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Changes in tissue architecture and multicellular organisation contribute to many diseases, including can-
cer and cardiovascular diseases. Scratch wound assay is a commonly used tool that assesses cells’ migra-
tory ability based on the area of a wound they cover over a certain time. However, analysis of changes in
the organisational patterns formed by migrating cells following genetic or pharmacological perturbations
are not well explored in these assays, in part because analysing the resulting imaging data is challenging.
Here we present DeepScratch, a neural network that accurately detects the cells in scratch assays based
on a heterogeneous set of markers. We demonstrate the utility of DeepScratch by analysing images of
more than 232,000 lymphatic endothelial cells. In addition, we propose various topological measures
of cell connectivity and local cell density (LCD) to characterise tissue remodelling during wound healing.
We show that LCD-based metrics allow classification of CDH5 and CDC42 genetic perturbations that are
known to affect cell migration through different biological mechanisms. Such differences cannot be cap-
tured when considering only the wound area. Taken together, single-cell detection using DeepScratch
allows more detailed investigation of the roles of various genetic components in tissue topology and
the biological mechanisms underlying their effects on collective cell migration.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Cell migration plays an important role in both tissue repair and
disease. For example, increased migratory ability in cancer cells
can lead to invasion and metastasis, which are the main causes
of cancer mortality [1]. In contrast, regeneration and wound heal-
ing require the collective movement of cells to close epithelial gaps
[2]. Furthermore, cell migration contributes to sculpting and main-
taining tissue architecture and topology by coordinating temporal
and spatial cell behaviour. Although molecular factors regulating
cell migration at the single-cell level are fairly well understood,
research on the molecular factors regulating collective cell motility
has been limited by challenges in image analysis [3].

Scratch assays, or wound healing assays, are widely used for
assessing collective cell migration. Typically, they are based on
scratching the middle of a cell monolayer, inducing collective cell
migration toward ‘healing’ or closure of the resultant gap. Multiple
automated image analysis methods have been developed for seg-
menting the wound area [4,5]. However, these approaches do not
provide information on cell-level mechanisms, such as changes in
proliferation rate, cell morphology and size, or tissue topology
[6]. Consequently, which of these changes are reflected in the clo-
sure of a wound following genetic or pharmacological perturbation
is often unknown. Single cell analysis can provide more insight into
these mechanisms but can be challenging due to limitations on the
resolution of images captured in wound healing assays. Therefore,
developing single cell analysis methods for scratch assays is critical
for gaining more insights into the factors impacting cellular
motility.

Advances in deep learning revolutionised our ability to segment
and classify cell images, even in challenging datasets [7]. For exam-
ple, fully convolutional networks learn thousands of features
through multiple hierarchical layers to predict the class of individ-
ual pixels (e.g. foreground or background) [8]. U-Net is a fully con-
volutional neural network that is widely used for segmenting
biomedical imaging data [9–12]. Numerous studies have success-
fully used U-Net architecture to segment nuclear and cellular
images, including the Nuclei Segmentation Challenge [13,14].
CellProfiler 3.0, a widely used toolbox for cell segmentation allows
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training a U-Net model through the ‘ClassifyPixels’ module [15].
However, segmentation using deep learning approaches requires
manually drawing masks for tens to hundreds of cells, which is
highly time-consuming. U-Net can also be trained to detect cell
locations, rather than classifying every pixel in an image [16,17].
This strategy only requires dot annotations, which are less time-
consuming to obtain and, therefore, are more suited to high-
throughput applications, where images are of limited resolution
[18].

One aspect of wound closure that can be quantified from single-
cell locations in scratch assays is tissue topology. Tissue topology
describes the connectivity among cells and is quantified based on
the number of neighbours a cell has [19,20]. It has been intensively
investigated in the context of two-dimensional epithelial sheets
[21–24]. In general, epithelial tissues follow consistent topologies;
cells tend to adopt a hexagon shape and have six neighbours in
both plant and animal epithelia. In addition, the distribution of
the number of neighbours, and hence the number of polygon sides,
in different types of epithelial tissue tend to be fixed [3]. For exam-
ple, in the Drosophila wing disc the distribution of polygon shapes
is approximately 3% tetragons, 28% pentagons, 46% hexagons and
20% heptagons [25]. Topologies of endothelial cells, a subtype of
epithelia that lines the circulatory system, are yet to be deter-
mined. Another aspect of tissue topology is local cell density,
which affects the distance between neighbours. We and others
have shown that local cell density can modulate cell fate via its
effect on transcriptional activities [26,27], and its perturbation is
associated with cancer pathways [26,28]. Surprisingly, how the
topology of cell monolayers in scratch assays changes during
wound healing is not well explored.

DeepScratch builds on advances in deep learning to detect sin-
gle cells in scratch wound assays. To our knowledge, DeepScratch
is the first network to detect cells from heterogeneous image data
using either nuclear or membrane images. Using this approach, we
can extract various topological measures from scratch assays,
allowing more effective characterisation of cellular mechanisms.
To illustrate the utility of DeepScratch, we applied it to a publicly
available scratch assay dataset of wild type, and genetically per-
turbed lymphatic endothelial cells. Specifically, we investigated
the effects of CDH5 and CDC42 gene knockdowns that are known
to affect endothelial cell migration. However, these two genes act
on different biological mechanisms. CDH5 affects cell–cell adhe-
sion, and CDC42 is necessary for protrusion formation in addition
to cross-talk with cadherins [29–31]. Analysis of two-
dimensional endothelial layers using DeepScratch revealed that,
consistent with their distinct functions, CDC42 and CDH5 affect tis-
sue topologies differently. In summary, we present here a novel
pipeline, combining single-cell detection via neural networks with
biologically relevant metrics for scratch assays to better charac-
terise cellular mechanisms underlying perturbation effects on col-
lective cell migration.
2. Materials and Methods

2.1. Dataset

Images of human dermal lymphatic endothelial cells (HDLECs)
at 0 h and 24 h following a scratch assay were obtained from Wil-
liams et al. [30] (Fig. 1A). Cells were stained either for nuclei or
membrane or for both (Fig. 1B). The images were acquired at 4x
objective, which allowed the entire well to be captured in two
images that were stitched together, resulting in 512�1392-pixel
images. Three conditions were considered: mock-transfected con-
trol cells and knockdown of either CDH5 or CDC42 genes using
siRNA. Fifteen technical replicates were analysed per condition,
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with two timepoints captured (90 images in total). These images
were composed of 232,000 cells.

2.2. Cell detection using convolutional neural networks

Training data
Patches of 192�192 pixels were generated, resulting in 1,740

patches. As manual image annotation was not feasible for all
images, only 544 random patches were dot annotated (Fig. 1C).
Because cells were stained with different markers, we split the
training images into two sets: 1) images with nuclear stain only
(‘Nuclei’ set) and 2) images with membrane stain only or both
membrane and nuclear stain (‘Mix’ set). In total, 176 patches
(22,300 cells) were sampled from the Mix dataset and 368 images
(31,440 cells) from the Nuclei dataset. We used 90% of the anno-
tated images for training and split the remaining 10% equally into
testing and validation datasets. We used the remaining unanno-
tated data (69% of the data) as an additional testing dataset, for
which results were qualitatively assessed. We also assessed the
performance on unseen conditions (50 images) and found that
DeepScratch was robust to variation in cell shape and intensity
variation.

Image normalisation
Images were normalised by dividing all pixel values by the

maximum possible intensity value (i.e., 212 –1 = 4,095 for 12-bit
images).

DeepScratch architecture
DeepScratch is based on U-Net architecture [9], which is com-

posed of an autoencoder that downsamples the input image into
a compressed representation, followed by a series of upsampled
layers that decompress the learned feature maps to the same size
as the original image. Skip connections are added to provide con-
textual information from the feature maps in the downsampling
layers to the upsampling layers. As a result, U-Net combines local
and global image information to map each pixel to a semantic
value. We used four layers for both the downsampling and upsam-
pling branches. In our network, each convolution is activated by a
leaky rectified linear unit (ReLU) with a negative slope of 0.1 and
no batch normalisation. All convolutions are 3x3 pixels, except
for the initial block, where a 7x7 convolution is used. The down-
stream encoder consists of four blocks, each with two convolu-
tional layers and with 48 feature maps followed by 2x2 max-
pooling. The upstream decoder has a similar configuration but
replaces max-pooling operations with 2x2 upsampling via nearest
neighbour interpolation. Following the final upsampling layer, a
final convolution layer compresses the 48 channels into a single
channel. We also tested other configurations, including a deeper
U-Net (10 and 12 layers) and batch normalisation. We also tested
using ResNet architecture [32] in the downsampling branch. These
variations did not result in improved performance, which indicates
that increasing model complexity does not always increase the
accuracy of convolutional networks.

DeepScratch training
Target objective. To robustly detect cells in the images, we trained
U-Net to predict a belief map of the probability that a cell is loca-
lised at a given pixel, instead of an absolute location. During train-
ing, belief maps are generated by transforming coordinates into
pixel-wise annotations and convolving the resulting mask with a
Gaussian kernel of size 2.5�2.5 pixels. The size of the kernel is
determined empirically and depends on cell size. At inference time,
each cell’s coordinates are extracted from the predicted masks by
identifying the local maxima. This method is used commonly in
pose estimation [16] and has been applied previously to cell local-



Fig. 1. Training data and DeepScratch model. A) HDLECs imaged at 0 h and 24 h after scratch-wound assay (4x objective) resulting in two images that were stitched
together. B) Training data is composed of images in which cells are stained for nuclei, membrane, or both. C) Example of dot annotations (red dots). D) DeepScratch
architecture where each blue rectangle is composed of two convolutional layers, each followed by a leaky ReLU operation and either max-pooling or up-convolution. The
input to the network is an image of 96x96 pixels, and the output is a belief map indicating the distance of each pixel to the annotated cell centre. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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isation [17]. The Gaussian kernel is used to facilitate the network
convergence. Additionally, the probability assigned to neighbour-
ing pixels conveys the uncertainty associated with the exact coor-
dinates of the cell centre.

Batch construction. Images were randomly selected in each batch.
We balanced the number of samples that were seen by the model
from the Nuclei and Mix set. A random crop of size 96�96 pixels
was selected from each image. The small crop size was appropriate
because the global context is not very important for the task, i.e.,
we do not expect the global shape of the wound to affect the mod-
el’s ability to locate an individual cell. Crops were chosen randomly
with a 20% probability. The remaining crops were generated by
randomly selecting a cell, then choosing a crop including the corre-
sponding cell (80% probability). We used these two approaches for
crop selection to ensure that most crops contained cells, while
allowing for the possibility that a crop was void of cells.

Data augmentation. Data augmentation is a standard practice in
training neural networks for making a model more robust to vari-
ations that could realistically occur. We augmented each crop by
random rotation, horizontal and vertical flipping, or by scaling by
a factor between 0.9 and 1.1. Augmentation of the target data is
done in the coordinates space, then coordinates are ultimately
transformed into belief map space using a Gaussian kernel of size
2.5�2.5 pixels. To account for the high variation in intensity in
the dataset, crops were also perturbed by multiplying their inten-
sity values by a random variable between 0.5 and 1.3 or by sub-
tracting a random variable between �0.2 and 0.2.

Training parameters. The model was trained using the Adam opti-
miser with a learning rate = 1.28x104 and batch size = 128 and
using minimum squared error as the loss function. The model typ-
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ically converges after 160 epochs, with each epoch requiring
around 3–4 min. After each epoch, the model is saved, and its per-
formance is recorded. We selected the model from the epoch with
the lowest error score based on the validation set.

Models were trained on a desktop workstation with NVIDIA
TeslaK40c GPU with 12 GB RAM and required approximately
17 h for training. Once trained, the model can process 48 images
(512�1392 pixels each) per minute, including postprocessing of
the belief maps and segmenting wounds (see below). Thus, this
approach is scalable to large datasets.
Postprocessing of predicted belief maps. To calculate cell localisation,
local maxima are computed from the predicted belief maps. First,
predicted belief maps are normalised by the global maxima. Then,
max-pooling with 3 � 3 pixel kernel is applied to the resultant
image. The intersection between the normalised belief map and
its max-pooled version allows the detection of local maxima
because only the local maxima are present in these two masks.
Finally, only the local maxima above a user-defined threshold are
retained. To identify correct predictions, the predicted localisations
are matched to the ground truth annotations using the Hungarian
method. Then, cells are matched to their nearest neighbour, given
that they are within 10 pixels from the annotated points.
Wound segmentation. Segmentation of a wound region was done
via detection of areas that did not contain cells (Fig. 3A). We first
estimated cell density by converting cell density by converting
coordinates of cells into a mask with pixel-wise annotations and
applying a uniform 13 �13 pixel kernel. Then, we created a seg-
mentation mask by applying a morphological opening with a 35
� 35 pixel kernel and categorising any black pixel as part of the
wound area. We identified all connected components in the wound
mask and defined the wound as the object with the largest area.
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2.3. Benchmarking
We benchmarked DeepScratch against traditional thresholding

methods for cell segmentation using CellProfiler [33]. We used
Robust Background thresholding method as it resulted in best seg-
mentation results on our Nuclei set. Detecting cells stained with a
heterogeneous set of markers is not feasible using CellProfiler,
because a different method needs to be implemented for each mar-
ker and, thus, requires a classification step for the marker itself.

2.4. Image and data analysis

Polygon shapes
The number of sides of each cell was obtained using Voronoi

tessellation. This method also reflects the number of neighbouring
cells, which allowed approximate segmentation of cells in conflu-
ent monolayers. Voronoi tessellation takes as an input the xy coor-
dinates of seed points and assigns every pixel in an image to the
nearest seed. Pixels that are equidistant to multiple seeds form
the sides of the Voronoi cells. This process results in a diagram
filled with adjacent convex polygons (Fig. 3B) and is well-suited
to the problem, as epithelial tissues resemble Voronoi organisation.

Spatial correlation analysis
To determine whether certain shapes co-occur more often than

expected by chance, we estimated the probability of co-occurrence
of a polygon with N sides with other polygon shapes, based on a
random distribution (Table 1). For example, based on the relative
frequency of hexagons in our images, the expected probability that
a hexagon is in contact with another hexagon is 36%. Thus, based
on a random distribution of polygon shapes, each hexagon is
expected to be in contact with approximately two other hexagons,
assuming a random distribution (36% of 6 sides = 2.16 sides). Devi-
ation from expected rates of co-occurrence (Table 1) indicates
potential clustering.

To compute the actual co-occurrence probability, we deter-
mined the frequency of co-occurrence between various polygon
shapes. These frequencies were normalised to their sum. Therefore,
the probabilities that are shown in Fig. 3E-H were normalised by
row.

Local cell density (LCD)
Cells that are closer to their nearest neighbours have higher

densities and vice versa, so we used distance to the nearest neigh-
bour to measure local cell density. We tested various numbers of
nearest neighbours, which generally had similar results (results
not shown). The distance to the nearest 36th neighbour was
selected to capture both direct and indirect neighbours, and LCD
was computed as the inverse of the distance to the nearest 36th
neighbour. As LCD varies depending on distance to the wound cen-
tre, we defined normalised LCD as the ratio between LCD and dis-
tance to the wound centre. Because the wound was completely
closed by cells at t24h under some conditions, distance to the
wound centre was estimated at t0h.

Principle component analysis (PCA)
We computed LCD based on distance to the nearest 36th neigh-

bour and 10th neighbour and on the area of Voronoi cells to
Table 1
Percentages of sides that should be shared between polygon shapes based on a random d

Polygon shape Tetragon Pent

Tetragon 0.28 1.16
Pentagon 0.35 1.5
Hexagon 0.42 1.47
Heptagon 0.49 2.03
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account for different length scales. To obtain more information
on single-cell distribution and heterogeneity within the well, we
calculated the median, skewness, standard deviation and 10%,
25%, 75% and 90% quantiles of LCD [28]. We applied PCA to the fold
change (t24h/t0h) of these different statistics.
3. Results

3.1. Robust detection of cell localisation using DeepScratch

We implemented DeepScratch, an optimised U-Net, to localise
cells in scratch assays when nuclei or membrane markers are used
(Methods and Fig. 1). DeepScratch accurately detected cells in both
membrane and nuclei images under different treatment conditions
that affected cell shape or adhesion (Fig. 2). We assessed its perfor-
mance using the F-score metric, which accounts for both sensitiv-
ity and specificity. DeepScratch scored 95.8% when considering
both Nuclei and Mix set and 98.2% on Nuclei set only (Table 2).
As expected, the model score decreased when the set contained
membrane images, as detecting cells in some of the images was
challenging even for an expert. A more complex model, using a
ResNet in the downsampling branch, did not improve results
(Methods). Furthermore, the performance of DeepScratch is signif-
icantly better than CellProfiler, which uses traditional thresholding
techniques (Methods). In particular, thresholding approaches
resulted in significantly higher false-negative rates when image
contrast was low as reflected by the lower recall (Table 2). These
results show that DeepScratch is a robust approach for single cell
detection in scratch assays and, unlike traditional pipelines, is gen-
eralisable to multiple stains, allowing for increased flexibility in
experimental design.
3.2. Endothelial cells are constrained topologically

Because cell–cell connectivity can play an important role in col-
lective cell migration, we first investigated whether the topology of
endothelial monolayers follows certain patterns. Using the cell
locations detected by DeepScratch, we determined the distribution
of different polygon shapes, which itself indicates the number of
neighbouring cells. At t0h, when wound response at its onset, the
topology of cells away from the wound should reflect the organisa-
tion of cells in steady-state. Polygon shape can be determined
based on Voronoi tessellation (Fig. 3B and Methods). On average,
each image in our dataset was composed of approximately 3000
cells (+500 at t24h), which provided sufficient data for our analyses.
Wounds were segmented, and cells at the wound and image edges
were excluded from further analysis. We found that the most fre-
quent topology in HDLECs at t0h is a 6-sided polygon (Fig. 3C), sim-
ilar to what is reported for epithelial tissues [21]. The mean
percentage of hexagonal cells is 36.16%. Pentagons are the second
most-frequent topology with (mean = 28.64%), followed by hep-
tagons (mean = 19.55%). Tetragons and octagons are detected at
similar relative frequencies (6%-7%). Consistent with previous
work, larger cells tend to be in contact with more cells and, hence,
more sides (Pearson correlation coef. = 0.435, p-value < 0.00001)
[21]. These results suggest that the distribution of different poly-
istribution.

agon Hexagon Heptagon

2.16 0.8
1.8 1.0
2.16 1.2
2.52 1.4



Fig. 2. DeepScratch robustly detects cells across different stains and conditions. Top row includes images with nuclear stain while bottom row includes images with
membrane stain.
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gon shapes is constrained in HDLECs, and hexagons are the most
frequent shape.

We explored whether cells with a similar number of sides or
certain topologies tend to cluster together (i.e. are spatially corre-
lated) or to spread randomly in the well. Qualitatively, we
observed that certain image regions tended to contain more of a
particular shape than neighbouring regions. For example, more
6-sided polygons can be seen in the right side of the image in
Fig. 3D than on the left. To identify potential spatial correlations
between topologies, we computed the probability of co-
occurrence between different shapes (Methods and Fig. 3E-H),
where deviation from expected values (Table 1) indicates cluster-
ing behaviour. We found that pentagons are most likely to share
a single side with other pentagons (47%), while 20% of pentagons
shared 2 sides with other pentagons, and 30% did not share any
side with another pentagon (Fig. 3E). These results are reasonably
consistent with the relative occurrence of pentagons, where a pen-
tagon is expected to share 1.5 sides with another pentagon. Alter-
natively, pentagons shared 1 or 2 sides with heptagons with
similar probabilities of 38% and 31% respectively. This result devi-
ates from expected frequencies, where pentagons are expected to
share only a single side with other heptagons, based on their rela-
tive frequency. Additionally, hexagons tended to cluster together,
sharing 2, 3 or 4 sides with other hexagons with probabilities of
31%, 25% and 12% respectively (Fig. 3G). These results suggest that
similar polygon shapes are not extremely clustered, with the
exception of hexagons, and that some topologies tend to be more
correlated with each other.
3.3. Tissue remodelling during wound healing

We determined whether topological metrics can be useful for
quantifying changes during wound healing and observed a small
but significant change in the distribution of polygon shapes at
24 h following wounding (Fig. 4A, p-value < 0.00001). Specifically,
hexagons increased by 1.29% and heptagons increased by 0.95%,
while the frequencies of other polygons decreased (Fig. 4A-B).
These results suggest that cell–cell connectivity based on the dis-
tribution of different polygon shapes does not provide a sensitive
metric of collective cell migration in scratch assays.
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Next, we investigated changes in local cell density (LCD) during
wound healing as another measure of cell topology (Methods). LCD
indicates the number of cells per unit area and reflects both cell
spreading (lower LCD) and proliferation (higher LCD) and can be
independent of the number of cells. LCD significantly decreased
24 h following scratch assay, which reflect cell spreading as they
migrate to close the created gap (Fig. 4C). LCD was also positively
correlated with distance to wound centre (Fig. 4D, Pearson correla-
tion = 0.4). Cells had lower density at the leading edge of the
wound and higher density as distance from the centre increased
(Fig. 4C). Interestingly, this correlation was not observed at t0h.
These results show that cell spreading is spatially coordinated dur-
ing wound healing and suggest that measures of local density can
provide a useful metric in scratch assays.
3.4. Topological metrics for characterising perturbation effects in
scratch assays

We sought to determine whether LCD can distinguish between
genetic perturbations affecting different cellular mechanisms using
CDH5 and CDC42 knockdowns. Both knockdowns resulted in sig-
nificant decrease in wound area closure, compared with mock-
transfected cells (Fig. 5A). Like mock-transfected control samples,
average LCD decreased in CDC42 and CDH5 depleted cells
(Fig. 5B). These results indicate that a decrease in cell density is
due to cell spreading and is independent of cell migration. Indeed,
CDH5 had the lowest LCD as the loss of cell–cell adhesion resulted
in larger cells (Fig. 2). However, the correlation between LCD and
distance to wound centre was significantly less in CDH5 and
CDC42 knockdowns compared to mock samples (Fig. 5C and p-
value < 0.02). We also observed different behaviour from cells in
these different conditions when considering both Voronoi cell area
and LCD normalised to distance to wound centre (Fig. 5D). There-
fore, we computed different statistics based on normalised LCD
(Methods). We visualised the fold change of these measures
(t24h/t0h) in reduced principal component space to identify their
variation between conditions. CDH5 and CDC42 knockdowns not
only clustered away from mock-transfected cells but also dis-
played distinct topological signatures (Fig. 5E). These results show
that measures derived from single-cell densities can improve char-
acterisation of genetic perturbation effects on cell migration.



Table 2
DeepScratch performance results.

Image data Nuclei Set Mix Set Nuclei + Mix Set

F-score Precision Recall F-score Precision Recall F-score Precision Recall

DeepScratch – Simple 98.2% 97.1% 97.4% 92.5% 91.7% 92.1% 95.8% 95.4% 96.2%
DeepScratch – ResNet 96.0% 96.1% 89.3% 92.5% 96.1% 89.3% 94.3% 96.1% 89.3%
CellProfiler 87.84% 96.75% 80.4% – – – – – –

Fig. 3. Endothelial cells topology. A) Segmentation of wound area B) Voronoi diagram reflecting the number of neighbours for each cell and approximate morphology, such
as area and elongation. C) Percentages of different polygon shapes in endothelial confluent monolayers (t0h). D) Example on the distribution of different polygon shapes in the
well. More hexagons (purple) on the right (64) of the image than the left (38). E-H) Heatmaps of co-occurrence probabilities of different polygon shapes with pentagons (E),
hexagons (F), heptagons (G) and octagons (H) as indicated on the left of each heatmap. Frequencies are normalised by row. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

Scratch-wound assay is widely used in biomedical studies to
assess cell motility. However, analysis of the resultant imaging
data has been limited to wound area. We developed DeepScratch
to accurately localise cells in scratch assay images, allowing the
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generation of rich feature sets from these images and investigation
of various biological questions. We have shown here that Deep-
Scratch outperforms traditional analysis methods. Importantly, in
contrast to current methods, our approach is highly flexible and
can be applied to heterogeneous image datasets even when differ-
ent markers are used. Moreover, we have illustrated how single



Fig. 4. Remodelling of tissue topology during wound healing. A) A small but significant change in the average relative frequency of polygon shapes after 24 h of scratch
assay (p-value < 0.00001). B) Changes in the distribution of polygon shapes. Solid and dashed lines indicate distribution at t0h and t24h respectively. C) Local cell density (LCD)
versus distance to wound centre of single mock-transfected cells from one well at t0h and t24h shows increased LCD during wound healing (n = 1). D) Pearson correlation
coefficient between LCD and distance to wound centre is significantly higher at t24h (n = 15, ** indicates p-value = 8.8e-07).
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cell-based measures allow characterisation of tissue topology and
aid classification of perturbation effects.

Simplifying the image analysis task to a cell detection problem
offers multiple advantages. Firstly, collecting annotations for cell
localisation (one cursor click per cell) is much less time-
consuming, compared with segmentation (drawing the contour
for each cell). Secondly, this approach is valuable in situations
when annotation of the cell boundary is not possible, for example,
when only nuclear staining is available. Thirdly, segmentation of
highly dense cells is a much more challenging task, even when a
large number of annotated cells are used [13,14]. Furthermore, cell
detection is less computationally intensive and more suited to high
throughput applications that require quantification of thousands of
cells per sample. Thus, our approach is more scalable to studies
that use many timepoints or live imaging data. The main limitation
of our approach is that we cannot obtain accurate measures of cell
morphology. However, Voronoi tessellation can still be used to
provide approximate measures of cell shapes, areas and densities
in confluent monolayers. Therefore, DeepScratch provides a scal-
able and flexible approach for analysing wound healing imaging
data.

The main advantage of using convolutional networks, versus
traditional analysis pipelines, is that the former do not require tai-
lored parametrisation of expected cell shapes or marker distribu-
tion. For example, DeepScratch performs well under various
genetic perturbations that result in substantially different cell mor-
phologies, such as CDH5 knockdown (Fig. 2), assuming that it is
trained on a representative subset of images. Thus, this method
can be applied to cell lines that have highly heterogenous mor-
phologies, such as neuronal and cancer cells. Furthermore, this
approach, along with the proposed metrics, can be applied to a
wide range of imaging studies in which object segmentation is a
challenging task.

Topological analysis of endothelial cell connectivity revealed
that these cells follow similar patterns to epithelial cells from other
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tissue types [21]. The distribution of polygon shapes in endothelial
cells cultured in vitro peaks at six sides with a long right tail. Con-
sistent with Lewis’ Law, the number of sides is correlated with cell
area. Our study shows that endothelial sheets are composed of, on
average, 7% tetragons, 28% pentagons, 36% hexagons, 20% hep-
tagons and 6% octagons. This distribution is strikingly similar to
the distribution reported for mutated Arabidopsis thaliana leaves
(7% tetragons, 29% pentagons, 36% hexagons, 23% heptagons, 5%
octagons) [19], showing that these topologies are highly conserved
in nature because they are biophysically constrained. We also
observed some extent of spatial correlation; some shapes tended
to co-occur with each other more frequently, especially hexagons.
Findings of previous studies have varied regarding spatial correla-
tion [19,24]. We speculate that this correlation is due to cells’ ten-
dency to give rise to certain shapes during cell division [22].
However, more work is needed to identify the biological function
underlying cell clustering and its variability in different tissue
types.

Our analysis reveals that spatial coordination of cellular spread-
ing is induced upon scratch wounding. We observed that cells clo-
ser to the wound are more spread out. However, cells that are more
distant from the wound have higher local cell density and are less
spread out. This finding might indicate that proliferation rate
increases in cells away from the wound, which can be activated
by cells at the leading edge [34]. Both CDC42 and CDH5 knock-
downs significantly reduce the spatial coordination of cell density,
reflecting the importance of such coordination in collective cell
migration. However, the depletion of these genes affects different
mechanisms; the disruption of cell adhesion through CDH5 knock-
down reduces cellular tension, while CDC42 knockdown affects
cell response to microenvironmental change [35,36]. By consider-
ing multiple LCD-based measures we can discriminate among the
different effects of these perturbations (Fig. 5E). Thus, our inter-
pretable features allow better characterisation of perturbation
effects and can provide insights into their biological mechanisms.



Fig. 5. Local cell density provide biologically relevant metrics of wound healing assays. A) Fold change of wound area (t24h/t0h) is significantly lower in CDH5 or CDC42
depleted cells. Kd: knockdown (** indicates p-value < 4.2e-05). B) LCD is significantly lower at t24h in all conditions but is lowest in CDH5 knocked-down cells (** indicates p-
value < 2.3e-04). C-D) Correlation between LCD and distance-to-wound-centre is significantly different between conditions at t24h but not at t0h (* indicates p-value < 0.02). E)
Fold change of LCD-derived metrics (t24h/t0h) projected into the first two principle components show that depletion of CDH5 and CDC42 have distinct effects on tissue
topologies, confirming their distinct biological mechanisms.

A. Javer et al. Computational and Structural Biotechnology Journal 18 (2020) 2501–2509
In summary, DeepScratch is a useful approach for studying
topological changes during collective migration in confluent mono-
layers. Applying DeepScratch to datasets in which thousands of
genetic and pharmacological perturbations are tested will advance
our understanding of the roles these factors play in tissue remod-
elling and cell migration. This can be highly valuable for under-
standing various disease processes and engineering regenerative
medicine approaches.
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