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Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits

in social communication and social interaction and restricted, repetitive patterns of behavior,

interests, or activities. Given the lack of specific pharmacological therapy for ASD and the

clinical heterogeneity of the disorder, current biomarker research efforts are geared mainly

toward identifying markers for determining ASD risk or for assisting with a diagnosis. A wide

range of putative biological markers for ASD is currently being investigated. Proteomic anal-

yses indicate that the levels of many proteins in plasma/serum are altered in ASD, suggest-

ing that a panel of proteins may provide a blood biomarker for ASD. Serum samples from 76

boys with ASD and 78 typically developing (TD) boys, 18 months–8 years of age, were ana-

lyzed to identify possible early biological markers for ASD. Proteomic analysis of serum was

performed using SomaLogic’s SOMAScanTM assay 1.3K platform. A total of 1,125 proteins

were analyzed. There were 86 downregulated proteins and 52 upregulated proteins in ASD

(FDR < 0.05). Combining three different algorithms, we found a panel of 9 proteins that iden-

tified ASD with an area under the curve (AUC) = 0.8599±0.0640, with specificity and sensi-

tivity of 0.8217±0.1178 and 0.835±0.1176, respectively. All 9 proteins were significantly

different in ASD compared with TD boys, and were significantly correlated with ASD severity

as measured by ADOS total scores. Using machine learning methods, a panel of serum pro-

teins was identified that may be useful as a blood biomarker for ASD in boys. Further verifi-

cation of the protein biomarker panel with independent test sets is warranted.

Introduction

Autism spectrum disorder (ASD), a heterogeneous neurodevelopmental disorder, is character-

ized by deficits in social communication and social interaction, with restricted, repetitive
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patterns of behavior, interests, or activities [1]. ASD impacts at least 1 out of every 59 children

in the U.S. [2], although this is likely underestimated [3]. Consequently, ASD is associated

with considerable personal, family, and societal costs. For these reasons, efforts directed

toward determining the underlying pathobiology of ASD, as well as ASD prevention, early

diagnosis, and effective treatments, are public health priorities [4].

ASD is currently diagnosed based on behavioral criteria because its underlying disease

mechanisms and associated medical, neurological, and psychiatric comorbidities are poorly

understood [5–7]. However, the diagnostic methods and screening tools utilized for ASD are

somewhat subjective and are difficult to assess in younger children. Early diagnosis is critical

because not only are intensive behavioral therapy programs effective in decreasing maladaptive

behaviors in many children with ASD [8], the benefits of early intervention are typically

greater the earlier the intervention begins [9,10]. A biological marker that could predict ASD

risk, assist in early diagnosis, or even identify potential therapeutic targets has great clinical

utility [10–12].

Based on our current understanding of the etiology of ASD, many blood-based biomarker

candidates have been investigated [13], particularly neurotransmitters [14], cytokines [15],

markers of mitochondrial dysfunction [10,16], and markers of oxidative stress and impaired

methylation [17,18]. We have previously demonstrated that thyroid-stimulating hormone

(TSH) and interleukin-8 (IL-8) were effective for separating boys with ASD from healthy con-

trol subjects, and levels were correlated with the severity of ASD [11]. However, given that idi-

opathic ASD is a highly prevalent and heterogeneous disorder, and unidimensional ASD

biomarker studies have repeatedly met with challenges in reproducibility [12,19,20], there is

an obvious need to incorporate machine learning in these analyses to more powerfully exam-

ine disease status and symptom severity [6,21]. The use of machine learning in ASD datasets

may also allow for more precise, individualized medical care by identifying risk, confirming

diagnosis, or guiding responses to treatments [18,22–24].

The objective of the present study was to conduct a proteomic analysis of serum from boys

with and without ASD using the SomaLogic SOMAScanTM platform, incorporating machine

learning of the associated demographic and clinical data, for biomarker discovery.

Materials and methods

Participants

The study protocol and subsequent amendments were submitted by The Johnson Center for

Child Health and Development (Austin, TX) and approved either by the Austin Multi-Institu-

tional Review Board (for samples collected before October 2017) or IntegReview Institutional

Review Board (for samples collected from October 2017 onwards). The study was carried out

in accordance with the relevant guidelines and regulations. Written informed consent was

obtained from all participants and/or their legal guardians before study participation. Subjects

with a genetic, metabolic, or other concurrent physical, mental, or neurological disorder were

excluded.

A total of 154 male pediatric subjects were enrolled. The ASD group was comprised of 76

subjects with a mean age of 5.6 years (SD 1.7 years). The TD group was comprised of 78 sub-

jects with a mean age of 5.7 years (SD 2.0 years). The ethnic breakdown was as follows: 73

White/Caucasian, 32 Hispanic/Latino, 17 African American/Black, 5 Asian or Pacific Islander,

23 multiple ethnicities or other, and 4 not reported (Table 1). Co-morbid/clinical conditions

and the use of psychiatric medications are summarized in Table 1.

For the ASD group, all subjects were assessed by a clinical psychologist with research-reli-

ability training using both the Autism Diagnostic Observation Schedule (ADOS) and the
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Autism Diagnostic Interview–Revised (ADI-R). A clinical diagnosis was made based on these

data and overall clinical impression using DSM-5 criteria. In addition, ADOS diagnostic algo-

rithms consisting of two behavioral domains: Social Affect (SA) and Restricted and Repetitive

Behaviors (RRB) were used to determine an ADOS total score, which provides a continuous

measure of overall ASD symptom severity. These scores can be used to compare ASD symp-

tom severity across individuals of different developmental levels [25,26] and were used in the

correlation analyses (Fig 1).

For the TD group, all subjects underwent a developmental screening using the Adaptive

Behavior Assessment System—Second Edition (ABAS-II) to rule out developmental concerns.

TD subjects were excluded if they had any first- or second-degree relatives diagnosed with

ASD.

Blood collection and storage

All subjects were healthy, defined as being fever-free for 24 hours, and presenting with no clin-

ical symptoms. A fasting blood draw was performed on ASD and TD subjects between the

hours of 8–10 am in a 3.5 ml Serum Separation Tube using standard venipuncture technique.

The blood was gently mixed by 5 inversions and then stored upright for clotting at room

Table 1. Demographic data, co-morbid conditions, and use of psychiatric medications in ASD and TD subjects.

ASD (n = 76) TD (n = 78)

Age: mean (SD) years 5.6 (1.7) 5.7 (2.0)

Ethnicity

White/Caucasian 33 (45.2%) 40 (51.9%)

Hispanic/Latino 26 (35.6%) 6 (7.8%)

African American/Black 3 (4.1%) 14 (18.2%)

Asian or Pacific Islander 2 (2.6%) 3 (3.9%)

Multiple ethnicities or Other 9 (12.3%) 14 (18.2%)

Not reported 3 (4.1%) 1 (1.2%)

Co-morbid conditions�

None 38 (52.8%) 58 (75.3%)

ADHD 2 (2.8%) 1 (1.3%)

Seasonal Allergies 30 (41.7%) 17 (22.4%)

Asthma 2 (2.8%) 0 (0%)

Celiac Disease 1 (1.4%) 0 (0%)

GERD 1 (1.4%) 0 (0%)

PTSD 0 (0%) 1 (1.3%)

Sleep Apnea 2 (2.8%) 0 (0%)

Not reported 4 (5.6%) 1 (1.3%)

Psychiatric medications

None 69 (92%) 75 (97.4%)

Anti-depressant 2 (2.7%) 0 (0%)

Anti-psychotic 0 (0%) 1 (1.3%)

Sedative 1 (1.3%) 0 (0%)

SSRI 2 (2.27%) 0 (0%)

Stimulant 1 (1.3%) 1 (1.3%)

Not reported 1 (1.3%) 1 (1.3%)

�Some subjects reported multiple co-morbid conditions. Formal assessments of gastrointestinal symptoms or sleep

conditions frequently associated with ASD were not conducted.

https://doi.org/10.1371/journal.pone.0246581.t001
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temperature for 10–15 min. Blood was centrifuged immediately after the clotting time in a

swing bucket rotor for 15 min at 1,100–1,300 g. After centrifugation was completed and the

turbidity and hemolysis of the serum had been recorded, 250μl aliquots of serum were trans-

ferred to 1.0ml coded cryovials and then stored at -80˚C. Serum was shipped on dry ice to

SomaLogic (Boulder, CO) for analysis.

SOMAScanTM

The SOMAScanTM platform 1.3k was used for analysis, and assays were run by SomaLogic.

SOMAmer aptamer reagents consist of short single-stranded DNA sequences with ‘protein-

like’ appendages that allow tight and specific binding to protein targets.

Bioinformatics

The assay measured 1,317 proteins in 150μl serum in 154 samples to identify an optimal subset

of proteins to be used as a panel for ASD prediction. An additional 14 samples (7 ASD and 7

TD) were included as blinded duplicates to assess the variability of SOMAScanTM analytes. In

this study, 192 proteins failed to pass quality control (QC). After removing these proteins,

1,125 proteins were analyzed. The protein abundance data were normalized by taking log10

transform and then z-transformation. To deal with outliers, any z-transformed values less than

-3 and greater than 3 were clipped to -3 and 3, respectively. To discover proteins for ASD pre-

diction, three different methods were deployed: random forest (RF), t-test, and correlation-

based methods.

Fig 1. Range of ADOS scores among the ASD boys. Each dot represents the ADOS total score for a single subject.

https://doi.org/10.1371/journal.pone.0246581.g001
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i. RF, a well-known decision tree-based ensemble learning method, produces consistent

results even without hyper-parameter tuning. At the same time, it measures feature impor-

tance by observing how random re-shuffling of each predictor influences its model perfor-

mance. To train RF models and calculate feature importance, an R package, ‘randomForest’,

was used. In this study, we chose MeanDecreaseGini (mean decrease in Gini Index), a

weighted measure of the average reduction in node impurity within a random forest, as the

surrogate representing a protein’s importance in predicting ASD versus TD. With the nor-

malized data, we trained an RF model 1,000 times. Each protein’s importance value was

then averaged over the 1,000 runs. The 10 proteins with the highest averaged importance

values were chosen for the RF-based prediction model.

ii. A t-test, which determines if there is a significant difference between the means of two

groups, is a widely used approach to discover biomarkers in biological data. In this study,

the 10 proteins with the most highly significant t-test values were selected for the prediction

model.

iii. A correlation approach, which measures the statistical relationship between two variables,

was used to calculate each protein’s correlation with ADOS total scores (SA + RRB), as a

measure of ASD severity. Based upon the absolute values of each protein’s correlation coef-

ficient, the 10 most highly correlated proteins were selected as the correlation-based pre-

dictive proteins.

After identifying the top-10 predictive proteins from each of the 3 methods (RF, t-tests and

correlation), we found 5 proteins that were common to each method used. These were consid-

ered ‘core’ proteins, leaving 13 additional proteins that were not part of the core. A prediction

model trained with the 5 core proteins was taken as a baseline model. Next, we investigated

whether the addition of one or more of the 13 proteins provided any additive predictive

power.

A logistic regression model was used with datasets based upon the RF model, the t-test

model and the correlation model, taking the subjects’ assigned group (ASD or TD) as output

variables. We randomly assigned 80% of subjects to a training dataset and the remaining 20%

of subjects to a test dataset. We then calculated the trained model’s area under the curve

(AUC) for the test dataset as an evaluation metric. This process was repeated 1,000 times so as

to obtain a rigorous evaluation while suppressing any bias which might be caused by favorable

data splits.

A pathway enrichment analysis was performed for the optimal proteins. Entrez Gene IDs

corresponding to the optimal proteins were fed to a limma::goana function in R. From its gene

ontology results, the Top-20 biological process pathways were extracted and reported.

Finally, to evaluate possible confounding factors, we examined the impact of ethnicity, co-

morbid conditions/clinical diagnoses, age, and medication use (Table 1) on the 9 proteins. To

test the effect of ethnicity the data were split into two groups, white (n = 73) and non-white

(n = 81) subjects. To test the effect of seasonal allergies, the only clinical diagnosis with suffi-

cient numbers for testing, the data were split into two groups, patients with allergies (n = 96)

and those without (n = 58). T-tests were then run to compare the two modified datasets for

each of the core proteins. To test the effect of age, a Spearman’s rank correlation was run for

each protein against the age distribution of subjects. To test the effect of psychiatric medica-

tions, the AUC values for the full data set (n = 154) were compared with the AUC values of the

dataset without the 10 subjects reporting medication usage (n = 144).
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Results

A total of 1,125 proteins were examined using the SomaLogic SOMAScanTM platform. Three

computational methods were combined to search for a panel of proteins with high predictive

power for ASD. The top-10 proteins were sought using RF analysis, t-test analysis between

ASD and TD groups, and a correlation analysis with ASD severity (Fig 2). Five proteins were

common to all three prediction models used: mitogen-activated protein kinase 14 (MAPK14),

immunoglobulin D (IgD), dermatopontin (DERM), ephrin type-B receptor 2 (EPHB2), and

soluble urokinase-type plasminogen activator receptor (suPAR). These 5 proteins were defined

as core proteins (Table 2).

In order to optimize the predictive power of the biomarker panel we first sought whether

there was any protein overlap among the three methods (Fig 3A). There were 5 core proteins

that were common to all three methods. Each of the additional 13 proteins was successively

Fig 2. Top-10 predictive proteins identified by three different methods. (A) Random Forest-based method. (B) T-test based method. A volcano plot of group

comparison revealed a total of 86 proteins were downregulated in the ASD boys and 52 proteins were upregulated. All of these proteins had a false discovery rate<0.05.

(C) Correlation-based method.

https://doi.org/10.1371/journal.pone.0246581.g002
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added, one at a time, to see if they increased the predictive value of the AUC using logistic

regression (Fig 3B). Four additional proteins: receptor tyrosine kinase-like orphan receptor 1

[ROR1], platelet receptor Gl24 [GI24], eukaryotic translation initiation factor 4H [elF-4H],

and arylsulfatase B [ARSB], increased the AUC when each was added to the core proteins. The

AUC for the 10 proteins identified by each model was: RF = 0.839±0.066, t-test = 0.837±0.066

and correlation = 0.853±0.066. Combining the 5 core proteins with the additional 4 proteins

resulted in an AUC = 0.860±0.064, with a sensitivity = 0.833±0.118, and specificity = 0.846

±0.118 (Fig 3C), and represents the 9 optimal proteins (AUC_Optimal).

The top-20 biological processes from pathway enrichment analysis are shown in Table 3.

The 9 optimal proteins have pathway significance related to a number of processes associated

with immune function in ASD, for example.

To determine the accuracy of the SomaScanTM assay we ran duplicate blood samples from

14 subjects (7 ASD and 7 TD). The 9 proteins selected for the optimal ASD biomarker panel

exhibited an average of 6 to 13% variability between the duplicate assays.

Finally, ethnicity, allergies, age, and medication use were analyzed as independent variables

using t-tests or Spearman’s rank correlation, as appropriate. Neither ethnicity nor a diagnosis

of allergies had an effect on the mean protein counts of the optimal proteins (S1 Table). For

age, all of the correlation coefficients were small (r = -0.17 to 0.098; S1 Table), indicating there

is no age effect on protein counts. The use of psychiatric medication did not significantly

impact the AUC for the optimal proteins: the AUC for the total dataset was 0.8599, whereas

the AUC for the dataset with the 10 subjects reporting medication use removed was 0.8440.

Discussion

The goal of the present study was to identify a blood biomarker profile for ASD from >1,200

proteins using the SOMAScanTM platform. Nine proteins were identified based upon a novel

combination of machine learning methods with random forest analysis, t-test analysis, and

correlation analysis with ADOS total scores that produced an accurate identification of ASD in

boys. Five of the proteins, IgD, suPAR, MAPK14, EPHB2, and DERM, were present in all

three analyses and were considered core proteins in the panel. Four proteins providing addi-

tive power were combined with the 5 core proteins, and together, the 9 proteins resulted in an

AUC of 86% (sensitivity 83%; specificity 84%). These proteins have pathway significance

related to a number of processes, including negative regulation of CD8-positive, alpha-beta T

cell proliferation, immune response, neuron projection retraction, MAPK14 activity, and glu-

tamate receptor signaling, all of which have previously been associated with ASD [27].

Table 2. Top-10 predictive proteins identified by three different methods. The 5 core proteins common to all three methods are highlighted.

No. Random Forest T-test Correlation with ADOS total scores

Protein Importance value Protein log2 fold change p-value Protein Coefficient p-value

1 MAPK14 1.4489 DERM -0.1505 1.3837e-08 DERM -0.4131 1.0095e-07

2 IgD 1.3883 suPAR 0.1000 2.5238e-07 RELT -0.3852 8.0761e-07

3 DERM 1.2726 Calcineurin -0.1274 3.1577e-07 EPHB2 -0.3834 9.1825e-07

4 EPHB2 1.0284 MAPK14 -0.0916 1.0691e-06 MAPK14 -0.3778 1.3583e-06

5 ALCAM 0.8565 EPHB2 -0.0788 8.8167e-07 Prolactin Receptor 0.3754 1.6102e-06

6 eIF-4H 0.8077 RELT -0.1123 1.0065e-06 ROR1 -0.3560 5.8703e-06

7 suPAR 0.6558 FCN1 0.1056 1.6464e-06 GI24 0.3554 6.1107e-06

8 SOST 0.6543 IgD -0.8843 1.6952e-06 suPAR 0.3545 6.4619e-06

9 C6 0.6403 PTN -0.0855 2.6899e-06 ARSB 0.3535 6.8678e-06

10 Calcineurin 0.6015 C1QR1 -0.1245 7.6353e-06 IgD -0.3535 6.8722e-06

https://doi.org/10.1371/journal.pone.0246581.t002
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Ethnicity, age, and use of psychiatric medication did not impact the protein counts for the bio-

marker panel.

Immune system aberrations have been reported in ASD for some time [28]. Abnormalities

in serum antibody concentrations and T cell responses have been well described [29–31].

Altered cytokine profiles [32–34], decreased immunoglobulin levels, particularly IgG [35],

altered cellular immunity [36], and neuroinflammation [37] in ASD have been consistently

Fig 3. Optimization of the predictive proteins. (A) Identification of the 5 core proteins. The core proteins were among the top-10 proteins identified by each of the 3

methods. (B) Identification of proteins with additive predictive power when combined with the core proteins (red asterisks). (C) Predictive power (AUC) of the top-10

proteins from the three different methods: RF–random forest, Ttest–t-tests, and Corr–correlation compared with the optimal panel of 9 proteins (AUC_Optimal)

representing the 5 core proteins and the 4 additional proteins identified in Fig 3B).

https://doi.org/10.1371/journal.pone.0246581.g003
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identified. Furthermore, autoimmunity has been implicated in ASD, with several studies

reporting circulating autoantibodies to neural antigens [38,39]. More recently, ASD biomarker

studies identified significant dysregulation of genes involved in immune function and inflam-

mation [40,41]. Out of the 5 core proteins in the panel, IgD exhibited the greatest difference

between ASD and TD samples. IgD was 58% lower in ASD serum compared with TD serum.

While there is little information on the role of IgD in ASD, increased levels have been reported

in a mouse model of systemic lupus erythematosus [42], an autoimmune disease, thus IgD

may have a role in inflammation. Another core protein, soluble urokinase plasminogen activa-

tor receptor (suPAR), was found to be 16.4% higher in ASD serum compared with TD serum.

suPAR, the soluble form of uPAR, which is expressed on neutrophils, activated T-cells, and

macrophages [43], is released during inflammation or immune activation. suPAR is a

Table 3. Top-20 GO terms from pathway enrichment analysis.

GO ID GO Term Total genes Genes in list Related protein p-value

GO:0051239 regulation of multicellular organismal process 3144 7 GI24, suPAR, ARSB, MAPK14, EPHB2, ROR1,

IgD

5.90E-

05

GO:0044093 positive regulation of molecular function 1636 5 GI24, suPAR, MAPK14, EPHB2, ROR1 3.30E-

04

GO:0061580 colon epithelial cell migration 1 1 ARSB 4.45E-

04

GO:2000565 negative regulation of CD8-positive, alpha-beta T cell

proliferation

1 1 GI24 4.45E-

04

GO:1904782 negative regulation of NMDA glutamate receptor activity 1 1 EPHB2 4.45E-

04

GO:0106028 neuron projection retraction 1 1 EPHB2 4.45E-

04

GO:0120158 positive regulation of collagen catabolic process 1 1 GI24 4.45E-

04

GO:0051240 positive regulation of multicellular organismal process 1750 5 GI24, ARSB, MAPK14, EPHB2, IgD 4.53E-

04

GO:0045597 positive regulation of cell differentiation 962 4 GI24, ARSB, MAPK14, EPHB2 5.31E-

04

GO:0040011 locomotion 1835 5 GI24, suPAR, ARSB, MAPK14, EPHB2 5.66E-

04

GO:0052547 regulation of peptidase activity 398 3 GI24, suPAR, MAPK14 5.83E-

04

GO:0051389 inactivation of MAPKK activity 2 1 EPHB2 8.91E-

04

GO:0061582 intestinal epithelial cell migration 2 1 ARSB 8.91E-

04

GO:1900450 negative regulation of glutamate receptor signaling pathway 2 1 EPHB2 8.91E-

04

GO:0038195 urokinase plasminogen activator signaling pathway 2 1 suPAR 8.91E-

04

GO:2000026 regulation of multicellular organismal development 2077 5 GI24, ARSB, MAPK14, EPHB2, ROR1 1.01E-

03

GO:0043312 neutrophil degranulation 485 3 suPAR, ARSB, MAPK14 1.04E-

03

GO:0002283 neutrophil activation involved in immune response 488 3 suPAR, ARSB, MAPK14 1.05E-

03

GO:0042119 neutrophil activation 499 3 suPAR, ARSB, MAPK14 1.13E-

03

GO:0002446 neutrophil mediated immunity 499 3 suPAR, ARSB, MAPK14 1.13E-

03

https://doi.org/10.1371/journal.pone.0246581.t003
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biomarker of inflammation in critically ill patients, although elevated levels of suPAR have also

been reported over a wide range of clinical conditions [44]. suPAR is thought to be involved in

the modulation of cell adhesion, migration, and proliferation pathways [45]. It, therefore, fol-

lows that elevated suPAR may affect cell adhesion processes, neuronal migration, and prolifer-

ation in the developing brain contributing to ASD [46,47]. While further studies are needed to

understand the role of suPAR in the etiology of ASD, children who reported ‘adverse child-

hood experiences’ had lower IQ scores or poorer self-control and showed elevated suPAR lev-

els as adults [48].

A third core protein, mitogen-activated protein kinase 14 (MAPK14), was significantly

lower in ASD versus TD serum. MAPK14 is activated in response to stress and inflammation

[49]. In two studies examining gene expression profiles in blood samples from children with

and without ASD, MAPK14 was differentially expressed–one of only 5 genes that overlapped

between the two studies [41,50]. The MAPK pathway is important in neural development,

learning, and memory in syndromic conditions associated with ASD, such as tuberous sclero-

sis and Smith-Lemli-Opitz disorder [51]. Although the roles of IgD, suPAR, and MAPK14 in

ASD are not well understood, alterations in immune response and/or inflammatory pathways

have been implicated in many studies of children with ASD and remain a target of interest for

many biomarker studies.

Another core protein, EPHB2, is linked to NMDA glutamate receptor activity. Interest-

ingly, several lines of evidence suggest an imbalance between excitatory (glutamate-mediated)

and inhibitory (GABA-mediated) neurotransmission, which may be a common pathophysio-

logical mechanism and treatment target for ASD [52–55].

All but one (eIF-4H) of the 9 optimal proteins overlapped with the top-10 highly correlated

proteins indicating that the biomarker panel was associated with ASD severity, as measured by

ADOS total scores. IgD levels were negatively correlated with ADOS total scores. Previous

studies have reported similar trends. For example, IgG levels, and to a lesser extent IgM levels,

were found to be significantly negatively correlated with total scores measured on the Aberrant

Behavior Checklist [35]. suPAR levels were 16% higher in the ASD boys and positively corre-

lated with ASD severity. suPAR has been reported to be positively correlated with the immune

system’s level of activation and is present in serum, plasma, urine, and cerebrospinal fluid [56].

Likewise, GI24 levels were 8% higher in ASD boys, and this protein is an immunoglobulin

superfamily member [57].

In a previous study, we investigated 110 proteins using the MesoScale Discovery platform,

and two proteins were found to be most important: IL-8 and TSH 8 [11]. These proteins have

been identified as putative ASD biomarkers in other studies [58–60]. Similar to our previous

report, in the current study, IL-8 levels were significantly elevated (23%, p = 0.002) and TSH

levels were significantly lower (67%, p = 0.007), when comparing ASD to TD boys (S2 Table).

Because the present study searched >1,200 proteins to find those most important for identify-

ing ASD, IL-8 and TSH, though significantly different between ASD and TD, were not among

those with the highest t-test values or importance as measured by RF.

There are some limitations to the present study. Although the sample size is acceptable for a

discovery study, the data presented here are preliminary, and a larger validation study is

needed to be certain of the value of the biomarker panel. Due to the increased prevalence of

ASD in boys, this study only enrolled boys, which does not allow for an investigation of gen-

der-specific differences. Furthermore, although there was no effect of age on the panel of pro-

teins selected, a prospective study is planned that would shed light on the stability of these

proteins over time. When making aptamer measurements on SomaScanTM plates containing

>1,200 protein markers/well, well-to-well differences may add variability to the data. To

address this, we ran duplicate samples on a subset of ASD and TD samples to determine the

PLOS ONE Biomarker discovery in ASD

PLOS ONE | https://doi.org/10.1371/journal.pone.0246581 February 24, 2021 10 / 15

https://doi.org/10.1371/journal.pone.0246581


variability of the measurements, and for the 9 optimal proteins, the variability in measurement

for each protein was <14%. The complex phenotypic heterogeneity of ASD also presents some

limitations when performing biomarker studies. To address this, we used standardized diag-

nostic criteria to classify individuals with ASD, as well as incorporating an analysis of ethnicity,

co-morbid conditions/clinical diagnoses, and medication use. Total ADOS scores were corre-

lated with the optimal biomarker proteins strengthening the association between the bio-

marker panel and ASD-associated behaviors. Co-morbid conditions, such as anxiety, epilepsy,

ADHD, and gastrointestinal disorders, occurred at very low frequencies in our cohorts and

could not be analyzed The most commonly reported clinical diagnosis, seasonal allergies, and

medication use had no effect on the core proteins. Finally, dietary intervention and use of

nutritional supplements were difficult to assess accurately due to the limited information col-

lected and our inability to verify the data provided, especially since some subjects were not

under the care of a nutritionist or dietitian at the time of study participation.

Conclusions

The present study used serum samples from ASD and TD boys to search for a panel of proteins

with diagnostic accuracy for the identification of ASD. Over 1,100 proteins were examined on

the SomaScanTM platform. A panel of 9 proteins was identified using three computational

methods: RF, t-testing, and correlation analysis with ASD severity scores. The 9 proteins were

significantly different in ASD compared with TD boys, they were significantly correlated with

ASD severity, and several of these proteins have been mechanistically (suPAR, MAPK14, and

EPHB2) and genetically (EPHB2, suPAR, and ROR1) linked to ASD. The panel of proteins

exhibited an AUC of 86% (sensitivity 83%; specificity 84%). This novel set of proteins has the

potential to be an efficacious blood-based biomarker for the early identification of ASD in

boys, particularly since behavioral and developmental assessments are not easily administered

in very young children. While the use of machine learning for ASD diagnosis is still in its

infancy, identifying key proteomic biomarkers may also lead to targeted intervention strategies

as we further elucidate the functional processes associated with ASD and the mechanistic

interplay between brain structure and behavior.
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