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Computational identification and quantification of distinct microbes from
high throughput sequencing data is crucial for our understanding of human
health. Existing methods either use accurate but computationally expensive
alignment-based approaches or less accurate but computationally fast
alignment-free approaches, which often fail to correctly assign reads to gen-
omes. Here we introduce CAMMIiQ, a combinatorial optimization framework
to identify and quantify distinct genomes (specified by a database) in a
metagenomic dataset. As a key methodological innovation, CAMMIiQ uses
substrings of variable length and those that appear in two genomes in the
database, as opposed to the commonly used fixed-length, unique substrings.
These substrings allow to accurately decouple mixtures of highly similar
genomes resulting in higher accuracy than the leading alternatives, without
requiring additional computational resources, as demonstrated on commonly
used benchmarking datasets. Importantly, we show that CAMMIQ can distin-
guish closely related bacterial strains in simulated metagenomic and real
single-cell metatranscriptomic data.

Recent appreciation for the importance of microbes in human health
and disease has prompted the generation of many metagenomic HTS
(high throughput sequencing) datasets’. The increase in available HTS
data from human tissues also represents an enormous resource
because many of these datasets include reads from tissue-resident
microbes, which have been shown to play important roles human
disease, including tumorigenesis and the tumor response to
therapy?®.

The increase in available metagenomic HTS datasets prompted
the development of many taxonomic classification and abundance
estimation methods. A recent benchmarking study’ involving a dataset
established by Critical Assessment of Metagenome Interpretation
(CAMI) challenge and International Microbiome and Multiomics
Standards Alliance (IMMSA) provides a comprehensive review of these
methods. The study covers 20 taxonomic classifiers including both

alignment-based approaches (such as GATK PathSeq, blastn and
MetaPhlAn2'°") as well as alignment-free approaches (such as Kraken,
CLARK, KrakenUniq, Centrifuge, and Bracken”). Below, we provide
an overview of the general approaches employed for metagenomic
classification methods.

Early approaches for analyzing metagenomic sequencing data
were alignment-based and used a reference database. Reads were
primarily searched in GenBank™® through blastn" or custom built
aligners such as GATK PathSeq'’. Unfortunately, the growth of HTS
data and reference databases has made read search and alignment
using blastn or GATK PathSeq computationally infeasible on the lar-
gest datasets. For example, a recent study showing that microbial
reads from tumors sequenced by The Cancer Genome Atlas (TCGA)
can be used to build a classifier for cancer type' use the alignment-free
approach Kraken® due to the large number of samples analyzed. Even
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though Kraken and other alignment-free tools are faster than the
alignment-based tools?, these alignemnt-free tools are not as accu-
rate. For example, another recent paper on microbial reads from single
cell RNA-seq (scRNA-seq) datasets to distinguish cell type specific
intracellular microbes from extracellular and contaminating
microbes” had to use GATK PathSeq because the relatively small
number of microbial reads per cell were inadequate for available
alignment-free methods to give accurate results. The distinct approa-
ches taken by these two studies exemplify the tradeoffs inherent in the
above methodologies.

Alignment-based methods can be sped up substantially by align-
ing reads to a compressed reference database or to a reference col-
lection of sequences from marker genes, which are usually clade-
specific, single-copy genes??. Since marker-gene based methods
identify and use only a handful of marker genes on each genome, much
of the data goes unused, making taxonomic quantification less accu-
rate. Species with low abundance within the sample may be difficult to
identify through marker gene methods because the data may contain
few reads originating from the marker genes.

Alignment-free methods typically rely on exact string
matching'®*, or k-mer (substrings of length k) “matches” to obtain a
taxonomic assignment for every read. These methods either assign a
read to the lowest taxonomic rank possible (determined by the spe-
cificity of the read’s substrings, or k-mers)***¥, or to a pre-determined
taxonomic level, i.e., genus, species, or strain'***, Unlike marker-gene
based methods, k-mer based applications can use all the input reads®.
The large memory footprint to maintain the entire k-mer profile of
each genome, for large values of k, can be reduced through hashing or
subsampling the k-mers***, In addition to methods based on exact k-
mer matches, it is also possible to assign metagenomic reads to bac-
terial genomes by employing sequence-specific features (e.g., short k-
mer distribution or GC content)*, although methods that employ
this approach are typically not very accurate at species level or strain
level assignment. These methods, as a result, are typically insufficient
for strain-level applications®, e.g., to identify mixed infections caused
by multiple strains of a bacterial species***?, to distinguish pathogenic
strains from non-pathogenic strains*’, or to track food-borne
pathogens*.

Most of the methods described above and covered in the afore-
mentioned benchmarking study’ analyze each read without con-
sideration of how the reads are sampled. Provided that the sequence
data to be analyzed are genomic DNA, the distribution of HTS reads
from a given species or strain should be roughly uniform. This prin-
ciple is used in several methods for isoform abundance estimation**
and are effective even though the distribution of reads across an iso-
form may not be uniform in practice. In the context of metagenomic
abundance estimation, however, the uniform coverage principle is
under-utilized. One exception is the network flow based approach,
utilized, for example, by ref. 48, which does take into account the
uniform coverage—however, it is relatively slow due to the hardness of
the underlying algorithmic problem. Another method that utilizes the
near uniformity across k-mers within a genome is ref. 15, which runs
faster but also is less accurate.

In addition to the metagenomic species identification and
quantification methods summarized above, there are also tools to
determine the likely presence of a long genomic sequence (e.g., the
complete or partial genome of a bacterial species) in a given meta-
genomic sample**~*. Even though these tools solve an entirely dif-
ferent problem, methodologically they are similar to the k-mer
based metagenomic identification and quantification tools such as
refs. 13,14, in the sense that they build a succinct index on the
database, which is comprised of the metagenomic read collection,
and they query this index without explicit alignment. However,
because of their design parameters, these tools can not perform
abundance estimation.

In this paper, we describe cammiQ (Combinatorial Algorithms
for Metagenomic Microbial Quantification), a computational
approach to maintain/manage a collection of m (bacterial) genomes
S={s;,...,Sn}, each assembled into one or more strings/contigs,
representing a species, a particular strain of a species, or any other
taxonomic rank. CAMMiQ constructs a data structure, which can
answer queries of the following form: given a set Q of HTS reads
obtained from a mixture of genomes or transcriptomes, each from
S, identify the genomes in Q, and, in case the reads are genomic,
compute their relative abundances. Our data structure is very effi-
cient in terms of its empirical querying time and is shown to be very
accurate on simulations for which the ground truth answers are
known. The distinctive feature of our data structure is its utilization
of substrings that are present in at most c genomes (c >1) in S; in this
paper, we focus on c=2, which we call doubly-unique substrings.
caMMiQ is thus different from available methods which set c=1 to
compare genomes via their shortest unique substrings®**, or per-
form metagenomic analysis by employing k-mers unique to each
genome®” . By considering substrings that are present in c=2 (or
possibly more) genomes, camMmMiQ utilizes a higher proportion of
reads and can accurately identify genomes at subspecies/strain
level. The choice of ¢ =2 is sufficiently powerful for the datasets we
considered. However, our approach can be generalized for any fixed
value of ¢ > 2. Another distinctive feature of our data structure is its
use of the variable length substrings—rather than fixed length -
mers. Because any extension of a shortest unique substring is also
unique, caMMiQ only maintains the shortest of these overlapping
unique substrings to maximize utility. By being flexible about sub-
string length, camMMiQ potentially has a a larger selection of sub-
strings from which to choose; because it utilizes the shortest unique
substrings, it maximizes possible coverage. To assign each read in Q
that includes an almost-unique substring (i.e., a string present in at
most ¢ genomes) to a genome, our data structure solves an integer
linear program (ILP) - that simultaneously infers which genomes are
present in Q and, if the reads are genomic, the relative abundances
of the identified genomes. Specifically, the objective of the ILP is to
identify a set of genomes in which the coverage of the almost-unique
substrings in each genome is (approximately) uniform. Our final
contribution is a set of conditions sufficient to identify and quantify
genomes in a query correctly, through the use of unique substrings/
k-mers, provided the reads are error-free. Although this is a purely
theoretical result, to the best of our knowledge it has not been
applied to metagenomic data analysis, and is valid for camMiQ for
the case c=1 and other unique substring based methods such as
CLARK and KrakenUniq. Setting ¢ = 2 for camMi 0 is advised for cases
where these conditions are not met. On the experimental side, we
show that camMiQ is not only much faster but also more accurate
than the mapping based GATK PathSeq, which, as mentioned earlier,
was used on scRNA-seq data obtained from monocyte-derived
dendritic cells (moDCs) infected with distinct Salmonella strains®—
where accuracy was the top priority. The application to single-cell
data is important because in studies of the human microbiome, it is
of interest to know which cells are infected with which microbial
strains, especially to distinguish between benign commensals and
pathogenic variants of bacteria such as E. coli. Using current
sequencing technologies, single-cell nucleotide data are primarily
RNAseq rather than DNAseq, which is why we focus on an RNAseq
case study. Returning to the established problem of analyzing bulk
DNAseq data, we demonstrate the comparative advantage of cam-
MiQ against the top performing alignment based and alignment free
metagenomic classification methods according to the above-
mentioned benchmarking study’ on the very same (CAMI and
IMMSA) dataset. We additionally show that caMMiQ is uniquely
capable of handling particularly challenging microbial strains we
derived from the NCBI RefSeq database.
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Results

Below, we first give a brief overview of cammio algorithm. Then we
describe the index data sets, simulated and real query sets, as well as the
alternative computational methods we used to benchmark camMiQ’s
performance. We next demonstrate CAMMiQ’s comparative accuracy
performance against alternative metagenomic analysis methods on the
two species level data sets we have: the first is the CAMI and IMMSA
benchmark (i.e., species-level-all) index dataset and the second is
the species-level-bacteria index dataset. For these two datasets,
we not only provide accuracy figures for the tools benchmarked but
also the computational resources they use. Additionally, we demon-
strate the maximum potential advantage that could be offered by
CcAMMiQ through its use of doubly-unique, variable length substrings on
our species-level-bacteria index dataset. We then demonstrate
CAMMiQ’s performance on our strain-level index dataset. Finally, we
demonstrate cAMMiQ’s performance on real metatranscriptomic query
sets through its use of our subspecies-level index dataset. The
results of CaAMMi Q in this setup was compared against that of the GATK
PathSeq tool'’ which was utilized by the original study on this data set”,
as well as blastn method", which possibly offers the most accurate
(albeit slow) approach for the relevant purpose.

Overview of caMMiQ indexing and querying procedure

As per a typical metagenomic classification or profiling tool, caMmMiQ
involves two steps, namely, index construction and query. In the index
construction step, CAMMiQ is given a set S={s;}[*; of m genomes or
contigs, each labeled with an ID representing the taxonomy of that
genome. We call S an index dataset below. By the end of this step,
CAMMi Q returns the collection of sparsified shortest unique substrings
and shortest doubly-unique substrings on each genome s; in S in a
compressed binary format, and other meta information involving the
input index dataset, which jointly composing its index on the dataset.
CAMMiQ reuses its index in the next query step.

In the query step, CAMMiQ is given a collection of reads Q = {rj}JfZ:1
of varying length, and identifies a set of genomes A={s;,--- ,5,} C S
and their respective abundances p;, --- , p, that “best explain” Q effi-
ciently. We call Q a query or query set below. Depending on specific
applications, a user can select to return (i) A4; C S, the set of genomes
such that each includes at least one shortest unique substring that also
occur in some read r;in the query Q; (ii) A, < S, the smallest subset of
genomes in S which include all shortest unique and doubly-unique
substrings that also occur in some read r; € Q; or A; C S, the smallest
subset of S which again include all shortest unique and doubly-unique
substrings that also occur in some read r; € Q, with the additional
constraint that the “coverage” of these substrings in each genome
s; € A; is roughly uniform. In the last case camMMiQ also computes the
relative abundance of each genome s; in A;.

For all three query types, cAMMiQ first identifies for each read r; all
unique and doubly-unique substrings it includes; it then assigns r; to
the one or two genomes from which these substrings possibly origi-
nate. To compute 4;, CAMMiQ simply returns the collection of gen-
omes receiving at least one read assignment. To compute A,, CAMMiQ
solves a hitting set problem though an ILP, where genomes form the
universe of items, and indexed strings that appear in query reads form
the sets of items to be hit. To compute .45, CAMMiQ solves the com-
binatorial optimization problem that asks to minimize the variance
among the number of reads assigned to each indexed substring of
each genome, again through an ILP. The solution indicates the set of
genomes in 4, along with their respective abundances.

Datasets

To evaluate the overall performance of cammio, we have performed
four sets of experiments, each with a distinct index dataset (all based
on NCBI's RefSeq database™) and a distinct collection of queries.

(i) The first, species-level-all dataset is the most compre-
hensive index dataset, which includes one complete genome
from each bacterial, viral and archaeal species from NCBI's
RefSeq database, resulting in a total of m=16,418 genomes.
This dataset is established for the CAMI and IMMSA repository
used in recent benchmarking studies of metagenomics classi-
fication and profiling tools’””. There are 16 query sets from this
repository used in these two studies, 8 from CAMI and 8 from
IMMSA. Notably, both CAMI and IMMSA query sets include
genomes that are not present in the species-level-all
index dataset. In fact, the CAMI query sets include only a small
porportion of genomes from the index dataset - the majority of
the reads in these queries represent unknown species or
simulated strains “evolved” from known species that are not in
the species-level-all index dataset. See Supplementary
Notes 5.4.1 and 5.4.2 for a detailed description of these queries.
We used these query sets to demonstrate the comparative
performance of camMiQ against the best performing methods
according to ref. 9, namely Kraken2*®, KrakenUniq"”, CLARK",
Centrifuge’, and Bracken”; please see Supplementary Note 6
for the specific parameters and setup used for each of these
tools. Since genomes in the query sets may not be all included
in the index dataset, we employed query type A, to evaluate
CAMMiQ’s performance against the aforementioned tools.

We compiled our next, species-level-bacteriaindex dataset
to evaluate the species level performance of camMig, this time
across one representative complete genome from each of the
m=4122 bacterial species from (an earlier version of) NCBI's
RefSeq. This index dataset enabled us to measure the perfor-
mance of CAMMiQ’s type A5 queries against the tools mentioned
above plus MetaPhlAn2", a marker-gene based profiling tool. We
simulated 14 query sets for this experiment with varying levels of
“difficulty” across the genomes. These include 10 challenging
(marked Least) and 4 easier queries (marked Random). See
Supplementary Note 5.4.3 and Supplementary Fig. 2 for a detailed
description of these queries.

Our next strain-level index dataset is smaller: it includes the
complete set of m =614 human gut related bacterial strains from
ref. 59 for the purpose of evaluating camMMiQ’s strain level per-
formance. We again employed type .4; queries of CAMMiQ to
compare it against the above-mentioned tools. We simulated 4
queries for this index dataset with varying levels of “difficulty”. See
Supplementary Note 5.5 for details.

We finally evaluated caMMiQ on a dataset from another study®®
which involved metatranscriptomic reads from 262 single human
immune cells (monocyte-derived dendritic cells, moDCs) deliber-
ately infected with two distinct strains of the intracellular bacter-
ium Salmonella enterica and 80 uninfected cells used as negative
controls. A recent study” applied the GATK PathSeq tool™® to these
metatranscriptomic read sets to validate the presence of Salmo-
nella genus in each cell. To demonstrate cavMMiQ’s ability to dis-
tinguish cells infected with specific strains of Salmonella in time
much faster than GATK PathSeq, we applied its query types .4; and
A, to these metatranscriptomic read sets. Since these are not
genomic reads, our query type A; could not be used. The index
dataset we used for these queries are at the subspecies-level;it
consists of m=3395 complete bacterial genomes, where each
species is represented by a handful of strains. This index dataset
was generated to reduce the sampling bias observed in the RefSeq
database, which, e.g., includes more than 300 strains from the
genus Salmonella. cAMMiQ's accuracy was compared mainly
against PathSeq (a mapping based, thus relatively slow method) for
this experiment since PathSeq was the preferred method of the
original study due to its high levels of accuracy. Further details on
the real query sets can be found in Supplementary Note 5.6.

(ii)

(iii)

(iv)
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Table 1| Synthetic and real bacterial read sets used to benchmark caMviQ’s performance against the best performing

metagenomic classification and abundance estimation tools

Query set Index dataset & Query type Read length (L) Num. reads (n) Err Rate
IMMSA-buccal-12 species-level-all 100 0.6M 0.001
IMMSA-citypark-48 A, 100 1.2M 0.001
IMMSA-gut-20 100 0.5M 0.001
IMMSA-house-30 100 0.75M 0.001
IMMSA-house-20 100 0.5M 0.001
IMMSA-s0il-50 A, 100 2.5M 0.001
IMMSA-simBA-525 100 5.7M 0.001
IMMSA-nycsm-20 100 0.5M 0.001
CAMI-LC-1 150 99.8M

CAMI-MC-1 150 99.8M

CAMI-MC-2 150 99.8M

CAMI-HCA1 150 99.8M Unknown
CAMI-HC-2 150 99.8M

CAMI-HC-3 150 99.8M

CAMI-HC-4 150 99.8M

CAMI-HC-5 150 99.8M

Least-20-uniform-1 species-level-bacteria 100 4.8M 0
Least-20-uniform-2 Aj 100 4.8M 0.01
Least-20-uniform-3 (uneven) 100 4.8M 0.01
Least-quantifiable-20-uniform-1 100 5.0M 0
Least-quantifiable-20-uniform-2 100 5.0M 0.01
Least-quantifiable-20-uniform-3 (uneven) 100 5.0M 0.01
Least-20-genera-uniform-1 100 4.0M (0]
Least-20-genera-uniform-2 Aj 100 4.0M 0.01
Least-20-genera-uniform-3 (uneven) 100 4.0M 0.01
Least-20-genera-lognormal 100 4.0M 0.01
Random-20-uniform 100 4.4M 0.01
Random-20-lognormal 100 5.0M 0.01
Random-20-lognormal-a.g. 100 1.1M 0.01
Random-100-uniform 100 21.5M 0.006
HumanGut-least-25 strain-level 100 2.0M 0.01
HumanGut-random-100-1 100 8.0M 0.01
HumanGut-random-100-2 125 8.0M 0.01
HumanGut-all 100 20.0M 0.01
Filtered-scRNA-seq subspecies-level 66.4(13.6) 8.5M Unknown

Ay, Ay & Ag

The first dataset is comprised of the entire collection of 8 IMMSA queries and 8 CAMI queries from an earlier benchmark. Since these queries were not sampled from an available index dataset, we
compiled acomprehensive species-1level-allindex dataset consisting of 16,418 distinct bacterial, viral and archaeal species from RefSeq. We sampled our second query set from the genomes of
another species-level-bacteria index dataset we complied which consists of 4122 distinct bacterial species from RefSeq. We similarly sampled our third collection of queries from the genomes
of our strain-level index dataset consisting of 614 (possibly incompletely assembled) human gut bacteria from an earlier study. The final collection of queries consisted of real single cell RNA-seq
reads (with average length 66.4bp and standard deviation 13.6bp) sequenced from 342 immune cells infected with Salmonella enterica; for this, we compiled a subspecies-level index dataset
comprised of a selection of 3395 bacterial genomes from 2753 distinct species. Details on our query sets and the corresponding index datasets can be found in Supplementary Note 5.

A summary of data sets used in our experiments can be found in
Table 1. Additional details on the four index datasets can be found in
Supplementary Notes 5.1-5.3. As will be demonstrated, CaMMiQ's per-
formance on these query sets is superior to all alternatives in almost all
scenarios we tested.

Precision and recall in read classification across all species level
queries

We tested caMmiQ’s species level performance on both CAMI and
IMMSA (i.e., species-level-all) and species-level-bacteria
data sets, and compared it against the best performing alternatives
according to ref. °. Results based on CAMI and IMMSA are summarized
in Table 2; results based on species-level-bacteria data set are
summarized in Table 3.

Perhaps the most widely-used performance measures to bench-
mark metagenomic classifiers are the proportion of reads correctly
assigned to a genome among (i) the set of reads assigned to some
genome, i.e., precision, and (ii) the full set of reads in the query, i.e.,
recall’. In Table 2, panel A, as well as Table 3, panel A, we report the
selected tools precision in read classification. Then, in Table 2 panel B
and Table 3, panel B, we report these tools’ recall in read classification.

Note that the above tables do not report the read classification
precision and recall values for MetaPhlAn2. This is partially due to
MetaPhlAn2’s use of an index based on a very different (pre-
determined) and much smaller database of marker genes. As a
consequence, MetaPhlAn2 assigns very few reads to the marker
genes in its database and thus appears to have very low recall (and
possibly higher precision). This would not accurately reflect

Nature Communications | (2022)13:6430
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Table 2 | Performance evaluation of caMMiQ, Kraken2, KrakenUniq, CLARK, Centrifuge, and Bracken on CAMI and IMMSA
benchmark queries against the species-level-all index dataset

Performance measure Query set CAMMiQ Kraken2 KrakenUniq CLARK Centrifuge Bracken

A. Classification Precision IMMSA-buccal-12 0.755 0.431 0.649 0.649 0.063 N/A
IMMSA-citypark-48 0.895 0.802 0.890 0.888 0.671
IMMSA-gut-20 0.793 0.472 0.759 0.759 0.168
IMMSA-house-30 0.841 0.624 0.784 0.783 0.271
IMMSA-house-20 0.799 0.594 0.756 0.756 0.391
IMMSA-soil-50 0.902 0.775 0.884 0.884 0.693
IMMSA-simBA-525 0.954 0.737 0.903 0.905 0.553
IMMSA-nycsm-20 0.749 0.582 0.729 0.727 0.362

B. Classification Recall IMMSA-buccal-12 0.559 0.215 0.551 0.546 0.048 N/A
IMMSA-citypark-48 0.751 0.371 0.779 0.778 0.572
IMMSA-gut-20 0.529 0.189 0.550 0.547 0.14
IMMSA-house-30 0.697 0.31 0.680 0.678 0.207
IMMSA-house-20 0.636 0.277 0.641 0.639 0.309
IMMSA-soil-50 0.748 0.363 0.763 0.762 0.572
IMMSA-simBA-525 0.798 0.417 0.786 0.784 0.452
IMMSA-nycsm-20 0.582 0.223 0.568 0.566 0.265

C. Identification Recall IMMSA-buccal-12 1.0 0.818 0.818 0.818 1.0 1.0
IMMSA-citypark-48 0.979 0.915 0.936 0.936 0.979 0.979
IMMSA-gut-20 0.895 0.789 0.789 0.789 0.947 0.895
IMMSA-house-30 0.963 0.889 0.889 0.926 0.963 1.0
IMMSA-house-20 0.895 0.789 0.789 0.789 0.895 0.895
IMMSA-soil-50 0.958 0.917 0.938 0.938 0.979 0.958
IMMSA-simBA-525 0.933 0.913 0.923 0.933 0.935 0.939
IMMSA-nycsm-20 0.895 0.789 0.789 0.789 0.895 0.947
CAMI-LCA1 1.0 1.0 1.0 1.0 1.0 1.0
CAMI-MC-1 0.864 0.864 0.818 0.818 0.864 0.818
CAMI-MC-2 0.955 0.955 0.909 0.909 0.909 0.955
CAMI-HC-1 0.900 0.850 0.900 0.950 0.900 0.950
CAMI-HC-2 0.900 0.850 0.900 0.900 0.950 0.900
CAMI-HC-3 0.950 0.850 0.950 0.950 0.950 0.950
CAMI-HC-4 0.950 0.850 0.950 0.950 0.950 0.900
CAMI-HC-5 0.950 0.850 0.950 0.950 0.950 0.950

D. Identification Precision IMMSA-buccal-12 0.162 0.006 0.098 0.086 0.110 0.007
IMMSA-citypark-48 0.426 0.178 0.303 0.268 0.333 0.122
IMMSA-gut-20 0.145 0.009 0m 0.098 0.122 0.014
IMMSA-house-30 0.310 0.027 0.198 0.166 0.234 0.033
IMMSA-house-20 0.254 0.022 0.172 0.147 0.189 0.023
IMMSA-soil-50 0.331 0.175 0.281 0.263 0.301 0.119
IMMSA-simBA-525 0.842 0.532 0.830 0.820 0.827 0.564
IMMSA-nycsm-20 0.168 0.013 0.109 0.088 0.113 0.024
CAMI-LC-1 0.010 0.001 0.004 0.004 0.003 0.001
CAMI-MC-1 0.026 0.006 0.019 0.018 0.016 0.005
CAMI-MC-2 0.036 0.006 0.027 0.024 0.021 0.006
CAMI-HCA1 0.014 0.004 0.012 0.012 0.010 0.005
CAMI-HC-2 0.014 0.004 0.0M 0.0m 0.0M 0.005
CAMI-HC-3 0.014 0.004 0.012 0.01 0.01 0.005
CAMI-HC-4 0.014 0.004 0.012 0.01 0.01 0.005
CAMI-HC-5 0.014 0.004 0.012 0.012 0.0M 0.005

Classification Precision: the proportion of reads correctly assigned to a genome among the set of reads assigned to some genome (correctly or incorrectly). Classification Recall: the proportion of
reads correctly assigned to a genome among the total number of reads in a query. Identification Recall: the number of correctly identified genomes (true positives) over the total number of genomes
existing in each query. Identification Precision: the number of correctly identified genomes (true positives) over the number of genomes with abundance > 0.0001 reported by each software tool in
each query.
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Table 3 | Performance evaluation of caMMiQ, Kraken2, KrakenUniq, CLARK, Centrifuge, Bracken and MetaPhlAn2 on the 14

species-level-bacteria queries

Performance Query set CAMMiQ Kraken2 KrakenUniq CLARK Centrifuge Bracken MetaPhlAn2
measure
A. Classification Least-20-uniform-1 1.0 0.014 0.952 1.0 1.0 N/A N/A
Precision Least-20-uniform-2 0.974 0.001 0.009 0.006 0.997
Least-quantifiable-20-uni- 1.0 0.043 0.936 1.0 1.0
form-1
Least-quantifiable-20-uni-  0.989 0.012 0.086 0.064 0.999
form-2
Least-20-genera-uniform-1 1.0 0.027 0.978 1.0 1.0
Least-20-genera-uni- 0.993 0.005 0.047 0.028 0.999
form-2
Least-20-genera- 0.993 0.005 0.049 0.033 0.999
lognormal
Random-20-uniform 0.997 0.783 0.981 0.994 0.999
Random-20-lognormal 0.998 0.933 0.991 0.995 0.999
Random-20- 0.998 0.900 0.998 0.997 1.0
lognormal-a.g.*
Random-100-uniform 0.998 0.968 0.965 0.997 0.999
B. Classification Least-20-uniform-1 0.358 <0.001 <0.001 <0.001 <0.001 N/A N/A
Recall Least-20-uniform-2 0.317 <0.001 <0.001 <0.001 0.004
Least-quantifiable-20-uni-  0.635 <0.001 0.001 0.001 0.001
form-1
Least-quantifiable-20-uni-  0.557 <0.001 0.001 0.001 0.013
form-2
Least-20-genera-uniform-1  0.722 <0.001 <0.001 <0.001 <0.001
Least-20-genera-uni- 0.640 <0.001 <0.001 <0.001 0.008
form-2
Least-20-genera- 0.627 <0.001 <0.001 <0.001 0.010
lognormal
Random-20-uniform 0.862 0.586 0.855 0.851 0.864
Random-20-lognormal 0.893 0.716 0.878 0.874 0.890
Random-20- 0.830 0.759 0.883 0.880 0.888
lognormal-a.g.
Random-100-uniform 0.903 0.763 0.867 0.865 0.878
C. Num. Correctly Least-20-uniform-1 20/20 15/1519 1717 18/18 18/18 1/24 <13/7
Identified Genomes Least-20-uniform-2 20/28 7/2340 15/157 15/1157 17/110 11/62 <13/8
Least-20-uniform-3 20/29 7/2278 13/156 14/1127 16/109 12/59 <13/7
Least-quantifiable-20-uni-  20/20 18/2090 19/19 20/20 19/19 18/58 <18/17
form-1
Least-quantifiable-20-uni-  20/27 17/2349 19/351 20/1518 19/114 17/149 <18/17
form-2
Least-quantifiable-20-uni-  20/25 16/2205 19/370 20/1502 19/119 17137 <18/16
form-3
Least-20-genera-uniform-1  20/20 18/1978 18/18 18/18 19/19 16/44 <12/19
Least-20-genera-uni- 20/24 14/2644 18/348 18/1843 18/115 16/108 <12/20
form-2
Least-20-genera-uni- 20/23 13/2601 18/356 18/1855 18/122 15/108 <12/18
form-3
Least-20-genera- 20/33 11/2695 17/357 17/1817 17/90 13/119 <12/20
lognormal
Random-20-uniform 20/20 18/117 20/21 20/22 20/26 18/152 <11/20
Random-20-lognormal 20/21 20/46 20/22 20/23 20/28 20/49 <917
Random-20- 20/20 19/34 20/23 20/23 20/22 19/32 <13/14
lognormal-a.g.*
Random-100-uniform 100/100 99/101 99/99 99/99 100/103 100/107 <76/88
D. L1Err. Least-20-uniform-1 0.0790 1.0000 0.9999 0.8846 0.8043 1.0687 0.7186
Least-20-uniform-2 0.0929 1.0000 0.9999 0.9940 0.9756 0.9996 0.7200
Least-20-uniform-3 0.1889 1.0000 0.9999 0.9939 0.9572 0.8635 0.7556
Least-quantifiable-20-uni-  0.0375 0.9994 0.9988 0.5774 0.5782 0.1450 0.5247

form-1
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Table 3 (continued) | Performance evaluation of caMviQ, Kraken2, KrakenUniq, CLARK, Centrifuge, Bracken and MetaPhlAn2

on the 14 species-level-bacteria queries

Performance Query set CAMMiQ Kraken2 KrakenUniq CLARK Centrifuge Bracken MetaPhlAn2
measure
Least-quantifiable-20-uni-  0.0278 0.9994 0.9989 0.9356 0.8794 0.2082 0.5507
form-2
Least-quantifiable-20-uni-  0.0670 0.9995 0.9990 0.9371 0.9671 0.1823 0.5182
form-3
Least-20-genera-uniform-1  0.0626 1.0000 0.9995 0.7156 0.1018 0.1953 0.9153
Least-20-genera-uni- 0.0591 1.0000 0.9996 0.9716 0.5574 0.2240 0.9533
form-2
Least-20-genera-uni- 0.0670 1.0000 0.9996 0.9759 0.7119 0.2592 0.9797
form-3
Least-20-genera- 0.0439 0.9999 0.9995 0.9669 0.6592 0.2757 1.0071
lognormal
Random-20-uniform 0.013 0.4139 0.1446 0.2000 0.0026 0.2393 0.6831
Random-20-lognormal 0.0038 0.2843 0.1217 0.1472 0.0107 0.0674 1.7367
Random-20- 0.1262 0.2412 0.1174 0.1831 0.1252 0.1293 0.5578
lognormal-a.g.*
Random-100-uniform 0.0096 0.2365 0.1328 0.2038 0.0604 0.0336 0.7106
E. L2 Err. Least-20-uniform-1 0.0215 0.2578 0.2578 0.2266 0.3625 0.5230 0.2294
Least-20-uniform-2 0.0267 0.2578 0.2578 0.2569 0.3837 0.4648 0.2240
Least-20-uniform-3 0.0716 0.2578 0.2578 0.2568 0.3613 0.3428 0.2499
Least-quantifiable-20-uni-  0.0105 0.2438 0.2437 0.1725 0.1955 0.0461 0.1340
form-1
Least-quantifiable-20-uni-  0.0082 0.2438 0.2437 0.2296 0.2058 0.0661 0.1407
form-2
Least-quantifiable-20-uni-  0.0200 0.2438 0.2437 0.2300 0.2168 0.0595 0.1385
form-3
Least-20-genera-uniform-1  0.0173 0.2502 0.2501 0.1941 0.0524 0.1020 0.2373
Least-20-genera-uni- 0.0179 0.2502 0.2501 0.2442 0.1598 0.1038 0.2423
form-2
Least-20-genera-uni- 0.0267 0.2502 0.2501 0.2450 0.1828 0.1132 0.2440
form-3
Least-20-genera- 0.0126 0.311 0.3110 0.3002 0.2334 0.0900 0.3348
lognormal
Random-20-uniform 0.0034 0.1665 0.0703 0.0677 0.0008 0.1483 0.1922
Random-20-lognormal 0.0013 0.1205 0.0811 0.0677 0.0056 0.0275 0.6180
Random-20- 0.0675 0.1150 0.0916 0.0963 0.0671 0.0913 0.1895
lognormal-a.g.
Random-100-uniform 0.0015 0.0391 0.0302 0.0308 0.0177 0.0052 0.0836

Classification Precision: the proportion of reads correctly assigned to a genome among the set of reads assigned to some genome (correctly or incorrectly). Classification Recall: the proportion of
reads correctly assigned to a genome among the total number of reads in a query. Number of correctly identified genomes: separated by “/”, we report respectively the number of correctly identified
genomes (true positives) and the total number of genomes returned by each software tool; the one exception is MetaPhlAn2, for which we consider a genome to have been correctly identified even if
only its genus (but not the species) is reported, and give the total number of genomes in identified genera as true positives. L1 (or L2) error: the L1 (or L2) distance between the true relative abundance
values (between O and 1) and the predicted abundance values for each genome in the query (i.e., positives). We made an exception for MetaPhlAn2, where we measured the genus level L1 and L2
distances. Note that we converted the true abundance values reported by Kraken2, KrakenUnig and CLARK by dividing the predicted abundance value for each genome by its length and then

normalizing these values by the total abundance value of all genomes.

*10% reads in the query Random-20-lognormal-a.g. are from a genome excluded from the index; any assignment of these reads are necessarily incorrect by all tools except MetaPhlAn2 - whose pre-

built index includes this genome.

MetaPhlAn2’s performance since unlike the other tools we bench-
marked, MetaPhlAn2 does not aim to assign as many reads reads to
genomes correctly but rather aims to identify distinct genomes in a
metagenomic sample; see Supplementary Note 6 for details. Addi-
tionally note that for our bookkeeping purposes, any read assigned
to a taxonomic level strictly higher than the species level by Kra-
ken2, KrakenUniq, and Centrifuge is considered to be not assigned.
This likely increases their reported precision but may decrease their
recall.

In all our species level tests, we used camMiQ’s default parameter
settings of L.;,=26 and L.,,=50 to compare it against Kraken2,
KrakenUniq, Bracken, CLARK, and Centrifuge, all using k-mer length of
26; see Supplementary Note 6 for details on parameter settings.
Results based on alternative parameter settings can also be found in

Supplementary Note 8 and in particular Supplementary Table 6. In all
of these experiments, we used the same collection of genomes for
establishing the index for each of the five tools (with the exception of
MetaPhlAn2, which uses its own predetermined index): the results in
Table 3 are based on our species-level-bacteria index dataset
and the results in Table 2 are based on our species-level-all index
dataset.

Compared with the species-level-bacteria queries which
are composed of highly similar genomes, the CAMI and IMMSA
queries are, in principle, less challenging since reads that did not get
mapped to a unique genome were excluded from these queries at
the time they were complied”. Even though the RefSeq database has
been significantly updated since these queries were complied,
almost all reads in these queries still map to a unique genome.
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Having said that, reads in these queries may originate from gen-
omes outside of the species-level-all index dataset - including
plasmids from these species that have not been indexed. It is
entirely possible that such reads may include one or more unique or
doubly-unique substring(s) indexed by cammiQ, and thus be
assigned to the wrong genome.

As can be seen in Table 2, panel A, camMiQ offered the best pre-
cision in read classification for all IMMSA queries; interestingly the
precision values for Centrifuge was much lower than the alternatives.
CAMMiQ was arguably the best on the recall in read classification on the
IMMSA queries as well, as can be seen in Table 2, panel B. However,
reads that originate from genomes outside of the index database were
likely not utilized by camMiQ, reducing its comparative advantage
against, KrakenUniq and CLARK, which may still assign such reads to a
genome; this would increase their recall, while possibly reducing their
precision.

As can be seen in Table 3 and Supplementary Table 5, CAMMiQ
achieved the best recall and F1 score (see Supplementary Note 7 for
a definition), and the second best precision for the 11 species-
level-bacteria query sets (the three queries with uneven cov-
erage were excluded). Its precision and recall were particularly
impressive for first 7 challenging queries (labeled with prefix
“Least”), where cammiQ was an order of magnitude better than the
alternatives in terms of both measures. On these queries, tools
other than cammiQ assigned only a small proportion of reads to
genomes at the species level. This is because none of them employ
doubly-unique substrings to differentiate species in the index
dataset from the same genus. The only exception is Centrifuge,
which achieved the best classification precision and the second best
recall. For example, on the 3 hypothetically error-free queries
(labels ending with -1 in Table 3), where Centrifuge (in addition to
caMMiQ and CLARK) achieved 100% precision. However, Cen-
trifuge’s classification performance deteriorated when genomes in
queries were likely not present in the corresponding index dataset
(Table 2, panels A and B). Note that in principle Kraken2, Krake-
nUniq and Centrifuge could assign reads to the correct taxonomy
higher than the species level. However, as mentioned above, only
reads that were assigned to the correct species were considered to
be true positives for this benchmark.

Precision and recall in genome identification on IMMSA and
CAMI queries

On the CAMI and IMMSA queries, caMMiQ correctly identified more
genomes than the alternative tools with the same abundance cutoff
of 0.01% (we consider a genome to have been identified by a tool
only if the tool reports its abundance to be >0.01% of the total
abundance of all genomes), resulting in superior recall values for
genome identification (Table 2, panel C; note that recall in genome
identification represents the fraction of correctly identified gen-
omes among all genomes in a query set). This is primarily due to
CcAMMiQ’s use of doubly-unique substrings in its query type A,.
Compared to its recall performance, caMmmiQ achieved even better
precision figures than the alternatives (Table 2, panel D; note that
precision in genome identification represents the fraction of cor-
rectly identified genomes among the set of genomes identified by a
given tool), due to fewer false positive identifications. The fact that
caMMiQ particularly performs best with respect to the precision
values indicates that genomes not present in the index dataset
would have the least impact on CAMMiQ in comparison to other
tools. Note that by postprocessing the output of Kraken2, Bracken
manages to improve on the number of identified genomes, and
achieves comparable figures to cammiQ. However, it does not
reduce the large number of false positive genome identifications
produced by Kraken2, when unknown genomes or genomes outside
the index dataset present in the query sample.

Genome identification and quantification performance on
species-level-bacteria queries

Next, we evaluated the number of correctly identified genomes by
each tool (specific to MetaPhlAn2, the genus corresponding to each
genome), as well as the L1 and L2 distances between the true abun-
dance profile and the predicted abundance profile, on the 14 queries
involving our species-level-bacteria dataset, including the 3
queries with GC bias. As can be seen in Table 3, panels C-E, and Sup-
plementary Table 5, camMiQ clearly offered the best performance in
both identification and quantification. It correctly identified all gen-
omes present in each one of the 14 queries and was not impacted by
uneven read coverage or the genome we added to the query Random-
20-lognormal-a.g. which was not indexed. Importantly, CAMMiQ con-
sistently returned very few false positive genomes for the most chal-
lenging queries, and at most one false positive genome for the
remaining 4 queries.

Compared to CaMMi Q, other tools reported larger number of false
negatives in these 14 queries (again we consider a genome to be a
“negative”, if its reported abundance level is <0.01% of the total
abundance of all genomes), in particular in the 10 challenging queries
(labeled with the prefix “Least”) with minimal unique substrings (i.e., L-
mers). Among them, CLARK and Centrifuge offered the best false
negative performance, especially on error free queries. As can be
expected, MetaPhlAn2 had the worst performance with respect to false
negatives, very likely due to the incompleteness of its marker gene list
(we used the latest set of marker genes mpa_v20_m200 in MetaPh-
1An2). This also led to a relatively larger L1/L2 distances than the other
tools, even for the remaining 4 (easier) queries. Kraken2 and Krake-
nUniq were also prone to having false negatives, though fewer than
MetaPhlAn2. Bracken, in general, could correctly identify a few more
genomes than Kraken2, and this improvement in its identification
performance also leads to better quantification results (see below).

caMMiQ performs even better with respect to the number of false
positive genomes, as demonstrated by its F1 score distribution (see
Supplementary Table 5). The alternative tools all returned a large
number of false positives in species-level-bacteria queries,
especially in the first 10 challenging queries, even though all reads in
these queries were sampled from (some genome in) the index dataset
(see Table 3, panel C). Among them, Centrifuge and Bracken usually
performed better on the 10 challenging queries with fewer ‘unique’
genomes; while KrakenUniq and CLARK performed better on the
remaining 4 (easier) queries. Kraken2 showed the worst performance
with respect to the false positives: it outputs more than a third of the
genomes from the index dataset even for the three error free queries.
In many of the datasets, these false positives were eliminated by
Bracken’s postprocessing of Kraken2’s output; unfortunately, in other
query datasets, e.g., Random-20-uniform and Random-100-uniform,
Bracken introduced additional false positives. MetaPhlAn2 identified
only limited number of genomes (and few true positive genomes) in all
queries in general, so it had a comparable performance to caMmmiQ with
respect to false positives. However, its F1 scores were not as good as
CAMMiQ’s (see Supplementary Table 5).

Note that caMMiQ not only correctly identified all genomes, but
also predicted their abundances reasonably close to the true values. As
can be seen in Table 3, camvi 0 outperformed all other tools on both L1
and L2 errors, typically offering a factor of 3 - 4x improvement over the
second best alternative. Interestingly, even when the coverage across
each genome were non-uniform, CAMMiQ’s A5 type of query was only
mildly impacted. As noted earlier, on the 10 challenging queries
(especially those with sequencing errors), all alternative tools except
MetaPhlAn2 output hundreds of false positive genomes. As a con-
sequence, their predictions for the abundances of the true positive
genomes were smaller than the true abundance values. This is parti-
cularly the case for Kraken2 and KrakenUniq: even though they iden-
tified the majority of the true positive genomes correctly, their
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reported abundance values were all close to O; this results in their L1
distances to be very close to 1.

Evaluation of computational resources on species level queries
We compared the running time and memory usage of cammio, Kra-
ken2/Bracken, KrakenUniq, CLARK, MetaPhlAn2, and Centrifuge in
building the index and responding to the queries; see Table 4. As can
be seen caMMiQ performs better than all alternatives in running time -
including those tools that aim to index all unique k-mers (KrakenUniq
and CLARK), and all substrings (Centrifuge) - with respect to both
query time and index construction time. The only exception is Kraken2
(MetaPhlAn2 uses a pre-built index and so it can not be compared
against others with respect to index construction time), however,
Kraken2’s overall accuracy is worse than the others across the species-
level queries. Since MetaPhlAn2 uses a pre-built index (See Supple-
mentary Note 6) it avoids the expensive index construction process.
This, however, results in many false negatives (See Subsections Gen-
ome identification and quantification performance on species-level-
bacteriaqueries and Performance of caMMiQ at the strain level). cam-
MiQ also supports pre-built indices. Compared to the other tools and
methods, the sizes of these pre-built indices are much smaller (Table 4,
Panel B), due to the sparsification of unique and doubly unique sub-
strings, allowing convenient transfer and fast downloading. Note that
we do not report the time for loading the index into memory for any of
the tools, since this is performed only once.

All of our experiments were run on a Linux server equipped with
40 Intel Xeon E7-8891 2.80 GHz processors, with 2.5TB of physical
memory and 30 TB of disk space. The ILP solver used by caMmvi 0 in the
initial implementation is IBM ILOG CPLEX 12.9.0. We have also ported
the code to use the ILP solver Gurobi 9.1.0.

Assessing the use of variable-length and doubly-unique sub-
strings in species-level-bacteria queries

Due to its unique algorithmic features caMMiQ outperforms available
alternatives on the CAMI, IMMSA and the species-level-bacteria
query sets. A key question is: what is the maximum potential
improvement in performance one can expect through the use of (i)
variable-length substrings as opposed to fix length k-mers, and (ii)
doubly-unique substrings in addition to unique substrings? Here, we
evaluate both of these algorithmic features in the context of the
species-level-bacteria dataset we constructed (see Table 1). For
that, we compare the proportion of L-mers (for read length L =100)
from each genome s; in our species-level-bacteria index dataset
that are unique or doubly-unique (and thus is utilized by cammiQ) with
the proportion of L-mers that include a unique k-mer (and thus can be
utilized by CLARK and others) for k=30.

Figure 1a summarizes our findings: on the horizontal axis, the
genomes are sorted with respect to the proportion of unique and
doubly-unique L-mers they have; the vertical axis depicts this pro-
portionality (from 0.0 to 1.0). The figure shows the proportion of
unique L-mers, doubly-unique L-mers, the combination of unique and
doubly-unique L-mers (all utilized by camviQ), as well as the L-mers
that include a unique k-mer (utilized by, e.g., CLARK) for each genome
depicted on the horizontal axis. As can be seen, roughly three quarters
of all genomes in this dataset are easily distinguishable since a large
fraction of their L-mers include a unique k-mer. However, about a
quarter of the genomes in this dataset can benefit from the con-
sideration of doubly-unique substrings, especially when their abun-
dances are low. In particular, 66 of these 4122 genomes/species have
extremely low proportions (each <1%) of unique 100-mers. At the
extreme, the species Francisella sp. MAO6-7296 does not have a single
unique 100-mer and the species Rhizobium sp. N6212 does not have any
100-mer that includes a unique 30-mer (in fact any substring of length
<L ..« =50). These two species cannot be identified by, e.g., CLARK in
any microbial mixture, regardless of their abundance values.

Figure 1b depicts the inverse proportionality of doubly-unique L-
mers in comparison to unique L-mers among 50 genomes that have the
lowest proportion of unique L-mers - for L=100. The inverse-
proportionality of unique or doubly-unique L-mers for a genome cor-
responds to the number of reads to be sampled (on average) from that
genome to guarantee that the sample includes one read that would be
assigned to the correct genome. In the absence of read errors, this
guarantees correct identification of the corresponding genome in the
query. Note that, in half of these 50 genomes, almost all L-mers are
doubly-unique. This implies that any query involving one or more of
these genomes could only be resolved by cavmMi 0 and no other tool.

We further assessed whether the usage of unique and doubly-
unique substrings can lead to robust genome identification and
quantification performance in practice, by evaluating the distribution
of these substrings across the genome. In principle, the more evenly
these substrings are distributed across a genome, the less likely
CAMMiQ’s quantification performance can be impacted by queries
composed of genomes with small alterations to the corresponding
index genomes. As can be seen in Fig. 1c, d, unique and doubly unique
substrings span the entire genome on most of the species in our
species-level-bacteria index dataset, not significantly biased
towards any functionally annotated region by NCBI (i.e., gene, CDS,
ncRNA, rRNA, tRNA, tmRNA or plasmid). Even when the numbers of
unique or doubly-unique substrings are relatively small in a genome
(for example, the last 3 genomes in Fig. 1d), they are still well dis-
tributed, helping camvio with that genome’s identification as well as
quantification. We would like to note here that even though some
genomes have very few unique substrings, implying that they would be
difficult to identify through the use of alternative methods, because of
their (well distributed) doubly-unique substrings, caMMi 0 can identify
and quantify them accurately. Consider, for example, the last genome
in Fig. 1d, Rhizobium sp. N1341 in which the only unique substrings are
located on the plasmids. However, since there are sufficiently many
doubly unique substrings on the chromosome, this species could still
be identified and quantified by cavMiQ, through the A, or A; type
of query.

Performance of caMMiQ at the strain level

In the next experiment, we evaluated caMMiQ's performance (with
default parameters) on queries composed from our strain-level
dataset that consists of 614 Human Gut related genomes of bacterial
strains from 409 species®® as described in Supplementary Note 5.2. As
can be seen in Table 5, caMMiQ managed to identify and accurately
quantify all strains in the queries HumanGut-random-100-1 and
HumanGut-random-100-2, and > 96% strains in the other two queries,
with almost no false positives. Other tools benchmarked against
camMiQ lead to either more false negative (KrakenUniq, CLARK,
MetaPhlAn2) genomes, or more false positive identifications (Kraken2,
Centrifuge). Furthermore, their quantification performance (Table 5,
panel B) is worse than cammio.

Performance of cAMMiQ on real single-cell metatranscriptomic
queries
Our final set of experiments involve “real” metatranscriptomic reads
from human monocyte-derived dendritic cells (moDCs)*°. Because
CAMNMiQ’s most powerful type A, query is not suitable for RNA-seq
data (due to high variance in read coverage), we employed .4; and A,
queries. We remind the reader that .4; only uses unique substrings in
query reads and returns the genomes in the index for which there is at
least one such substring. On the other hand, A, computes the smallest
set of genomes in the index that include all unique or doubly-unique
substrings across the query reads.

Each query was composed of all high quality, non-human scRNA-
seq reads from the corresponding single cell®’. For guaranteeing this,
we filtered out all scRNA-seq reads which (i) possibly originate from the
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Table 4 | Comparison of the running times required by cavmMiQ, Kraken2, KrakenUnig, CLARK Centrifuge, Bracken, and
MetaPhlAn2

Performance measure Query set/ Index dataset CAMMiQ Kraken2/Bracken KrakenUniq CLARK Centrifuge MetaPhlAn2
A. Index Construction species-level-all 14435s 7826s 24225s 54602s 17755s N/A
Time/Memory 147.0G 22.2G 242.3G 303.2G 257.3G
species-level-bacteria 7794s 4623s 13304s 35413s 17216s
715.9G 20.0G 167.6G 234.6G 257.3G
strain-level 688s 451s 1575s 3M1s 1275s
83.9G 20.0G 37.2G 67.1G 22.3G
B. Index Size On Disk species-level-all 14.4G 5.1G 226.3G 106.4G 176 116
species-level-bacteria 8.9G 1.2G 155.2G 71.8G 7.3G
strain-level 0.7G 1.3G 21.3G 75G 0.2G
C. Query Time/Memory IMMSA-buccal-12 14.2s 7.7s 19.9s 29.5s 59.3s N/A
165.8G 5.1G 226.8G 103.0G 1n.76
IMMSA-citypark-48 41.6s 25.8s 73.9s 71.6s 87.6s
165.8G 5.2G 226.9G 103.1G 1n.7G6
IMMSA-gut-20 14.3s 11.0s 23.7s 37.5s 54.0s
165.8G 5.1G 226.9G 103.0G 1.7G6
IMMSA-house-30 23.3s 15.1s 42.0s 47.0s 63.9s
165.8G 5.2G 226.9G 103.0G 1.7G6
IMMSA-house-20 17.7s 10.9s 25.5s 31.9s 54.7s
165.8G 5.2G 226.8G 103.0G 176
IMMSA-soil-50 84.1s 37.8s 153.2s 136.3s 138.6s
165.8G 5.2G 226.9G 103.5G 176
IMMSA-simBA-525 128.8s 84.6s 265.2s 210.6s 218.3s
173.5G 5.3G 227.0G 104.3G 1.7G
IMMSA-nycsm-20 18.6s 9.1s 25.1s 32.5s 55.8s
165.8G 5.2G 226.9G 103.0G6 n.76
CAMI-LC1 3982.0s 1565.8s 7282.9s 8765.8s 7218.3s
168.9G 7.0G 227.9G 135.4G 1.9G6
CAMI-MC-1 4013.3s 1555.4s 8596.0s 8158.0s 6277.2s
168.9G 7.0G 233.5G 135.4G 11.8G
CAMI-MC-2 3920.5s 1550.5s 8436.4s 8418.9s 6011.4s
168.9G 7.2G 232.7G 135.3G 11.8G
CAMI-HC-1 3906.4s 1557.0s 9762.5s 8020.8s 6022.0s
168.9G 7.0G 252.8G 135.3G 11.8G
CAMI-HC-2 3866.8s 1561.3s 9605.8s 8131.5s 6145.6s
168.9G 7.0G 252.3G 135.3G 11.8G
CAMI-HC-3 3893.6s 1683.8s 9934.8s 8472.9s 6082.5s
168.9G 7.0G 255.8G 135.3G 11.8G
CAMI-HC-4 3934.1s 1631.3s 9941.5s 7872.3s 6028.6s
168.9G 7.0G 255.1G 135.3G 11.8G
CAMI-HC-5 3941.2s 1553.0s 9649.6s 8460.1s 6501.9s
168.9G 7.0G 253.1G 135.3G 11.8G
Least-20-uniform-2 151.7s 52.2s 286.5s 402.5s 309.2s 608.8s
94.6G 1.4G 67.9G 81.3G 7.3G 1.3G
Least-quantifiable-20-uniform-2 180.5s 50.8s 284.1s 416.0s 317.8s 569.6s
93.3G 11.4G 771G 81.3G 7.3G 1.3G
Least-20-genera-uniform-2 143.5s 53.0s 273.4s 285.2s 242.3s 438.9s
92.6G 1.4G 81.4G 81.0G 7.3G 1.3G
Least-20-genera-lognormal 153.6s 61.8s 268.8s 289.4s 253.9s 442.7s
93.3G 1.4G 77.8G 81.0G 7.3G 1.3G
Random-20-uniform 198.4s 48.1s 284.0s 315.1s 207.7s 516.7s
95.4G 11.4G 92.7G 81.3G 7.3G 1.3G
Random-20-lognormal 167.8s 48.8s 294.5s 367.6s 226.8s 569.3s
95.7G 11.4G 89.3G 81.3G 7.3G 1.3G
Random-20-lognormal-a.g. 49.8s 14.7s 78.9s 75.2s 58.1s 188.9s
94.3G 11.3G 51.9G 80.3G 7.3G 1.3G
Random-100-uniform 906.0s 215.4s 1261.5s 1536.2s 969.3s 2401.4s
m.oG 11.9G 143.3G 85.7G 7.4G 1.4G

Index construction time/memory: time and peak RAM usage required by each tool to build the index upon the species-level-all, species-level-bacteriaand strain-level index dataset,
with 32 threads, with an exception that CLARK only supports a single thread to built the index; MetaPhlAn2 used a collection of pre-built marker genes, which may require several days to complete;
for Kraken2 we included the time to preprocess the input genomes (fasta files). Index size on disk: the total index size on disk for the three index datasets required by each software tool. Query time/
memory: time and peak RAM usage to assign all reads in each query set to one (or two) genome(s) when running with a single thread; for camMi @ we included the required ILP running time and
memory usage for A, type query on CAMI and IMMSA benchmark query sets and A; type query on species-level-bacteria query sets; forall tools except MetaPhlAn2, time to load the index into
main memory were excluded; for MetaPhlAn2 we measured the total alignment time. Note that Bracken index construction and queries will post-process Kraken2 output, so we group them together.
For all memory measurements 1G = 2°° Bytes.
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Fig. 1| The advantage of using variable-length and doubly-unique substrings.
a The proportion of L-mers (for L =100) that include a unique substring (in blue), a
doubly-unique substring (in green), or either a unique or a doubly-unique substring
(in yellow) in the species-level-bacteria dataset of 4122 genomes from NCBI
RefSeq; these L-mers, when presented as reads are utilizable by cavMviQ (when

L 1ax =100). Also included are the proportion of L-mers that include a unique k-mer
(k=30) and thus are utilized by CLARK (in purple). For each plot, the genomes are
independently sorted with respect to the corresponding proportions in ascending
order. b The expected number of reads (of length L =100) needed to capture one
read containing a unique substring (in blue) as well as one read containing a doubly-
unique substring (in green) in the 50 genomes with the lowest proportion of unique

L-mers. Also included are the range for each value within the corresponding stan-
dard deviation. For the analyses visualized in this figure, L, =50. ¢ The distribu-
tion of unique (in blue) and doubly-unique (in green) substrings across different
functional annotations on the 4122 genomes in species-level-bacteria index
dataset. Each boxplot shows the median and interquartiles, with whiskers extend-
ing to the most extreme data points within 1.5*interquartile range. d The loci of
unique (in blue) and doubly unique (in green) substrings on 2 representative
genomes (E. coli, and S. enterica), and 3 genomes with the least number of unique -
mers. Plasmids are marked with gray. The unique/doubly unique substrings on
forward strand are plotted above each black line; the unique/doubly unique sub-
strings on reverse strand are plotted below each black line.

human genome, or (ii) have low sequence quality and “complexity”, or
(iif) map to 16S or 23S ribosomal RNAs on the two Salmonella genomes
(to avoid incorrect assignment of reads due to “barcode hopping”).
Following the original study®®, we categorized each cell into one
of the 5 groups: infected cells that were confirmed to contain (1) STM-
LT2 or (2) STM-D23580 strain of intracellular Salmonella; bystander
cells that were exposed to (3) STM-LT2 or (4) STM-D23580 strains, but
confirmed to not contain intracellular Salmonella; and (5) cells that
were mock-infected and sequenced as controls. For each query, we
compared the number of reads camvi Q assigned uniquely to STM-LT2

or STM-D23580 genomes against those aligned and assigned either by
the GATK PathSeq™ tool or blastn" (see Supplementary Note 9).
Figure 2 summarizes our results on this data set. In Fig. 2a, we
demonstrate that compared to the GATK PathSeq approach, camMmMiQ’s
A, type queries were more sensitive with respect to read assignment.
On average, caMMiQ identified (roughly) an order of magnitude more
unique STM-LT2 or STM-D23580 reads in each cell, demonstrating its
potential to better identify intracellular organisms at subspecies or
strain level. Note that caMMiQ’s performance is comparable or slightly
better than that of blastn. However camMiQ is several orders of
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magnitude faster than blastn or GATK PathSeq. (caMMiQ only took a
total of 65.3s for computing 4, type queries and an additional 2.5s for
computing 4, type queries on the entire query set, outperforming
GATK PathSeq, which required 29628.1s, or blastn, which is typically
slower).

The abundances reported by each of the three tools (measured by
unique read counts) of Salmonella were substantially higher in the
infected cells compared to the mock-infected controls. More impor-
tantly, cells known to be infected with or exposed to a particular strain
indeed include significantly more reads from that strain. Interestingly,
camMiQ as well as blastn reported that cells infected with or exposed to
a particular strain also contain reads unique to the other strain. This is
possibly due to sequencing errors or incorrect cell assignments for
these reads.

In Fig. 2b, we compare CaMMiQ's A, type queries with its A; type
queries (as well as GATK PathSeq and blastn) with respect to the
number of cells they correctly identify to include STM-LT2 or STM-
D23580 strains. For that we vary the minimum number of reads that
need to be identified by each tool to report a given strain, and for each
such value we indicate how many cells are reported to include the
STM-LT2 strain (on the vertical axis) vs the STM-D23580 strain (on the
horizontal axis). With the exception of the third subpanel a method
with a plot closer to the diagonal is less sensitive. As can be seen
CAMMiQ’s A, type queries are more sensitive than not only its A; type
queries but also GATK PathSeq and blastn. However, they also intro-
duce some potential false positive calls (e.g., in the third subpanel
panel corresponding to the controls). This could be due to additional
reads utilized by A, queries impacted by read errors or incorrect
assignments of these reads to cells.

Discussion

We have introduced caMmMiQ, a new computational tool to identify
microbes in an HTS sample and to estimate abundance of each species
or strain. CAMMiQ is based on a principled approach that starts by
defining formally the following algorithmic problem that has not been
fully addressed by any available method. Given a set S of distinct
genomic sequences of any taxonomic rank, build a data structure so as
to identify and quantify genomes in any query, composed of a mixture
of reads from a subset of S. caMmmiQ is particularly designed to handle
genomes that lack unique features; for that, it reduces the aforemen-
tioned identification and quantification problems to a combinatorial
optimization problem that assigns substrings with limited ambiguity
(i.e., doubly-unique substrings) to genomes so that, in its most general
Aj; type query, each genome is “uniformly covered”. Uniform coverage
is a simplifying assumption we employ in our theoretical analysis since
which genomes are represented in a query are not known in advance.
In practice, the coverage for genomic sequences might be biased by
GC content®*?, We do not employ this assumption in CAMMiQ imple-
mentation for A4; and A, type queries, which are more suitable for
transcriptomic sequences. Our experiments on the Salmonella
scRNAseq dataset indeed show that camvio delivers good results on
scRNAseq queries work well even though the reads are skewed by
variable expression and the selection biases of single-cell technology.
Because each such substring has limited ambiguity, the resulting
combinatorial optimization problem can be efficiently solved through
the existing integer program solvers IBM CPLEX and Gurobi.

One potential limitation of cammiQ is that it relies on a database of
reference genomes. In the context of medical microbiology this is a
reasonable assumption since virtually all clinically-relevant microbes
detected in new patients are known and have some similar genome
sequenced and in RefSeq. The reliance on a reference database is more
problematic in the context of studying environmental samples, in
which new and rare taxa might be found by methods that do not rely
on reference genomes. Our results on the CAMI benchmark data set
provide reassurance that camviQ performs well even when many

genomes and plasmids are absent from the reference database.
Another potential limitation is that the memory required by cammio
index construction is relatively high. However, caMMiQ supports pre-
built indices on commonly used databases for metagenomic studies,
e.g., (the latest version of) the RefSeq bacteria, viruses and archaea
database. Compared to the other tools and methods, the sizes of these
pre-built indices are much smaller, due to the sparsification of unique
and doubly unique substrings, allowing convenient transfer and fast
downloading. The prebuilt CAMMIQ index for all index datasets are
available via the GitHub link provided in the Code Availability state-
ment. In addition, as shown for the experiments summarized in
Table 4, the memory requirements for CAMMi O queries are comparable
to those of other widely used packages and within the capabilities of
currently available computers.

Provided that the doubly-unique substrings of a given genome
are not all shared with one other genome, the use of doubly-unique
substrings increases CAMMiQ’s ability to identify and quantify this
genome within a query. In case the dataset to be indexed involves
several genomes with high levels of similarity, camMMiQ’s data
structure and its combinatorial optimization formulation could be
generalized to include “triply” or “quadruply” unique substrings,
but this is not yet implemented. In summary, using principled
methods from combinatorial optimization and string algorithms,
camMmMiQ delivers better sensitivity and specificity than widely-used
existing methods on practical genome classification and quantifi-
cation methods.

Methods

The input to CAMMiQ is a set of m genomes S = {s;}[, possibly but not
necessarily all from the same taxonomic level (each genome here may
be associated with a genus, species, subspecies, or strain), to be
indexed. Although we describe camMiQ for the case where each s; € S
is a single string, we do not assume that the genomes are fully
assembled into a single contig. The string representing a genome
could simply be a concatenation of all contigs from genome s; and their
reverse complements, with a special symbol §; between consecutive
contigs. We call S the input database or synonymously index dataset,
and we call i € {1, --- , m} the genome ID of string s;.

A query or query set for CAMMiQ contains a set of reads Q={r;}!" |
representing a metagenomic mixture. For simplicity, we describe
camMiQ for reads of homogeneous length L; however, our data struc-
ture can handle reads of varying length. Given Q, the goal of cAMMiQ is
to identify a set of genomes A={s;,---,s,} C S and their respective
abundances p,, --- ,p, that “best explain” Q. This is achieved by
assigning (selected) reads r; to genomes s; such that the implied cov-
erage of each genome s; € A is (roughly) uniform across s;, with p; as
the mean.

caMMiQ'’s index data structure involves the collection of shortest
unique substrings and shortest doubly-unique substrings on each
genome s; in S. We call a substring of s; unique if it does not occur on
any other genome s;#s; in S; a shortest unique substring is a unique
substring that does not include another unique substring. Similarly, we
call a substring of s; doubly-unique if it occurs on exactly one other
genome s;#s; € S; a shortest doubly-unique substring is a doubly-
unique substring that does not include another doubly-unique sub-
string. See Supplementary Note 1 for a formal definition for the
uniqueness of a substring and Supplementary Fig. 1 for a graphical
illustration. caMMi 0 does not maintain the entire collection of shortest
unique and doubly-unique substrings of genomes in S; instead, its
index contains only a sparsified set of shortest unique and doubly-
unique substrings of each s; € S so that no unique and doubly-unique
substring is in close proximity (i.e., within a read length) of another in
s;i. See Section CAMMIiQ Index and Supplementary Note 2 for how
exactly camMi 0 sparsifies the collection of shortest unique and doubly-
unique substrings.
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Table 5 | caMMiQ's strain level performance compared to Kraken2, KrakenUniq, CLARK, Centrifuge, and MetaPhlAn2, on the

four strain-level queries

Performance measure Query set CAMMiQ Kraken2 KrakenUniq CLARK Centrifuge MetaPhlAn2
A. Num. Correctly HumanGut-least-25 24/26 23/167 25/40 25/40 25/49 >18/19
Identified Strains HumanGut-random- 100/101 94/241 99/101 99/99 99/12 >74/83
100-1
HumanGut-random- 100/102 93/197 97/98 98/98 99/121 >67/72
100-2
HumanGut-all 404/407 380/391 395/397 396/396 392/396 >279/305
B. L1 Err. HumanGut-least-25 0.1130 0.5026 0.4882 0.8607 0.5195 0.2910
HumanGut-random- 0.0209 0.2642 0.2244 0.3677 0.2817 0.3260
100-1
HumanGut-random- 0.0256 0.2300 0.2058 0.3387 0.2821 0.5066
100-2
HumanGut-all 0.0517 0.2841 0.2426 0.4004 0.2811 0.4439
C.L2Err. HumanGut-least-25 0.0443 0.1606 0.1597 0.1987 0.1246 0.0737
HumanGut-random- 0.0036 0.0476 0.0438 0.0460 0.0420 0.0441
100-1
HumanGut-random- 0.0044 0.0469 0.0446 0.0461 0.0413 0.0648
100-2
HumanGut-all 0.0062 0.0255 0.0239 0.0253 0.0201 0.0299

The number of strains in each query is indicated in the query label, with the exception of the HumanGut-all query, which includes one representative strain from each of the 409 strains in the index.
Number of identified strains: the number of true positive strains/the total number of strains identified. L1 (or L2) error: the L1 (or L2) distance between the true relative abundance values and the

predicted abundance values, across all strains in the query.

With the (sparsified) collection of shortest unique and doubly-
unique substrings, camMiQ is sufficiently powerful to answer the fol-
lowing three types of queries. The simplest type of query only involves
unique substrings: given a query set Q, it asks for the set of genomes
A; C S so that each includes at least one (shortest) unique substring
that also occur in some read r; in the query Q. The second, more
general query type involves both unique and doubly-unique sub-
strings. It asks to compute A, C S, the smallest subset of genomes in S
which include all (shortest) unique and doubly-unique substrings that
also occur in some read r; € Q. Finally, the third and the most general
type of query asks to compute the smallest subset .4; of S which again
include all (shortest) unique and doubly-unique substrings that also
occur in some read r; € Q, with the additional constraint that the
“coverage” of these substrings in each genome s; € A; is roughly
uniform. In addition to the set of genomes 4, the query also asks to
compute the relative abundance of each genome s; in A;.

caMMiQ with its ability to efficiently answer all three queries
described above has several advantages over existing methods that
rely on fixed-length unique substrings (i.e., unique k-mers). (i)
Notice that the shorter a unique substring is the more likely it will be
sampled (i.e., present in a read sampled from the relevant genome).
This is because a substring of length L'<L is included in L — L' +1
potential reads of length L that could be sampled from a genome.
Unfortunately, the shorter a substring is, the less likely that it is
unique or doubly-unique. A method that uses fixed length k-mers
needs to have a compromise between the number of unique sub-
strings and the likelihood of sampling each. caMMi Q gets around this
limitation by utilizing unique substrings of any length. cammi fea-
tures a lower bound L, and upper bound L., on the lengths of
unique and doubly-unique substrings as explained below. (ii) Unique
substrings are relatively rare, at least for certain genomes and taxa,
but substrings that appear in many genomes provide very limited
information about the composition of a query Q. By involving
doubly-unique substrings in a query Q, the subset of genomes that
could be identified through query A, would be larger and more
accurate than those that could be identified through query A,
especially in the extreme case where Q includes highly similar gen-
omes that do not include any unique substring. (iii) Finally, by
introducing the “uniform coverage” constraint, CAMMiQ’s A; type of

query can identify more accurately the genome(s) where a doubly-
unique substring originates. This is because a query of type A, may
result in significant differences in coverage between unique and
doubly-unique substrings of a given genome.

As mentioned above, caAMMiQ builds an index for the sparsified
sets of shortest unique and doubly-unique substrings to compute
efficiently the sets A;, A, and A;. For all three query types, CaMMiQ first
identifies for each read r; all unique and doubly-unique substrings it
includes; it then assigns r; to the one or two genomes from which these
substrings can originate. To compute .4;, CAMMiQ can simply return
the collection of genomes receiving at least one read assignment. To
compute A,, CAMMiQ needs to solve instances of the NP-hard set cover
problem, or more precisely, its dual, the hitting set problem where
genomes form the universe of items, and indexed strings that appear
in query reads form the sets of items to be hit. Even though this is a
restricted version of the hitting set problem where each set to be hit
contains at most two items, it is still NP-hard due to a reduction to the
vertex cover problem. To compute A;CAMMiQ solves the combina-
torial optimization problem that asks to minimize the variance among
the number of reads assigned to each indexed substring of each gen-
ome - the solution indicates the set of genomes in .45 along with their
respective abundances.

Details on the composition as well as the construction process for
caMMiQ’s index are discussed in Section caMMiQ Index, as well as
Supplementary Notes 1 and 2. The two stages in query processing of
cammiQ are discussed in Subsections Query processing stage 1: Pre-
processing the Reads and Queryprocessing stage 2: ILP formulation.
The first stage assigns reads to specific genomes, which is sufficient for
computing sets A; and A,. See Section Query processing stage 1:
Preprocessing the Reads and Supplementary Note 3 for the criteria we
use to assign a read to a genome, based on the indexed substrings that
the read includes. The second stage introduces the combinatorial
optimization formulation to compute A; as a response to the most
general query type. See Section Query processing stage 2:ILP for-
mulation for details.

camMMiQ Index
To respond to all three types of queries described above, camMiQ
identifies all unique and doubly-unique substrings of the genomes in S

Nature Communications | (2022)13:6430

13



Article

https://doi.org/10.1038/s41467-022-33869-7

a : LT2 D23580
103 LT2 D23580  LT2 D23580 CAMMIQ (AL)| /72 D23580 T
PathSeq
BLAST
102 _
LT2 D23580 It T
2 1 { + é
[ H =4 { .
>3 1} i
3 | _ 5
1 : ' - h T H
- 10 r - i i ; 3 i
© ; i i i X |
9 H | H T H : i i
o i 4 T i . i . : |
T ] : ki : i : : : : :
10! i i | & 5 i s
Exposed L. Exposed D. Uninfected Infected L. Infected D.
b Exposed LT2 Exposed D23580 18/80 Uninfected (Mock Control)
60
60
° T 50 ° 15
250 b ]
o o o
a a o 12
& 40 240 &
p p AR
230 20 2
o o ©
20 ©20 o °
€ € €
=] =] =}
p=4 10 = 10 =2 3
0 0 o=
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 1 2 3 4 5 6/80
Num. Cells D23580 Reported Num. Cells D23580 Reported Num. Cells D23580 Reported
70 Infected LT2 70 Infected D23580
CAMMIQ A2
60 60 CAMMIQ Al
© e
2 50 2 50 PathSeq
a a BLAST
[ [}
= 40 © 40
o~ o~
5 5
n 30 n 30
] K]
@) o
€ 20 € 20
2 2
10 10
0 0
0 10 20 30 40 50 60 70 0O 10 20 30 40 50 60 70

Num. Cells D23580 Reported

and organizes them in a simple but efficient data structure. Specifi-
cally, cammMiQ computes the complete set of shortest unique sub-
strings, U = U%,U;, and the set of shortest doubly-unique substrings,
D= U, D;, where U; and D; respectively denote the complete set of
shortest unique and doubly-unique substrings from genome s;, whose
lengths are within the range [L ;i ,.Lmax < L]. See Supplementary Note 1
for a linear time algorithm to build both ¢/ and D. caMMiQ then spar-
sifies &/ and D by selecting only one representative substring among
those that are in close proximity in each genome, and discarding the

Num. Cells D23580 Reported

rest; this sparsification step is described in detail in below and the
Supplementary Note 2. Finally it builds a collection of tries (trees where
the root node represents a substring of length L, and every other
internal node represents a single character) to compactly represent
and efficiently search for substrings in ¢/ and D.

Determining L., and L .,;,. In general, as the value of L ,,, increases, so
do the numbers of unique and doubly-unique substrings to be con-
sidered by camMi Q - potentially increasing its sensitivity. However query
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Fig. 2 | cammi 0 performance on the filtered-scRNA-seq queries. a Comparison of
metatranscriptomic reads uniquely assigned to the STM-LT2 strain (the left side in
each panel) or STM-D23580 strain (the right side in each panel) by camvig (blue),
GATK PathSeq (orange), and blastn (cyan) across (i) the 66 cells that were exposed
to STM-LT2; (ii) the 61 cells exposed to STM-D23580; (iii) the 80 mock-infected cells
as controls; (iv) the 68 cells infected with STM-LT2; and (v) the 67 cells infected with
STM-D23580. Vertical bars indicate the average and maximum number of reads

assigned uniquely to the corresponding strains. Solid lines indicate the strain to

which the cells have been exposed or infected with. Ideally the strain with which the
cells have been exposed to or infected with should have higher read count values.
b The number of cells with more than a threshold of ¢ reads uniquely assigned to
the STM-LT2 strain (vertical-axis in each panel) or STM-D23580 strain (horizontal-

axis in each panel) by camviQ with query type A; (purple), GATK PathSeq (orange)
and blastn (cyan), for varying values of ¢. We also included the results of caMmMio
with query type A, (green) that uses doubly-unique substrings in addition to
unique substrings and thus is not represented in panel (a) of the figure. When the
threshold ¢ is very high, neither strain could be detected by any method in any of
the cells - this corresponds to position (0, 0) in each plot. When the threshold is
very low (as low as 0), then both strains can be detected in all cells by all tools - this
corresponds to position (c, ¢) where c corresponds to the total number of cells in a
given plot. The plot for an ideal tool should deviate from the diagonal as much
as possible - the only exception is the third subpanel which depicts the mock
control. The plots for caMMiQ queries are closer to this ideal than GATK PathSeq
or blastn.

type Aj; relies on the read coverage for each unique and doubly-unique
substring of each genome; the higher the coverage the better. The read
coverage for a unique substring of length |L - L/A|, for some constant
A>1, would roughly be 1/A-th of the read coverage (of a single
nucleotide) of the respective genome. The best tradeoff between these
two objectives, i.e., substring length, ~ (1-1/A) and coverage, ~1/A, can
be achieved by maximizing their product, i.e., (1-1/A)/A, which is
achieved at A =2. This suggests to choose L, =L/2.

A shortest unique substring u, by definition, differs from (at least)

one other substring ' by just one nucleotide. The shorter u gets, the
more likely a read error impacting «’ would modify it to u, leading to
false positives. We have experimentally observed that unique sub-
strings of length <25 could lead to false positives that impact the
performance of CAMMiQ; as a consequence, we set the default value
of L, to 26.
Sparsifying unique substrings. Let I/; be the collection of all unique
substrings on genome s;. To reduce the index size, CAMMiQ aims to
compute a subset U, of U;, consisting of the minimum number of
shortest unique substrings such that every unique substring of length L
(i.e., unique L-mer) on s; includes one substring from ;. Indepen-
dently, cammMio also aims to compute a subset D;’ of D;, consisting of
the minimum number of shortest doubly-unique substrings such that
every doubly-unique substring of length L (i.e., doubly-unique L-mer)
on s; includes one substring from D;. This is all done by greedily
maintaining only the rightmost shortest unique or doubly-unique
substring in a sliding window of length L on a genome in S. In the
remainder of the paper, we denote the number of unique substrings in
subset U{;" by nu; (=i4;'|) and the number of doubly-unique substrings
in subset D; by nd; (=|D/|); we denote the number of unique L-mers
on s; by nut and respectively the number of doubly-unique L-mers on s;
by ndf. As we prove in Supplementary Note 2, the greedy strategy we
employ can indeed obtain the minimum number of shortest unique
substrings to cover each unique L-mer, provided that each substring in
U; occurs only once in s;.

Index organization. We demonstrate the index structure and query
processing for the set of unique substrings I/; the processing for
doubly-unique substrings is essentially identical to that for unique
substrings. Let A= min|y;| be the minimum length of all shortest
unique substrings (h"ff%utomatically set to L,;, if the minimum length
constraint is imposed). CAMMiQ maintains a hash table that maps a
distinct h-mer w to a bucket containing all unique substrings u; that
have w as a prefix. Within each bucket, the remaining suffices of all
unique substrings u;, i.e., ufh +1: |u;|], are maintained in a trie (rooted
at u;[1: h]) so that (i) each internal node represents a single character;
and (ii) each leaf represents the corresponding genome ID. For each
read r; in the query, cAMMiQ considers each substring of length A and
its reverse complement and computes its hash value in time linear with
L through Karp-Rabin fingerprinting®. If the substring has a match in
the hash table, then caMMi Q tries to extend the match until a matching
unique substring is found, or until an extension by one character leads

to no match. See Fig. 3 for a schematic of the index structure. See
Subsection Query processing stage 1: Preprocessing the Reads below
for the use of unique and doubly-unique substrings identified for each
read to answer the query.

Query processing stage 1: preprocessing the reads

Given the index structure on the sparsified set of shortest unique and
doubly-unique substrings of genomes in S, we handle each query Q in
two stages. The first stage counts the number of reads that include
each unique and doubly-unique substring with the following provision.
We call two or more (unique or doubly-unique) substrings in a read
“conflict-free” if there is at least one genome that includes all of these
substrings. See Supplementary Note 3 for a detailed discussion on
conflicting substrings; the conflicts arise due to either sequencing
errors or the query including genomes that are not in the database and
thus should be avoided. Reads that include more than one unique or
doubly-unique substring that is conflict-free contribute to the count-
ing process; all other reads are discarded.

We denote by c(u;), the counter for the conflict-free reads that
include the unique substring u; and by c(d;) that for the doubly-unique
substring d;. These counters are sufficient to compute the set .4; as well
as A, the answer to our most general query type. For computing A,,
caMMiQ additionally maintains a counter d(sy,s,) for each pair of
genomes s;,S;,, indicating the number of reads in Q that can originate
both from s; and s, (i.e., the case (e - iii) in the procedure described in
Supplementary Note 3).

The first stage thus produces two count vectors
cf =(c(Uy), - -+ C(Ujp,)) and cf=(c(d;y), - ,0(d; ng,)) that indicate the
number of (conflict-free) reads that include each unique and doubly-
unique substring on each genome s;. Using these vectors, CAMMiQ
answers the first type of query by computing A; ={s; : >/ c(u;)>0}.
Additionally, through the use of the counters d(s;,s;), CAMMiQ
answers the second type of query by computing A, = argmin|A’ C S|
such that (i) s; e A" if Y- c(u;)>0 and (ii) 3s; € A, if d(sy,5;,)>0 then
either i=k or i=k’. This is basically the solution to the hitting set
problem we mentioned earlier, whose formulation as an integer linear
program (ILP) is well known®‘. The genomes returned in .4; are ranked
in decreasing order by the aggregated counter values on unique sub-
strings (i.e., |c/|); and the genomes returned in A, are ranked by the
aggregated counter values on unique substriungs plus the counter
values on doubly-unique substrings (i.e., |c}'| + |c§1 ).

From this point on, our main focus will be how caMmvio answers
the third type of query by computing .A; through an ILP formulation
described below.

Query processing stage 2: ILP formulation

In its second stage, caMmMi 0 computes the list of genomes in the query
as well as their abundances through an ILP. Let §; = 0/1 be the indicator
for the absence or presence of the genome s; in Q. The ILP formulation
assigns a value to each &; and also computes for each s; its abundance
p;, upper bounded by p,,.. - a user-defined maximum abundance with a
default setting of 100, which is introduced to avoid potential
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Fig. 3 | Overview of cAMMiQ’s index structure. Strings in blue are unique substrings and those in green are doubly-unique substrings.

anomalies due to sequence contamination.
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The objective of the ILP is to minimize the sum of absolute differences
between the expected and the actual number of reads to cover a
unique or doubly-unique substring. Since each genome may have
different numbers of unique and doubly-unique substrings, the sums
of differences are normalized w.r.t. nu; or nd,.

Constraint (1) defines the expected number of reads to cover a
particular unique substring u;;, given abundance p; of the correspond-
ing genome s;. Similarly, constraint (2) defines the expected number of
reads to cover a particular doubly-unique substring d;;; in this con-
straint, p; and p; denote the respective abundances of the two genomes
s; and s; that include (the doubly unique substring) d;,. Specifically the
expected coverage of u;,is % - p; and the expected coverage of d;,
is % - (p; *+ p;), provided that the coverage is uniform across a given
genome and there are no read errors. To account for read errors, we
normalize these coverage estimates respectively by (1 — eir)" and
a- e?r)'df"‘ ; these values represent the probability that, a substring u;,
or d;;would be error free within a read that has been subject to uniform
i.i.d. substitution errors. Here efr denotes the estimated substitution
error rate per nucleotide; and |w| denotes the length of a substring w.
cammiQ formulation also allows updates to the expected coverage

according to any given unique or doubly-unique substring’s sequence
composition (e.g., GC content) to address sequencing biases.
Constraint (3) ensures that the abundance p; of a genome is O if
6;=0. Constraint (4) ensures that the solution to the above ILP
excludes those genomes whose counters for unique and doubly-
unique substrings add up to a value below a threshold - so as to reduce
the size of the solution space. More specifically, given a threshold value
a (a is introduced to avoid potential false positives due to read errors
and genomes that are not in the database; its default value is 0.0001),
the constraint excludes those genomes s; that are in the set of genomes
M(Q) whose counters for its unique substrings add up to a value below
a - nut, and doubly-unique substrings add up to a value less than
a - nd-. Formally, M(Q)={(s; € S| Siecup<a - nubin{s; € S| fo"l
cd;p<a - ndf}. Constraint (5) enforces a lower bound on the coverage
of each genome s; in the solution to the above ILP (namely, with 6;=1),
which must match the coverage (L-3 % c(u;)- # and

Z;’f"l c(d;y) - ﬁ) resulting from the number of reads in Q that include a

unique and doubly-unique substring respectively, i.e., it must be at
least (1 - €) times the smaller one above for a user defined €. Constraint
(6) enforces an upper bound on the coverage of each genome s; in the
solution to the above ILP, through making the sum over each s; of the
number of reads produced on s; based on p; not exceed the total
number of reads n. Collectively, the last two constraints ensure that the
abundance p; computed from the ILP matches what is (i.e., the cov-
erage based on read counts) given by Q. As written above, the for-
mulation does not strictly conform to the rules for ILPs because of the
use of the absolute value function. We use a standard technique to
replace the absolute values in the objective by introducing a new
variable y(u; ;) > max{c(u;;) — e(u;), e(u;;) — o(u;)}-

When to use unique substrings—the error free case
We now provide a set of sufficient conditions to guarantee the
approximate performance that can be obtained with high probability
in metagenomic identification and quantification by the use of unique
substrings only. These conditions apply to caMMiQ when c=1, as well
as CLARK, KrakenUniq, and other similar approaches. In case these
conditions are not met, it is advisable to use cAMMiQ with ¢>2.
Suppose that we are given a query Q composed of n error-free
reads of length L, sampled independently and uniformly at random
from a collection of genomes A={s;,--- ,s,} according to their abun-
dances py, - , pa. More specifically, suppose that our goal is to answer
query Q by computing 4;, along with an estimate for the abundance
value p; for each s; € A;, calculated as the weighted number of reads
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assigned to s; according to the procedure described in Section Query
processing stage 1: Preprocessing the Reads. Then, the L1 distance
between the true abundance values and this estimate will not exceed a
value determined by n (number of reads), a, and g, the minimum
normalized proportion of unique L-mers among these genomes. For a
given failure probability { and an upper bound on L1 distance ¢, this
translates into sufficient conditions on the values of n, a and g, to
ensure acceptable performance by the computational method in use.

Theorem1.Let Q={ry,--- ,r,} be aset of n error-free reads of length L,
each sampled independently and uniformly at random from all posi-
tions on a genome s; € A={s;,--- ,S,}, where s, -+ , s, is distributed

P be the

Zi’:l Py
corresponding “unnormalized” abundance of p; for i=1, --- , a, where
nt denotes the total number of L-mers on s;. Let gy, -+ , g > O be the
proportion of unique L-mers on s,--,S, respectively;
Prmin = Min{p;}i1; Grnin = Min {g;}i,. Then,
* (i) With probability at least 1 - {, each s; can be identified through
querying Q if n> 20+ Ind/o)

minJmin)

+ (ii) With probability at least 1-, the L1 distance between the

predicted abundances p,, - - - ,p, by setting p; = % and the true
(unnormalized) abundances pj,---,p, is at most €
ifn> 2(a+1)+ Inz(l/Z).

(€qmin)

+ (iii) Given n such reads in a query, with probability at least 1,

the L1 distance between the predicted abundances p;, - - - ,p, by
setting p;= % and the true (unnormalized) abundances

according to their abundances py, --- , p,> 0. Let p;=

2(In/) +(a+1)]
o) .

min

pi, - P, is bounded by

Where c; denotes the number of reads assigned to s;.
See Supplementary Note 4 for a proof.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

There are four index datasets (species-level-all, species-
level-bacteria, strain-level and subspecies-level) and
associated query sets used in this paper. All of the four index datasets
include a subset of all (complete) bacterial, viral and archaeal genomes
from NCBI's RefSeq database, which is available at is available at ftp://
ftp.ncbi.nlm.nih.gov/genomes/refseq. For the species-level-all
index dataset, we use the release version 205 of RefSeq, which can be
found at https:/ftp.ncbi.nlm.nih.gov/refseq/release/release-notes/
archive/RefSeq-release205.txt. The complete list of 16418 genomes
can be found in https:/github.com/algo-cancer/CAMMIiQ/blob/
master/README.md. The corresponding IMMSA queries can be
found privately at http://ftp-private.ncbi.nlm.nih.gov/nist-immsa/
IMMSA. A publicly available copy of the above directory is available
at https://ftp.ncbi.nlm.nih.gov/pub/catSMA/for Kaiyuan. The CAMI
queries as well as the ground truth files can be found at at http://
gigadb.org/dataset/100344. For the species-level-bacteria
index dataset, we use the release version 93 of RefSeq, which can be
found at https://ftp.ncbi.nlm.nih.gov/refseq/release/releasenotes/
archive/RefSeq-release93.txt. The complete list of 4122 genomes can
be found in https://github.com/algo-cancer/CAMMiQ/blob/master/
README.md. The corresponding queries were generated by a
python script CaMMiQ-simulate, which is available along with the
software repo https://github.com/algo-cancer/CAMMIiQ; these queries
are available upon request. For the strain-level index dataset, we
use the release version 93 of RefSeq, which can be found at https://ftp.

ncbi.nlm.nih.gov/refseq/release/release-notes/archive/RefSeq-
release93.txt. The list of human gut associated bacteria was obtained
in the Supplementary Table 1 from https://www.nature.com/articles/
s41587-018-0009-7. The complete list of 614 genomes can be found in
https://github.com/algo-cancer/CAMMiQ/blob/master/README.md.
The corresponding queries were also generated by running CAMMiQ-
simulate, which is available along with the software repo https://
github.com/algo-cancer/CAMMiQ; these queries are available upon
request. For our subspecies-level index dataset, we use the release
version 93 of RefSeq, which can be found at https://ftp.ncbi.nlm.nih.
gov/refseq/release/release-notes/archive/RefSeq-release93.txt.  The
complete list of 3395 genomes can be found in https://github.com/
algo-cancer/CAMMIiQ/blob/master/README.md. The corresponding
scRNA-seq queries can be obtained from https://www.ncbi.nlm.nih.
gov/bioproject/PRINA437328.

Code availability

The source code of caMMiQ, under the MIT license, is publicly available
at github https://github.com/algo-cancer/CAMMIQ (https://doi.org/
10.5281/zenodo.7102588).
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