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Evaporation-induced sintering of liquid metal
droplets with biological nanofibrils for flexible
conductivity and responsive actuation
Xiankai Li1,2, Mingjie Li 1, Jie Xu1,2, Jun You1, Zhiqin Yang3 & Chaoxu Li1,2

Liquid metal (LM) droplets show the superiority in coalescing into integral liquid conductors

applicable in flexible and deformable electronics. However, the large surface tension, oxide

shells and poor compatibility with most other materials may prevent spontaneous coales-

cence of LM droplets and/or hybridisation into composites, unless external interventions

(e.g., shear and laser) are applied. Here, we show that biological nanofibrils (NFs; including

cellulose, silk fibroin and amyloid) enable evaporation-induced sintering of LM droplets under

ambient conditions into conductive coating on diverse substrates and free-standing films. The

resultants possess an insulating NFs-rich layer and a conductive LM-rich layer, offering

flexibility, high reflectivity, stretchable conductivity, electromagnetic shielding, degradability

and rapid actuating behaviours. Thus this sintering approach not only extends fundamental

knowledge about sintering LM droplets, but also starts a new scenario of producing flexible

coating and free-standing composites with flexibility, conductivity, sustainability and

degradability, and applicable in microcircuits, wearable electronics and soft robotics.
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Nanomaterial agglomeration and coalescence are of great
importance for the formation of interconnecting con-
ductive networks of flexible electronics applicable in soft

robotics, stretchable, wearable, implantable and biomedicine
devices1,2. Many conductive 0–1 dimensional (0–1D) nanoma-
terials (e.g., nanotubes, nanoparticles and nanowires of metals3,
carbon4 and conjugated polymers5,6) have been endeavoured
either as the colloidal inks for deposition, writing and printing, or
as the fillers in organic composites7. When depositing and
printing solid conductive colloids, capillary forces induced by
solvent evaporation could assist to organise them into closely-
packing layers8. When incorporating solid nanomaterials into
organic matrix, large filler compositions were normally required
to exceed the percolation threshold and form the interconnecting
networks of charge transport3,9,10, e.g., 16.2 vol% for Au nano-
particles in polyurethane9 and 10 wt% for carbon black in
polyester10. In most cases, agglomeration and coalescence of rigid
solid nanomaterials may show contact resistance of charge
transport at their physical junctions. The encapsulated layers of
solid nanomaterials, which were essential for colloidal stability
and compatibility with organic matrix, may also hinder their
direct contact and hereby charge transport.

In contrast to rigid solid nanomaterials, droplets of liquid
metal (LM, e.g., EGaIn with 75% gallium and 25% indium8) show
the superiority in sintering into integral liquid conductors which
could withstand physical deformation as diverse as bending,
twisting, stretching and compression11,12. EGaIn droplets could
be stabilised and incorporated into the printable inks and organic
matrix, under the shell protection of the oxide layer (sponta-
neously forming and with the thickness of 0.5−3 nm12), ligand
coordination and microgels11,13. Thus great potential of LM has
been promised in flexible electronics because of its fluidity,
metallic conductivity, negligible vapour pressure and low
toxicity12,14,15. However, when applying in deposition, writing,
printing16, injecting into microchannels and embedding into
organic matrix, EGaIn droplets were normally hindered from
closely packing and spontaneously sintering due to the combi-
nation of high surface tension (624 mN m−1) of EGaIn, protec-
tion shells and incompatibility with other materials. In particular,
structural cracks frequently emerged within the layers of LM
droplets due to internal stress produced by unsymmetrical
capillary forces8,11. External interventions were usually required
to rupture their encapsulating shells and release fluidic LM for
droplet sintering, such as mechanical sintering8,17 and laser
sintering18,19. But it still remains far from being fully understood
how various factors control the sintering processes of LM droplets
for the formation of conductive layers on diverse substrates and
interconnecting networks within organic matrix.

Recently, it was suggested that capillary forces could produce a
local pressure at nanoscale up to 101~103 MPa at the junctions of
Ag nanowires (with the diameter of 50–90 nm), being sufficient
for cold welding of the nanowires20,21. Herein we show
that evaporation at the ambient condition (room temperature of
~20 °C, ordinary pressure of ~0.1 MPa and relative humidity
(RH) of ~40%) can sinter colloidal suspensions of EGaIn droplets
in the presence of biological nanofibrils (NFs, with the diameter
of ~5–10 nm) as low as 0.05 wt% of cellulose, silk fibroin and
amyloid, and hereafter produce conductive layers on diverse
substrates and free-stranding composites with multiple func-
tionalities, such as optical reflectivity, flexible conductivity (up to
8.9 × 105 S m−1) and rapid responsive actuation. In contrast to
conventional mechanical sintering solely on rigid substrates and
laser sintering on heat-resistant substrates8,18, this spontaneous
sintering method can serve for conductive patterns, circuits and
electromagnetic shield on both rigid and soft substrates (e.g.,
elastic, inorganic and biological). When sintering on elastic

substrates, the EGaIn coating endures a tensile stain up to 200%
without showing clear conductivity decay. The consolidating
product may also be free-stranding with the thickness up to tens
of micrometres. Consisting of a bottom EGaIn-rich layer and a
top NFs-rich layer, the resultant Janus film can respond to low
voltage (<3 V), photo and humidity, and show actuating beha-
viour with great bending speed (e.g., 120°s−1) and repeatability,
being comparable with or superior to most of soft actuators in the
literature.

Results
Design strategies. Biological NFs with the diameter of <10 nm
are widely distributed in biomasses (Fig. 1a and Supplementary
Fig. 1, 2), and function in living organisms for mechanical sup-
port (e.g., in crab shell), protection (e.g., in silk cocoon), adhesion
(e.g., in biological membrane) and pathogenesis (e.g., related to
Alzheimer’s diseases)22. Technologically, silk NFs and amyloid
NFs could be produced through supramolecular self-assembly
(Supplementary Methods and Supplementary Fig. 1)23,24. Cellu-
lose NFs (CNFs), with the average diameter of ~6 nm and aspect
ratio of >102 (Fig. 1a and Supplementary Fig. 2), could be exfo-
liated from hardwood through a 2,2,6,6-tetramethylpiperidyl-1-
oxyl (TEMPO)-mediated oxidisation25. With the advantages of
low cost and sustainability, these NFs have seen promising
applications in biomedicine, catalysis, reinforcing fillers, optoe-
lectronics and energy-harvest25.

Among these NFs, the synthesised CNFs typically had plentiful
carboxyl groups (with the content up to 1.4 mmol g−1) and
hereby negatively charged surfaces (e.g., ζ-potential ~−50 mV at
pH 7 shown in Supplementary Fig. 2, 3), being capable of forming
a stable aqueous suspension (e.g., with the concentration ϕCNF=
0.5 wt%) at the nematic liquid-crystalline state. EGaIn, acting as a
typical eutectic alloy (with a melting point ~15.8 °C), remains
fluidic at room temperature with a large surface tension (624 mN
m–1) and high conductivity (3.4 × 106 S m–1). When sonicating
(300W and 20 kHz) EGaIn in the suspension of CNFs, an opaque
grey slurry was produced with the formation of EGaIn droplets
(Fig. 1b). By optimising the sonication time (e.g., 60 min in
Supplementary Fig. 4) and CNFs concentration (e.g., ϕCNF= 0.2
wt% in Supplementary Fig. 5), the average droplet size could
decrease down below 100 nm (Fig. 1c). The average droplet
diameter of 50 nm was possibly achieved via further centrifuga-
tion (5000 rpm) for size grading (Supplementary Fig. 6).

To be noted, without the presence of CNFs, aqueous
suspensions of EGaIn droplets were also produced with the size
of >400 nm (Supplementary Fig. 5). It was reported that
spontaneous oxidation assisted to encapsulate EGaIn droplets
within a thin oxide shell15. In the presence of CNFs, EGaIn
droplets were further stabilised by binding a certain amount of
CNFs on their surface via crosslinking and coordination of
carboxyl groups with Ga oxydate like Ga3+ (Fig. 1c and
Supplementary Fig. 7)11. Thus the resultant suspension had the
smaller EGaIn droplets and was capable of maintaining stable up
to days at pH ~7 under N2 protection, with negligible
precipitation and chemical oxidation (Supplementary Fig. 8, 9).

When casting the suspension of EGaIn droplets under the
ambient condition, a free-standing bilayer film was obtained with
the micrometric thickness. The grey top layer consisted mainly of
CNFs, while the bottom layer consisted mainly of sintered EGaIn
and showed smooth mirror-like surfaces (Fig. 1d, e, Supplemen-
tary Fig. 10 and Supplementary Movie 1). The thickness ratio of
these two layers could be tuned by controlling the concentration
ratio of CNFs and EGaIn in the suspension. Besides the free-
standing films, EGaIn droplets together with CNFs could
also deposit on various substrates through mask-printing,
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channel-depositing, hand-writing and drop-casting (Fig. 1d,
Supplementary Fig. 11). A bilayer coating was produced (Fig. 1d
and Supplementary Fig. 12), either on the rigid substrates (e.g.,
glass and mica) or on the soft substrates (e.g., polyethylene
terephthalate (PET), polypropylene (PP), styrene-ethylene-
butylene-styrene (SEBS), polydimethylsiloxane (PDMS), leaf
and skin). In contrast, without biological NFs, no free-stranding
film or coating was produced either via casting or via filtration
(Supplementary Fig. 13). And EGaIn droplets were deposited
only randomly on the substrate without showing conspicuous
coalescence and sintering (Fig. 1e, Supplementary Fig. 13).
Similar results were also obtained by replacing CNFs with silk
NFs or amyloid NFs (Supplementary Fig. 14).

Flexible conductivity & degradability. Both the free-standing
films and coating on different substrates shared a common bilayer
structure (Fig. 1e), suggesting the presence of a precipitation
separation process during the evaporation (Supplementary
Fig. 15, 16). Due to the high density (6.28 g mL–1)14, EGaIn
droplets precipitated first and sintered into the bright layer with
an electric conductivity (Supplementary Fig. 14). CNFs had
relatively high colloidal stability and deposited on the EGaIn layer
as the insulating layer. Inevitably, CNFs might also exist
within the conductive layer because of their presence on and
between the EGaIn droplets during evaporation-induced sintering

(Supplementary Fig. 17a). EGaIn droplets, when having the
smaller size and attaching more CNFs, might also exist within
the insulating layer because of their higher colloidal stability
(Supplementary Fig. 17, 18).

The presence of CNFs not only assisted to sinter the EGaIn
droplets via evaporation, but also served as the structural support
for comparable mechanical properties of the free-standing Janus
films (e.g., an elastic modulus up to 4.75 GPa in Supplementary
Fig. 19a, b). The remaining CNFs within the EGaIn-rich layer also
enabled its endurance to mild rub (see the inset of Fig. 2a), in
contrast to weak surfaces when lacking CNFs (Supplementary
Fig. 19c). The bottom bright layer reflected light in a way akin to
bulk LM with a reflection ≥ 80% within the visible-light region
(400−720 nm), whilst the top CNFs layer displayed high light
absorption and thus a low reflection ≤ 20% (Fig. 2a and
Supplementary Fig. 20).

When depositing on elastic substrates (e.g., SEBS), the EGaIn
coating could survive hundreds of cycles of bending and twisting,
without showing sensible conductivity decay (Fig. 2b and
Supplementary Fig. 21). More surprisingly, this conductive layer
adhered closely to the substrate during cyclic stretching, and
maintained highly conductive with the strain up to 200% (Fig. 2c
and Supplementary Fig. 22), in spite that the top CNFs-rich layer
peeled off from the coating. In sharp contrast, the EGaIn coating
without CNFs formed isolated granular morphologies after
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Fig. 1 Evaporation-induced sintering of EGaIn droplets with biological NFs for free-standing films and coatings. Evaporation-induced sintering of EGaIn
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diameter after 60min sonication (Bottom right) were given as the inset. d Evaporation-induced sintering into free-standing films (Top) with mirror-like
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sectional SEM images of coating layers of EGaIn droplets with (Top) and without CNFs (Bottom)
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stretching up to 100% (Supplementary Fig. 22). This suggested
that the remaining high-aspect-ratio CNFs enabled stretchability
of the conductive EGaIn-rich layer. Their polar groups also
ensured the EGaIn affinity to the substrate.

Besides serving for flexible electronics, this conductive layer
also exhibited an electromagnetic shielding property with a
comprehensive shielding efficiency (SE) ≥ 12 dB (for the layer
thickness of only ~20μm) in the X-band frequency range of
8.2–12.4 GHz (Fig. 2d). In spite of fluctuations across the tested
frequency range, its overall performance is comparable or
superior to many reported materials with higher thicknesses
(Fig. 2e), thus being ideal for electromagnetic shielding applica-
tions26–37. Furthermore, the bilayer film and substrate coating
could fully degrade in natural soil extract within 15 days (Fig. 2f
and Supplementary Fig. 23), owing to biological and/or chemical
degradation of CNFs and EGaIn. Thus this unique type of
materials would offer an alternative for degradable and flexible
electronics.

Responsive actuating behaviour. The prepared free-standing
films possessed an intrinsic Janus feature, in which both the
bottom and top layers showed distinct responsibility to humidity
and electricity. For example, owing to different hydration abilities
of CNFs and EGaIn, the Janus film delivered an unique actuating
behaviour under cyclically exposing to different humidities (e.g.,
RH 40 and 100%), alike to reversible movement in pine cones
(Supplementary Fig. 24)38. The actuating curvature maximised at
the thickness ratio ~0.9 of the EGaIn-rich and CNFs-rich layers
(see detailed calculation in Supporting Information and

Supplementary Fig. 24c). Moreover, the conductive EGaIn layer
had a strong electro-thermal effect, being capable of heating
under a low voltage (e.g., ≥25 °C within 3 s under 2.5 V in Fig. 3a).
This Joule-heating effect would also enable an electrical actuating
behaviour: A U-shaped bilayer film (24 × 2 mm2 with a middle
space of 0.2 mm wide; 9/10 μm/μm for EGaIn/CNFs thickness)
bended up to 360° within 3 s under a constant bias of 2.0 V
(RH ~ 70%), whose bending angle was tuneable by the applying
voltage (Fig. 3b, Supplementary Fig. 25 and Supplementary
Movie 2). When switching off the voltage, the bending angle
recovered in several seconds (Fig. 3c). In analogue, this actuating
behaviour was driven by cyclic dehydration and hydration of the
CNFs-rich layer, in which the Joule-heating effect would dehy-
drate the CNFs-rich layer (Fig. 3d). This actuating behaviour
showed a large bending displacement in analogue to natural
flowers as well as rapidity nearly comparable to predatory motion
of cabrites (Fig. 3e and Supplementary Movie 3). This actuating
speed is also superior to many reported soft actuators, in the form
of bilayer-structures like shape-memory and ionic polymeric
composites (Fig. 3f)39–51.

There might exist small EGaIn droplets (with the diameter <200
nm) within the CNFs-rich layer (Fig. 4a), whose photo-thermal
effect had been reported in the literature52. This photo-thermal
effect could heat the Janus film when exposing to photo radiation
(Fig. 4b and Supplementary Fig. 26), and enable an actuating
behaviour responsive to photo. Under a near-infrared light radiation
(Wavelength of 808 nm and light density of 0.8W cm–2), a Janus
film (20 × 1mm2; thickness: 9/10μm/μm for EGaIn/CNFs) bended
up to 90° within 2 s and recover back within <2.5 s (Fig. 4c). This
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bending-and-recovering behaviour could repeat for hundreds of
times without showing obvious bending decay. Moreover, a larger
bending displacement and larger velocity were produced by
higher power density of NIR radiation (Fig. 4d). Besides these,
this photo-thermal effect can be used to twist the bilayer film in
analogue to the bean pod (Supplementary Movie 4), and drive an
origami (Fig. 4e and Supplementary Movie 5). It could drive
floating displacement of the Janus film on water (Fig. 4f and
Supplementary Movie 6), because of locally heating surrounding
water38.

Discussion
With the presence of biological NFs, EGaIn droplets underwent a
precipitation process together with an evaporation-induced sin-
tering process, offering an insulating NFs-rich layer over a con-
ductive EGaIn-rich layer (with a conductivity up to ~106 S m−1

with the layer thickness of >5 μm in Fig. 5a). This precipitation
separation process seemed to be essential for sintering. For
instance, no electric conductivity was achieved when rapidly
removing the solvent through filtration and rapid drying (Sup-
plementary Fig. 13d and 16b). The presence of CNFs was also
essential for this evaporation-induced sintering process. In the
suspension, the CNFs concentration as low as 0.05 wt% could
assist to sinter EGaIn droplets to achieve a metallic conductivity
up to 2 × 105 S m–1 (Fig. 5b & Supplementary Fig. 27). And high
CNFs concentrations below 0.3 wt% did not influence electric
conductivity of the final EGaIn layer, probably due to their
separation from the sedimental EGaIn droplets. In addition, no

evaporation-induced sintering occurred when removing free
CNFs by centrifuging the EGaIn droplets (Supplementary
Fig. 28).

During the sintering, CNFs unambiguously produced a local
pressure large enough to rupture the encapsulating shells of
EGaIn droplets, in analogue to mechanical sintering. It would
produce a sharp conductivity increase (Supplementary Fig. 18).
When consolidating colloidal particles, evaporation is known to
give a strong capillary force as53:

Fcapillary ¼ 2πγα sinφ sin φþ θð Þ þ πα2sin2φΔP ð1Þ
where the first and second terms are the force arising from the
surface tension and the Laplace pressure, respectively; φ is the
half-filling angle; γ is the surface tension of the liquid; θ is
the liquid–solid contact angle; α is the sphere radius; ΔP is the
pressure difference cross the liquid surfaces, and identified as the
Young-Laplace equation:

ΔP ¼ 2γ cos θ
rp

ð2Þ

where rp is the capillary curvature radius. The capillary forces
could also be represented as21:

Fcapillary ¼ 2πγα sinφ sin φþ θð Þ þ 2πγα cos θ= 1þ H=2d½ � ð3Þ
where H is the shortest distance between the spheres; d is the
immersion length of the sphere and calculated by
d ¼ H=2ð Þ ´ ½�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2V=ðπαH2Þp �, where V is the volume of
liquid bridge. Colloidal agglomeration and coalescence driven by
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capillary forces widely exist in nature (e.g., biological adhesion)
and colloidal technologies (e.g., inkjet printing, and self-assembly
of colloidal particles)54,55. During evaporation of solvents,
meniscus-shaped capillary bridges would form among the col-
loids and yield an attraction force20,55.

Firstly, the presence of CNFs might promote Fcapillary between
the EGaIn droplets by decreasing their sizes and contact angles.
The smaller droplet size favoured larger ΔP due to the larger
capillary curvature (Fig. 5c). The attached CNFs favoured a
smaller contact angle and hereby larger ΔP. The increasing ΔP
would contribute dominantly to Fcapillary between the EGaIn
droplets. For example, by assuming α= 60 nm, V= 103 nm3,
H= 5 nm and θ= 5°56, Fcapillary would produce a local pressure
up to ~13.7 MPa on EGaIn droplets according to Equation 3.
While only a pressure of ~0.9 MPa was obtained in absence of
CNFs (detailed in Supporting Information See details in Sup-
plementary Note 1).

Secondly, the presence of CNFs might also split the liquid
bridges between the droplets. Spitting liquid bridges into small
ones might lead to an increase of the capillary forces (Fig. 5d)57.
In many biological wet adhesive systems, the adhesion forces is
not only a function of contact angle, but also a nonlinear function
of the number and size of liquid bridges. Multiple liquid bridges
could generate the highest capillary forces without increasing the
total contact area, which may exceed van der Waals forces by
several orders of magnitude. At the same time, evaporation also

generated capillary forces among the CNFs attaching on EGaIn
droplets, which would produce a local pulling tension on the
order of magnitude over 10MPa20. Due to the large elastic
modulus of CNFs up to 102 GPa, this pulling tension could
transmit along the CNFs and exert on the droplet shells.

Without the presence of CNFs, capillary forces among the
EGaIn droplets were not sufficient to rupture their oxide shells.
Thus these droplets deposited on the substrate as an insulating
porous layer after completely drying (Fig. 5e and Supplementary
Fig. 13). When further casting a suspension (e.g., ϕCNF= 0.2 wt%)
of CNFs on the top, a portion of CNFs would infiltrate into the
gaps among the EGaIn droplets, and sinter them during the
following evaporation (Fig. 5e). Notably, there possibly existed a
thin layer of EGaIn droplets between the bottom conductive layer
and the top CNFs-rich layer, in which excess CNFs might form
densely packing shells and prevent the droplet coalescence.

In summary, biological NFs downsized and enabled
evaporation-induced sintering of LM droplets under ambient
conditions into conductive free-standing functional films and
coatings on substrates as diverse as rigid, soft, biological and in
microfluidic channels, in sharp contrast to laser sintering on heat-
resistant substrates and mechanical sintering on rigid substrates.
The contribution of biological NFs was threefold: (a) Attaching
on the surfaces of EGaIn droplets for lower droplet size (down to
50 nm in diameter) and higher colloidal stability in the suspen-
sion; (b) During evaporation-induced sintering, biological NFs as
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low as 0.05 wt% might promote capillary forces and split liquid
bridges among EGaIn droplets, and as well create high pull ten-
sion on the shells of EGaIn droplets. (c) Biological NFs had
sufficient polar groups (i.e., carboxyl and hydroxyl), which also
ensured adhesion and stretchability of EGaIn layers on diverse
substrates by printing, casting and depositing, and thus could
serve as structural matrix of EGaIn droplets for free-standing,
humidity responsivity, biocompatibility and biodegradation in
electronic applications. With the coexistence of NFs-rich and
EGaIn-rich layers, both the resultant coating and free-standing
films showed flexible conductivity (e.g., with conductivity up to
105 S m–1 at 200% strain), mirror-like reflectivity and electro-
magnetic-shield, more importantly, whose actuating behaviours
could response to humidity, photo and voltage. Thus this
evaporation-induced approach not only extends fundamental
knowledge of LM droplets and their suspensions, but also starts a
new scenario of producing flexible coating and free-standing
composites with flexibility, conductivity, sustainability and
degradability, and applicable in microcircuits, sensing, wearable
devices and soft robotics.

Methods
Materials. EGaIn was provided by Shenyang Jiabei Trading Co., Ltd. (China).
Needle bleached kraft pulp was bought from Hangzhou Wohua Filter Paper
Co. Ltd. TEMPO was supplied by Sigma-Aldrich. Sodium hypochlorite solution
(12 wt%) and NaBr were purchased from Aladdin Industrial Co. Ltd. Ultrapure
water (resistivity 18.2 MΩ cm–1) was used to prepare all aqueous solutions.

Detailed preparation of aqueous dispersions of biological NFs (including cellulose,
fibroin and amyloid) was shown in Supplementary Methods.

Preparation of EGaIn droplets. Typically, bulk EGaIn (150 mg) was added to an
aqueous solution (15 mL) of NFs. The mixture underwent sonication (BILON92-II;
power of 300W with 80% amplitude) in ice-bath water with different NFs con-
centrations and time periods. Size-grading was achieved by centrifuging. And free
NFs in the dispersion were removed by centrifugation at 10,000 rpm.

Evaporation-induced sintering. The as-dispersed EGaIn droplets (ϕCNF 0.04–0.3
wt%, EGaIn concentration 10 mgmL–1, and average droplet size 100–850 nm) were
deposited on the substrate through drop-casting, direct hand-writing and spray-
coating, following by drying at ambient conditions (~0.1 MPa, 25 ± 3 °C, RH 40 ±
5%) at least for one day for completely drying before further test. Bulk conductivity
of the dried trace was measured to evaluate the sintering status of the deposited
EGaIn droplets. The thickness and resistance of the dried trace were measured by
SEM and digital multimeter (MS8265), respectively. For sintering on soft sub-
strates, vacuum drying (–70 kPa) was applied. When the layer thickness of CNFs
was sufficiently large, the coating on glass substrates could peeled off as free-
standing films.

Actuating test. For voltage-responsive actuator, a Janus film was cut into a U-
shape strip with a rectangle of 24 × 2 mm2 and a middle space of 0.2 mm wide.
Copper wires were connected to two actuator ends with Ag paste. Bending angles
were recorded at the voltage of 0.5–2.0 V at RH 70%. Cyclic actuating performance
was carried out at 2.0 V. For photo-responsive actuator, a Janus film (20 × 1 mm2)
was equilibrated at 25 °C and RH ~70% for 24 h. A NIR laser with tunable power
(wavelength of 808 nm, maximum output power of 1.0W, Xi’an Minghui
Optoelectronic Technology Co., Ltd.) was used as the NIR source.
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Stretchable conductivity test. A sintered coating (with 9/20 µm/µm in thickness
of CNFs and EGaIn) was prepared on a strip of SEBS (20 × 5 × 0.5 mm3). The
stretching test was performed on a mechanical tester at a speed of 2 mmmin–1.

Electromagnetic shielding test. The performance was measured on an Agilent
N5227A vector network analyser using an APC-7 connector as the coaxial test cell
in the X-band frequency range of 8.2–12.4 GHz. The background from the sub-
strate was deducted according to a simple addition rule.

Characterisation. Field emission scanning electron microscopy (FESEM, Hitachi
S-4800, Japan) with X-ray energy dispersive spectrometry (EDS) was used to
characterise microstructure and elemental mapping at an acceleration voltage of
10 kV. TEM (Hitachi H-7650) measurements were performed at a voltage of
100 kV. Tensile experiments were performed on Electromechanical Universal
Testing Machine (CMT6503, MTS Industrial Systems Co., Ltd. China). Photo
reflection spectra were recorded in the visible light region (400−720 nm) with a
Hitachi U-4100 spectrophotometer (Japan).

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files and from the corresponding authors upon reasonable
request.
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