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a b s t r a c t 

Mortality due to massive events like the COVID-19 pandemic is underestimated because of several reasons, among 

which the impossibility to track all positive cases and the inadequacy of coding systems are presumably the most 

relevant. Therefore, the most affordable method to estimate COVID-19-related mortality is excess mortality (EM). 

Very often, though, EM is calculated on large spatial units that may entail different EM patterns and without 

stratifying deaths by age or sex, while, especially in the case of epidemics, it is important to identify the areas 

that suffered a higher death toll or that were spared. We developed the Stata COVID19_EM.ado procedure that 

estimates EM within municipalities in six subgroups defined by sex and age class using official data provided by 

ISTAT (Italian National Statistics Bureau) on deaths occurred from 2015 to 2020. Using simple linear regression 

models, we estimated the mortality trend in each age-and-sex subgroup and obtained the expected deaths of 

2020 by extrapolating the linear trend. The results are then displayed using choropleth maps. Subsequently, 

local autocorrelation maps, which allow to appreciate the presence of local clusters of high or low EM, may 

be obtained using an R procedure that we developed. 

• We focused on estimating excess mortality in small-scale spatial units (municipalities) and in population strata 

defined by age and sex. 
• This method gives a deeper insight on excess mortality than summary figures at regional or national level, 

enabling to identify the local areas that suffered the most and the high-risk population subgroups within them. 
• This type of analysis could be replicated on different time frames, which might correspond to successive 

epidemic waves, as well as to periods in which containment measures were enforced and for different age 

classes; moreover, it could be applied in every instance of mortality crisis within a region or a country. 
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Specifications table 

Subject Area: Medicine and Dentistry 

More specific subject area: Epidemiology, Public Health 

Method name: Excess mortality estimation 

Name and reference of original 

method: 

Not applicable 

Resource availability: Official data on daily mortality of a country or region(s) at the municipality 

level, covering several years; geographical data of the same country or 

region(s). 

Method details 

Several methods have been used to estimate excess mortality (EM), under the common basic

idea to capture the normal magnitude of deaths in a non-perturbed time period (the observation

period) and project the same magnitude on the period in which the mortality crisis happened. What

differentiates these methods is the analytical tool that is used to estimate the underlying magnitude

of deaths. The simplest ideas employ the yearly average of deaths over the observation period, or

the moving average on a convenient number of years, while more advanced analytical tools include

difference-in-difference analysis, Poisson or negative binomial regression, and time series analyses. As 

is always the case, advanced tools tend to provide more accurate estimates in that they can effectively

model potential time trends or adjust for potential confounders; however, they require higher-quality 

data and sometimes a higher educated public. Conversely, simpler tools can be applied when only

basic data are available and are usually understood by wide potential audiences. The choice between

these methods is then dictated by striking the balance between the quality of available data, the

desired level of insight and the main audience target to which the study is addressed. 

However, what we often see is that even when abundant and affordable data are available, EM

estimates are produced only at a basic and concise level, that is providing only summary national or

regional figures. Regardless of the analytical tool used for the estimation, this is a major limitation

that precludes any chance of identifying local areas that were the epicenters of the pandemic or, on

the other hand, that were spared by the pandemic. An equally serious limitation is the absence of

population stratification, which is essential to understand which subgroups are at higher and lower 

risk, which could coexist even within the most hit areas. 

To overcome these limitations, we developed a procedure that provides EM ratios calculated at the

small-scale level (municipalities) in age-and-sex population subgroups. This procedure can be applied 

in all instances when official data on mortality are provided with the required granularity, as is the

case in Italy where the data source is ISTAT, and using the Stata and R scripts that we include in

this paper as supplementary materials. Specifically, Stata was used for EM estimation and to obtain

choropleth maps of EM, while R was used for spatial analysis. 

Datasets and data preparation 

ISTAT releases periodical updates of mortality data, covering an increasing period from January 

1st to a fixed endpoint for each year from 2015 to 2020 [4] . These data include the daily number

of deaths occurred in every Italian municipality that provided complete data, grouped by sex and

age classes. To prepare the data for the estimation of EM, a selection was made in order to obtain

datasets specific for males and females of each region, covering a predetermined time period. The

time frame of interest for the analysis must also be selected before running the program. Grouping by

age was also necessary; specifically, we created three classes appropriate for the analysis of COVID-19
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Table 1 

Description of the dataset to be used for EM estimation. 

Variable name Storage type Display format Value label Variable label 

mun_code long %8.0g Code of municipality 

reg_code byte %8.0g Code of region 

Region str29 %29s Region name 

Province str29 %29s Province name 

Municipality str34 %34s Municipality name 

age_class byte %8.0g age_class Age class 

M_15 Int %8.0g Male deaths in 2015 

M_16 Int %8.0g Male deaths in 2016 

M_17 int %8.0g Male deaths in 2017 

M_18 int %8.0g Male deaths in 2018 

M_19 int %8.0g Male deaths in 2019 

M_20 int %8.0g Male deaths in 2020 

F_15 int %8.0g Female deaths in 2015 

F_16 int %8.0g Female deaths in 2016 

F_17 int %8.0g Female deaths in 2017 

F_18 int %8.0g Female deaths in 2018 

F_19 int %8.0g Female deaths in 2019 

F_20 int %8.0g Female deaths in 2020 

m  

a  

c  

(  

v  

t  

t  

T  

p  

f  

n  

o

E

 

C  

a  

r  

o  

(

 

a  

R

 

t

 

w

 

b  
ortality: 0 to 64 years, 65 to 74 years, and 75 years or more (cutoffs may be modified by users

ccording to their convenience). The dataset structure is reported in Table 1: municipality and region

odes are included, as well as their text description and, when present, the name of the province

in Italy, province is an intermediate government level amidst municipality and region). Among these

ariables, mun_code is the only one required by EM estimation, while reg_code is required for naming

he choropleth maps and the dataset that will include the estimations; Region will be used in the

itle of the choropleth map, while Province and Municipality are kept only to assist in data checking.

he age_class variable was obtained by recoding the original age classification provided by ISTAT, as

reviously described. M_15 to M_20 are variables reporting the number of deaths for males in years

rom 2015 (M_15) to 2020 (M_20), and F_15 to F_20 are the variables including the corresponding

umber of deaths for females. These variables are obtained by summing the daily numbers of deaths

ver the observation period of interest. 

xcess mortality estimation 

The estimation of EM is performed by the stand-alone Stata procedure that we generated, called

OVID19_EM.ado, which loads the sets of summarized mortality data and in sequence estimates EM

nd draws regional choropleth maps. This procedure must be run from the program line of Stata and

equires two arguments: the ending date of the period of interest and sex, with the region codes as

ptional argument. Thus, for instance, to obtain the maps of EM up to April 30th, 2020 for females

F) in Lombardy (region code 3), one must type the following command: 

COVID19_EM 300420 F, region(3) 

To analyze more than one region, the user can specify all the required codes in the optional

rgument. For instance, to obtain the previous EM and maps for Lombardy, Veneto and Emilia-

omagna we typed: 

COVID19_EM 300420 F, region(3 5 8) 

For consecutively coded regions, a convenient Stata notation can be used, in the following example

o obtain estimates and maps for all regions coded from 3 to 8: 

COVID19_EM 300420 F, region(3(1)8) 

When the region() option is not specified, the analysis is run on the whole of Italy, that is on the

hole dataset with mortality data. 

The expected number of deaths for each age-and-sex subgroup in each municipality was estimated

y linear regression using the total number of deaths (D) as dependent variable and the ordinal
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number of the year (Year) as independent variable; Year = 0 was assigned to 2015 and each subsequent

year increased by 1 up to Year = 4 for 2019. 

D = α + β ∗ Year 

To predict the expected mortality in 2020, we extrapolated the estimated linear trend for each

municipality/age group/sex, using the equation: 

D 2020 = α + β ∗ 5 

where Year = 5 corresponds to 2020 in the years’ progression. 

This was accomplished in the procedure by using the parmby module [6] , which computes linear

regression for each instance of age/sex within each municipality and then saves the results in the

EMestimates.dta dataset. Observed-to-expected mortality ratio is then easily computed by a simple 

division of the two variables, but two further points need clarification. 

First, using extremely granular data often entails the presence of very small numbers, because 

smaller municipalities may have few or even no deaths in a specified period of the year. The following

adjustments are made in the case of negative estimates of expected mortality and in cases in which

the expected deaths are zero, or observed deaths are zero, or both, as follows: 

If expected deaths are = 0 and observed deaths are > 0, then EM equals observed mortality. For

instance, if there are 0 expected deaths and 2 observed deaths, then EM = 200% 

If observed deaths are = 0, and expected deaths are = 0 or > 0, then EM = 0. For instance, if expected

deaths are 2 and observed deaths are 0, then EM = 0% 

If expected deaths are < 0, then we considered them as = 0 and proceeded according to the previous

points. 

Second, as the period of interest may include the month of February, and particularly when EM

is estimated for a leap year (which is the case when examining COVID-19-related EM for 2020), a

correction to the expected number of deaths to account for the higher number of days in the leap

year is recommended. This was done by counting the number of days in the leap year over which EM

is estimated, and considering that in the previous five years only one of them was a leap year, so that

their number of days is 0.8 less than those of the leap year. To put it simply, while February 2020

had 29 days, the average number of days in February 2015–2019 was 28.2. Thus, the correction factor

that we used was given by this ratio: 

n. of days in 2020 

n. of days in 2020 − 0 . 8 

Obviously, this correction factor becomes more and more negligible as the width of the period of

interest for EM estimation increases. 

Another section of the procedure was necessary to address the cases of small municipalities for

which, under one or more age classes, no deaths occurred. To correctly draw the choropleth maps, all

spatial units are always required, therefore the database needs to be expanded by the number of lines

corresponding to the number of missing age classes, and this is done in lines 34–37 and 132–136 of

the script. 

Two different outputs are provided by the COVID19_EM procedure: a Stata dataset including all

EM estimates and choropleth maps for each age class in the selected region and sex. If the analysis

was required for more regions, datasets and maps are produced for each region separately. To draw

choropleth maps, users must get, possibly from official sources, the datasets including information 

on centroids and polygon coordinates for the examined spatial units. These datasets must be merged

to the dataset including the variable to be drawn in maps (which in our case is estratio, i.e. the

observed-to-expected mortality ratio). Then, the user-written spmap procedure [10] is used to draw 

maps, using a customized color pattern that assigns light green to municipalities with ratio ≤1 (those

with negative EM) and five increasing hues of red (defined by the fcolor option) as the ratio shows

values > 1 at five different thresholds (defined by the clbreaks option). An example of the maps which

may be obtained is given in Fig. 1 . 

The COVID19_EM.ado procedure is reported below in the Supplementary materials, so that those 

interested can use it and if necessary modify its settings. In particular, the time period in which EM
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Fig. 1. Excess mortality of 2020 with respect to 2015-19 in the municipalities of Emilia-Romagna, in the period February 23rd 

- April 30th and for males aged ≥ 75 years. 
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s calculated has a fixed starting date set to February 23rd, 2020, which we identified as the starting

ate of the COVID-19 pandemic in Italy. Thus, with the previous command we estimated EM using

ll deaths occurred between February 23rd and April 30th among females living in Lombardy, Veneto

nd Emilia-Romagna. The starting date can be modified by the user, for instance to obtain EM on a

onthly basis, and feeding the command with the appropriate dataset. 

patial autocorrelation 

Spatial autocorrelation refers to the dependencies that exist among observations that are

roximal within geographic space. These dependencies produce clustering of similar (positive spatial

utocorrelation) or dissimilar (negative spatial autocorrelation) values, and hence produce some “map

attern”. Classic spatial autocorrelation statistics include Moran’s I and Getis–Ord general G [3 , 5] ,

hich estimate the overall degree of spatial autocorrelation for a dataset. This is a fundamental

iece of information, especially as a diagnostic tool for spatial model misspecification. However, the

egree of autocorrelation may vary significantly across geographic space. Local spatial autocorrelation

tatistics provide estimates to the level of the spatial unit of analysis, allowing for some visual

xploration of map patterns and for some discrimination between local areas according to their degree

f dependency. Local versions of I (local Moran’s I i ) and G (Getis–Ord G 

∗
i 
) are both available [1 , 7] 

Local Moran’s I i and Getis–Ord G 

∗
i 

capture different aspects of local autocorrelation. Local Moran’s

 i is given by: 

I i = 

x i − x̄ 

s 2 
i 

n ∑ 

j =1 , j � = i 
w i, j ( x i − x̄ ) 

here x i is the numerical attribute for spatial unit i (e.g., municipality-specific EM), w i, j is the

ssigned spatial weight between unit i and j, x̄ is the global average of the attribute and s 2 is its
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standard deviation, that is: 

s 2 i = 

∑ n 
j =1 , j � = i ( x i − x̄ ) 

2 

n − 1 

where n is the number of spatial units under study. A standardized version ( z -score) of I i can be

obtained by subtracting the mean of I i from each individual autocorrelation and then dividing the 

difference by the standard deviation of I i . As anticipated by these formulas, I i investigates whether

a unit of analysis is significantly different from its neighborhood. This statistic finds application in

cluster-outlier analysis, where one wants to check for the presence of abnormal observations within a

local spot of high spatial autocorrelation. 

The expression of Getis–Ord G 

∗
i 

is: 

G 

∗
i = 

∑ n 
j=1 w i, j x j − x̄ 

∑ n 
j=1 w i, j 

s 

√ 

n 
∑ n 

j=1 w 

2 
i, j 

−
(∑ n 

j=1 w i, j 

)2 

n −1 

which is already formulated as a z -score, so no further computation is required. G 

∗
i 

identifies

statistically significant spatial clusters of high values (hot spots) and low values (cold spots) as

compared to the global average. In this study, we preferred Getis–Ord G 

∗
i 

over local Moran’s I i , because

our main goal was to detect the areas within or across Lombardy, Veneto and Emilia-Romagna that

were hardest hit (hot) or relatively spared (cold) by the pandemic. However, we encourage the use of

local Moran’s I i in ecological studies to assess the reasons for abnormal spatial trends in mortality or

other health indicators. 

As already mentioned, Getis–Ord G 

∗
i 

computes a z -score for each unit of observation. A high z -

score, typically above 1.96 or 2.58, indicates a spatial clustering of high values; a low negative z -

score, typically below –1.96 or –2.58, indicates a spatial clustering of low values. These thresholds

are commonly adopted because 95% and 99% of the observations in a standard normal distribution

lie between –1.96 and 1.96 and between –2.58 and 2.58, respectively. Values that exceed these

boundaries are expected to be systematically above or below the overall average with a high level of

confidence; on the contrary, a z -score ≈ 0 indicates no spatial clustering. That being said, a matrix W 

that expresses the spatial structure of geographic space needs to be determined to get these figures.

Various types of spatial weight matrices have been proposed, and selecting the right one might be

critical. In our analysis, we opted for the basic binary coding where a spatial unit is either a neighbor

(1) or it is not (0), but more advanced features are possible in the R package spdep. 

Another critical decision is the distance band (or threshold distance) that ensures that each spatial

unit has at least one neighbor. Unfortunately, high bands may result in some units having too many

neighbors, and this undermines the chances to detect local spots, while using low bands the largest

and/or more isolated units can be excluded because they find no neighbors. We decided that a band of

12.5 km was a good compromise to depict a map pattern with adequate accuracy while excluding only

5 out of 2397 municipalities (Cortina d’Ampezzo, Chioggia, Porto Tolle, Comacchio and Casteldelci). 

In order to perform the spatial correlation analysis, we used the R software (version 4.0.3). As

listed in the R spatial_autocorrelation script provided in the supplement, the packages needed to 

perform the analysis are tidyverse, a collection of R packages designed for data science [11] , haven,

required for importing .dta files [12] , spdep, required to carry out the spatial correlation [2] , sp [9] and

sf [8] , required for managing shapefiles. 

In the script, the first steps load the dataset containing the attribute of interest “estratio” and the

shapefile dataset which includes coordinates of regions and municipalities. We used .dta files only 

because the EM estimation was performed using Stata, but our script may be easily modified to load

other types of datasets as long as they share a common key with the spatial data and include the

attribute of interest. In our case, the territorial unit identifier was the “municipality” variable and

“estratio” was the attribute of interest. Please note that the Stata COVID19_EM script outputs “estratio”

in single region datasets, while the R spatial_autocorrelation script loads a single dataset which can

include the “estratio” of several regions. Thus, if the user wants to compute the spatial autocorrelation

of several regions combined, their datasets obtained by the COVID19_EM.ado Stata procedure must be 

appended, either in Stata or in R, before running the spatial_autocorrelation script. 
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Fig. 2. Spatial autocorrelation of excess mortality of 2020 with respect to 2015-19 in the municipalities of Lombardia, Veneto 

and Emilia-Romagna, in the period February 23rd - April 30th and for males aged ≥ 75 years. Clusters of municipalities with 

low excess mortality (cold spots) are coloured in blue, those with high excess mortality (hot spots) are coloured in red. 
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To carry out the spatial correlation analysis two options of the spdep package need a customized

etting: dnearneigh() and nb2listw(). The former creates the municipality centroids and joins

eighbors in a distance range defined by the user specified values. We modified its default values

sing d1 = 0, d2 = 12,500, as previously declared. The nb2listw() option supplements a neighbors list

ith spatial weights chosen among a set of coding schemes. We modified this option using style = B

basic binary coding) and zero.policy = TRUE (allows the weights list to be formed with zero-length

eights vectors). 

Getis–Ord G 

∗
i 
was computed using the localG() function, also part of the spdep package. By this

unction the local autocorrelation is calculated for each municipality using the spatial weights object

btained as the output of nb2listw(). As a final step, the maps showing the spatial clusters are

roduced using the ggplot2 package, see for example Fig. 2 in which the spatial autocorrelation

etween municipalities of Lombardy, Veneto and Emilia-Romagna is displayed. 
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