous Phase 2 3 doses with 3 week
intervals, 1 × 106 cell/kg

2019 NCT03945487

Liver Cirrhosis Single Group
Assignment

20 bone
marrow

Intravenous Phase 1
and Phase
2

A single dose of 0.5 - 1×106

cell/kg
2018 NCT03626090

Liver Cirrhosis Parallel
Assignment

266 Umbilical
Cord

Intravenous Phase 1
and Phase
2

3 doses with 4 week
intervals, 0.5 × 106 cell/kg

2018 NCT01220492

Liver Cirrhosis Single Group
Assignment

4 Adipose
tissue

Intrahepatic Arterial
Administration

N/A N/A 2010 NCT01062750
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uncompensated Cirrhosis. Various scores related to liver healing
indicate improvement of the disease without side effects (143).
Also, the results of phase 2 of this study, which was performed on
patients with alcoholic cirrhosis, showed a reduction in tissue
fibrosis and improved liver histology in patients after
mesenchymal stem cell transplantation through the hepatic
artery (143, 144). Due to the importance of safety in cell
therapy studies, a study conducted by Alimoghaddam K et al.
has examined this issue in the transplantation of MSCs in various
liver diseases, which shows the improvement of liver function in
patients without any side effects (145).

A study by Ani Sun et al. Showed that patients receiving
routine treatment (RT) in combination with autologous BM-
MSCs transplantation had better clinical symptoms such as
decreased fatigue and ascites, increased appetite, and
abdominal distension than patients receiving only routine
treatment. This study also showed that liver function
significantly improved in patients receiving combination
therapy in terms of MELD (model for end-stage liver disease)
and Child-Pugh scores, serum albumin, total bilirubin, aspartate
aminotransferase(AST), alanine aminotransferase(ALT), and
coagulation function (146).

As mentioned in the in vitro studies and animal models of
liver disease, the application of MSCs helps improve liver
function with different mechanisms in humans. A study
conducted by Lanman Xu in 2014 showed that BM-MSCs
improve the symptoms of patients with HBV associated
Cirrhosis. The findings in this study showed that the number
and ratio of Treg cells in PBMCs isolated from patients
increased; however, the number of Th17 cells in patients
treated with BM-MSCs decreased. Also, extraction of total
RNA and evaluation of the expression of Foxp3 and RORgt
transcription factors by Real-time polymerase chain reaction
(RT-PCR) showed an increase in Foxp3 expression and a
decrease in RORgt expression compared to the control group.
Also, examination of patients’ serum in the first week after
transplantation showed an increase in TGF-B and a decrease
in inflammatory cytokines such as IL1-B, IL-6 and TNF-a.
Therefore, in general, transplantation of MSCs by modulating
the Treg/Th17 axis and modulating the production of
inflammatory cytokines helps improve liver inflammation and
patient conditions (147).

The results of a study conducted in 2020 by Federica
Casiraghi et al. Show that intravenous injection of MSCs
before liver transplantation does not improve the parameters
of chance tissue compared to the group that received this
treatment. However, a one-year follow-up of patients shows a
slight increase in the circulating Treg/memory Treg and tolerant
NK subset (CD56bright NK cells) over baseline (not significant) in
MSC-treated compared to the control group (148).

As shown in Table 2, the disadvantages of using MSCs,
encourage researchers to find safer and more efficient methods.
As has been proven in many studies, MSCs perform their
therapeutic functions after transplantation in two ways: cell-to-
cell communication and secretion of soluble factors (paracrine
effect). EVs are one of the main factors in this type (149).
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6 MSCS-DERIVED EVS APPLICATION IN
LIVER DISEASE TREATMENT

EVs are a significant component of intercellular communication
that affect the actions of the target cell by transporting various
substances, including proteins, lipids, and nucleic acids, from the
producing cell to the target cell (150). These vesicles are divided
into microvesicles (MVs), apoptotic bodies and exosomes
according to their size, internal contents, biogenesis and
different surface markers (151). However, the fourth group of
these vesicles, smaller than the rest, has been identified as named
exomer (152). Each of these vesicles has different contents,
typically containing various proteins (including enzymes,
cytokines, growth factors and heat shock proteins), different
types of nucleic acids (including DNA, microRNA and
lncRNAs) and different types of lipids (153). These molecules
change target cell function after transferring by EVs bilipid
membrane. As a consequence, and depending on the cell type
and its physiological conditions, exosomes can lead to
differentiation, increase proliferation and survival, or lead to
increased apoptosis and decreased cell activity (154).

Many studies have examined the therapeutic effects of MSC
derived EVs (MSC-EVs) in different diseases such as pulmonary
fibrosis, osteoporosis, skin diseases, cardiovascular diseases, and
various liver-related diseases. The results of new studies show
that the application of MSCs-EVs has similar therapeutic effects
to MSCs (155–157). In fact, the use of EVs is cell-free cell therapy
because it preserves the benefits associated with cell therapy and
bypasses its disadvantages. These benefits include: (1) lack of
immunogenicity, (2) the ability to store them easily, (3) drug
loading and increase their efficiency as a drug delivery system
and (4) application as a ready-to-use drug (cryopreservation of
EVs) (158).

Given that the results of many in vitro and animal model
studies have shown that MSCs can migrate to TME, it is thought
to be they can be used as carriers for tumor-targeted therapies
(159). However, there is little clinical evidence of MSCs
recruitment in hepatocellular carcinoma (160). Also, due to the
proliferative and differentiating characteristics of MSCs,
considering the possibility of malignant transformation and
promotion of tumor progression by these cells, most studies
are still in the preclinical stage (159). Therefore, to use the
therapeutic properties of these cells, researchers used MSC-EVs
that do not have these deficiencies (161). Recent studies show
that adipose tissue MSCs derived exosomes (MSC-Ex) can
increase the chemical sensitivity of liver cancer cells by
affecting the mTOR related signaling pathway and leading to
increased expression of chemo-sensitive related genes in cancer
cells (162). Further studies have shown that these exosomes
perform this function by transferring miR-199a to cancer cells
(162). MiR-222-3p in BM-MSC-Ex has also been shown to
inhibit cancer cell proliferation and increase their apoptosis
(163). Another study showed that miR-302a, carried by UC-
MSC-Ex, suppressed cyclin D1 as well as the AKT signaling
pathway and thereby suppress tumor progression (164).
Also, various anti-tumour drugs can be loaded into exosomes
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and used as targeted therapy (165). In addition, it has been
shown that exosomes can be engineered to migrate to the target
site, integrate with cancer cells, and deliver anti-tumor drugs
to them (166, 167). However, the application of MSC-Ex is
still in its initiation, and further studies are needed for their
optimal use.

As mentioned, due to the size of MSCs, when injected
intravenously, they accumulate in the lungs while EVs are
much smaller and can migrate to the site of injury (168).
MSC-EVs exert their therapeutic functions through 3
mechanisms that have been studied in vitro, pre-clinical, and
clinical trials. These mechanisms include (1) proliferation
induction/apoptosis suppression, (2) modulation of immune
system responses, (3) reduction of fibrosis. Table 4 summarizes
several new studies on the application of MSC-EVs (Figure 4).

6.1 Stimulation of Proliferation/
Suppression of Apoptosis in Hepatocytes
Examination of the effects of MSCs-derived exosomes in vivo
shows that these vesicles suppress acetaminophen and H2O2-
induced apoptosis in hepatocytes by positively regulating Bcl-xl
expression (175). Also, the study shows that MSC-Ex stimulates
hepatocytes proliferation in CCL4-induced liver damage in mice.
Further studies show that the exosomes positively regulate the
priming phase genes, which is subsequently increases the
expression of Proliferating cell nuclear antigen (PCNA) and
cyclin D1 in the treated group compared to the control
group (175).

The results of new studies show that the use of BM-MSCs-Ex
reduces apoptosis by increasing autophagy in hepatocytes. A
study by Shuxian Zhao et al. Shows that the use of BM-MSCs-Ex
reduces D-GaIN/LPS-induced apoptosis in rats hepatocytes.
Further studies show that autophagy-related markers such as
LC3 and Beclin-1 are increased and have led to autophagosomes
formation by hepatocytes. Also, the expression level of apoptosis-
related proteins such as Bax and cleaved caspase 3 was decreased,
and the expression level of Bcl-2 (anti-apoptotic protein) was
increased. Because the use of 3-Methyladenine (3-MA), an
autophagy inhibitor, limited the therapeutic effects of BM-
MSCs-Ex, this study attributed the main therapeutic
mechanism of these vesicles to the regulation of apoptosis in
an autophagy-dependent manner (176).

A study conducted by Yinpeng Jin et al. In 2018 shows that
the use of AD-MSCs-EVs in the model of acute liver failure in
rats increases the survival rate by more than 70% compared to
the control group. Liver sequencing of rats treated with AD-
MSCs-EVs demonstrated an increase in a non-coding long-
stranded RNA (lncRNA) called lncRNA H19 (H19), and when
the coding sequence of H19 in AD-MSCs of EVs source was
knocked off, survival rates could be 40% higher than the control
group. In fact, H19 encoding gene silencing reduces the survival
of rats compared to the AD-MSCs-EVs treated group. The
results of hepatocytes Co-culture with normal AD-MSCs-EVs
and manipulated AD-MSCs-EVs (lacking H19) indicate that this
lncRNA increases the proliferation of hepatocytes by the HGF/c-
Met signaling pathway as well as reducing apoptosis (177).
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6.2 Immunomodulatory Properties
The results of a study by H Haga et al. show that administration of
BM-MSC-derived EVs to mice with liver injury induced by
Intraperitoneal (IP) injection of TNF-a and D-gal increases the
migration of protective macrophages to damaged liver tissue.
Another study showed that injections of MSC-EVs into a mouse
model of ischemic-reperfusion injury helped reduce inflammatory
responses by modulating the expression of NLRP12 and CXCL1.
This study also showed that the frequency of F4/80+ cells
(expressed in protective macrophages) in the damaged liver
increased significantly after MSCs-EVs injection (178).

Con-A-induced liver injury studies in C57/B6 male mice
show extensive modulation of the immune system by AD-
MSCs-Ex in the treatment group compared to the control
group. The analyses showed that the expression of IL-2 (a pro-
inflammatory cytokine) was associated with a significant
decrease. On the other hand, the expression of cytokine TGF-b
and HGF was upregulated. Also, the percentage of Treg cells
among non-parenchymal liver cells (NPCs) in the three doses of
AD-MSCs-Ex treated group increased significantly. Treg has
been reported to be required to induce immune tolerance in
this liver injury model (179). This study also compared the
therapeutic effects of AD-MSC injection and one-dose injection
of AD-MSCs-Ex with 3-dose injection. The present results of the
study show a significant difference in the therapeutic application
3-dose injection of AD-MSCs-Ex with other groups. Histological
and serum analysis also confirmed a decrease in fibrotic and
necrotic areas of the liver and a decrease in ALT levels in the
treated groups (177).

Using the protein chipmethod by Xiaoli Rong et al. showed that
in treatment of D-GaIN/LPS induced damages in rats with AD-
MSCs-EVs, the expression of inflammatory cytokines including
IL-6, IL-1a, IL-1b, IL-1ra and IL-17 in was significantly lower than
in the Phosphate-buffered saline (PBS) treatment group. Also, the
level of inflammatory chemokines such as CXCL7, CXCL9,
CXCL10, CCL20, CX3CL1, CINC-3, CINC-2a/b, CINC-1,
CNTF, and LECAM-1 decreases in the AD-MSCs-Ev treated
group compared to the control group PBS treated group.
Simultaneous reduction of inflammatory cytokines and
chemokines ultimately leads to a reduction in liver tissue necrosis
and an increase in the survival rate of rats (180). Evaluation of
inflammatory cytokines including TNF-a, IL-1, IL-2, IL-6, IL-8,
and IL-10 and in liver tissue using RT-PCR showed a significant
reduction in rats treated by hBM-MSCs and hBM-MSCs-Ex.
However, the results of this study showed that the expression of
IL-6 and IL-1 in the hBM-MSCs-Ex treatment group was
significantly lower than in the hBM-MSCs treated group (181).

Also, the study of malondialdehyde (MDA) levels, which is
the end product of membrane lipid peroxidation, can be used as
a marker for oxidative stress and liver cell damage. Analysis in
hBM-MSCs-Ex treated rats (CCL4-induced liver injury) showed
a significant reduction in MDA level (181).

6.3 Reduce Hepatic Fibrosis
The results of a study conducted in 2019 (181) show that the
administration of hBM-MSCs-Ex to rats with CCL4-induced
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liver damage effectively reduces liver fibrosis. Visual examination
showed that the liver of mice treated with hBM-MSCs-Ex had a
smooth, uniform surface and softer tissue than the control group.
Sirus red and H&E staining show reduction of fibrous areas and
collagen deposition in the treated liver. In addition, comparing
the therapeutic effects of hBM-MSCs-Exo and hBM-MSCs
indicates the better therapeutic outcome in the application of
hBM-MSCs-Ex due to the collagen deposition level and Ishak
fibrosis score. Examination of the hydroxyproline levels,
unnecessary amino acid and a major component of collagen
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also shows a decrease in this amino acid in the treated group and
indicates a reduction in collagen deposition. In this study, the
biochemical analysis showed that the level of AST, ALT, ALP,
total bilirubin (TBIL) and gamma-glutamyl transferase (g-GT)
decreases, and serum total protein (TP) levels increases in serum.
Examination of Wnt/b-catenin signaling related factors
including PPARg, Wnt10b, Wnt3a, b-catenin, and WISP1 in
both in vivo and in vitro conditions indicates the use of hBM-
MSCs and hBM-MSCs-Ex (have better therapeutic results)
reduce the expression of these factors in HSCs (in vitro) and
TABLE 4 | Example of studies in the field of MSC-EV application in experimental models of liver injury and their therapeutic mechanisms.

Injury model Source of
MSCs

Acute Or
chronic
phase

EVs type Route of
administration

Dosage
(vesicles/
animal)

Effect(s) Mechanism(s) Year Ref.

CCl4-induced acute
liver injury(mouse)

hUC-
MSCs

Chronic Exosome Intrahepatic 250 µg 1. Inhibited
hepatocyte
apoptosis

2. Reduce liver
fibrosis

3. Reduce the
serum levels of HA

1. Suppressed TGF-b
signaling and inhibited
EMT

2. Reduced collagen-1 and
3 expression

2013
(169)

Hepatic ischemia-
reperfusion (mouse)

mBM-
MSC

Acute EVs Intravenous 2 × 1010 1. Reduction of
inflammatory
mediators

2. inhibition of
Apoptosis

3. Increase the
number of F4/80
positive cells

1. Suppress NF-kB activity
2. increased CXCL1 release

from AML12 hepatocytes
in vitro

2017
(170)

In vitro ischemia/
reperfusion Partial
hepatectomy (mouse)

mAD-MSC Acute Secretome (EVs
+ other soluble
factors)

Intravenous N/A 1. Reduce serum IL-6
and TNF-a levels

2. Reduce serum
transaminases

3. Accelerate liver
regeneration

4. Increase the
hepatocyte
proliferation

1. Increased p-STAT3 and
PCNA expression

2. Decreased hepatic
expression of SOCS3

3. increased SIRT1 Increase
in survival genes (e.g.,
Bcl-xL and Mcl-1)

2017
(171)

Thioacetamide induced
(rat)

Human
embryonic
MSC

Chronic EVs Intrahepatic 350 µg 1. Reduction of
fibrosis

2. Reduction
inflammation

1. upregulation in MMP9
and MMP13

2. upregulation of BCL-2
3. upregulation of TGF-b1

and IL-10
4. downregulation of Col1a,

aSMA and TIMP1
5. downregulation BAX,

TNFa and IL-2

2018
(172)

CCl4-induced acute
liver injury(mouse)

hUC-
MSCs

Acute Exosome Intravenous Or
intragastric

8, 16, and
32 mg/kg

1. Reduction of
oxidative stress

2. inhibition of
Apoptosis

3. Increased cell
viability

1. Reduced levels of ROS
2. Upregulated Bcl2

expression

2017
(173)

S.japonicum-infected
mice

hUC-
MSCs

Chronic EVs intravenous 3 × 109 1. Reduce liver
fibrosis

2. suppress HSCs
function

3. Reduction
inflammation

1. Reduced collagen-1 and
3 expression

2. Reduced a-SMA
expression

3. significantly decrease
TNF-a and IL-1b
expression

2020
(174)
April 2022 | Volume 13 | Ar
ticle 86
MSCs, Mesenchymal stromal/stem cells; EVs, Extracellular vesicles; TGF-b, Transforming growth factor-beta; NF-kB, Nuclear factor kappa-B; MMPs, Matrix metalloproteinase; NLRP,
Nucleotide-binding oligomerization domain; ALT, alanine aminotransferase; AST, Aspartate transaminase; ALP, Alkaline Phosphatase; BM, Bone marrow; UC, umbilical cord; AD, adipose
tissue; N/A, Not Applicable.
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with rat fibrous liver. Due to the reduction of collagen deposition
and fibrotic tissue in the damaged liver, the results of this study
suggest using hBM-MSCs-Ex leads to decreased HSCs function
and reduced fibrosis by inhibiting the Wnt/b-catenin signaling
pathway (181).
7 CONCLUSIONS AND FUTURE
PROSPECTS

Due to the urgent need to treat tissue degenerative diseases,
methods that can accelerate tissue repair are of great value.
Using MSCs as multipotent stem cells is one of these widely
used methods due to its properties. As mentioned, these cells uses
different mechanisms such as differentiation into hepatocyte-like
cells, reducing apoptosis and increasing hepatocyte proliferation,
reducing inflammation, suppressing tissue-damaging immune
cells, producing various growth factors, suppressing the function
of HSC, and improving the function of LSECs to improve liver
diseases. The use of these cells not only prevents further damage to
the liver tissue but also accelerates and increases the repair of liver
tissue. MSCs migrate to the site of liver injury after intravenous
injection due to their chemokine receptors and perform their
therapeutic actions there. As mentioned earlier, due to the
limitations of cell therapy, MSC-EVs are used today. Many
studies have been conducted on the application of MSC-EVs in
preclinical studies. The results of these studies indicate the
potential ability of these vesicles to improve liver cell function
and modulate the immune system (182). Some studies comparing
the therapeutic effect of MSCs and MSC-EVs have shown that
MSC-EVs have a higher therapeutic potential and better
outcomes. Although the therapeutic effects of EVs on liver
repair in this study are divided into three distinct mechanisms,
these processes are interrelated and complement each other’s
functions. In fact, the therapeutic potential of MSC-EVs likely
Frontiers in Immunology | www.frontiersin.org 15
lies in their ability to act simultaneously through multiple
signaling pathways. Therefore, using these vesicles does not have
cell therapy disadvantages. Due to its benefits, it can perform
better therapeutic performance in liver injury animals models.

Although there are numerous clinical trials on the use of
MSCs in the treatment of liver disease, to date, no clinical trials
have been performed on the use of MSC-EVs despite their
benefits. However, it has been used to treat many disorders,
including orthopaedic disease (151), neurodegenerative disease
(183), myocardial disease (184), renal disease, graft versus host
disease (GvHD), pancreatic cancer and type 1 diabetes and has
shown promising results (185). Despite the therapeutic potential
of MSC-EVs and their beneficial effects in preclinical studies,
several issues related to the clinical use of these vesicles remain
unresolved. Exosomes as an EV circulate in the blood and
transfer their cargos to the target cell through phagocytosis,
receptor-mediated endocytosis, fusion, micropinocytosis (186).
In the body, the half-life of EVs is estimated at a few minutes and
are removed from the bloodstream within a few hours.
Therefore, we need multiple injections to treat diseases. Due to
this issue, producing EVs in an industrial scale and repeatable
method is significant. It is also important to note that despite
effective and proven results in animal models, the improvement
of these models is usually incomplete. Therefore, more research
is needed to investigate the long-term effects of MSC-EVs.
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