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ABSTRACT

BloodSpot is a gene-centric database of mRNA ex-
pression of haematopoietic cells. The web-based
interface to the database includes three concomi-
tant levels of visualization for a gene query; fore-
most is the expression across hematopoietic cell
types, second is analysis of survival of Acute Myeloid
Leukaemia patients based on gene expression, and
lastly, the expression visualized in an interactive
developmental tree. With the introduction of single
cell data we have now also included an unbiased
dimensionality reduction method to show gene ex-
pression over the continuum of haematopoiesis. The
webserver includes a few select analysis function-
alities, like Student’s t-test, identification of corre-
lating genes and lookup of whole genetic signa-
tures, with the aim of making generation and test-
ing of hypotheses quick and intuitive. The visual-
izations have been updated to accommodate new
datatypes and the database has been largely ex-
panded with RNA-sequencing datasets, both puri-
fied in bulk and at single cell resolution, increas-
ing the number of single samples more than 10
fold, while keeping simplicity in presentation. The
database should be of interest for any researcher
within leukaemia, haematopoiesis, cellular develop-
ment, or stem cells. The database is freely available
at www.bloodspot.eu

INTRODUCTION

BloodSpot (1) is a database of haematopoietic cells in health
and disease. The database and interface have been built with
the aim of providing quick access for hypothesis testing and
generation, via gene-centric lookup of mRNA expression
throughout the course of haematopoiesis as well as in ex-
panded leukemic blasts. The interface is, importantly, a one-
click, no scroll access to relevant information (on the ma-
jority of screens). Uniquely for collected databases, Blood-
Spot provides detailed information on the definition and
inclusion-criteria for each cell type, allowing researchers to
draw conclusions without scavenging through supplemen-
tary material from original papers.

In the initial versions (2,3) of BloodSpot, microarray was
the standard high-throughput technique to assess gene ex-
pression in haematopoietic cell types, and large and com-
prehensive studies delineated the full constitution of the
haematopoietic system (4), as well large cohorts of pa-
tients with aberrant and leukemic blasts (5,6) with intri-
cate fluorescence-activated cell sorting (FACS) schemes..
Microarrays have now almost entirely been replaced by
short read RNA-sequencing. Recently, it has also become
possible to investigate haematopoiesis at single cell reso-
lution (7), either in combination with FACS (8) or as an
unbiased outline of the full constitution of the bone mar-
row (9,10). This has allowed a glimpse into the full contin-
uum of haematopoiesis, independently of surface exposed
marker proteins used for FACS. Quality assessment and fil-
tering are important steps when processing single cell RNA-
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sequencing data and several methods have been developed
for this purpose, e.g. (11,12).

A number of other hematopoietic expression databases,
each filling a niche, have existed alongside BloodSpot, as re-
viewed by (13). Most notably are stem cell specific databases
like Stemformatics (14) and SyStemCell (15) both also in-
cluding cells from the hematopoietic stem cell compart-
ment; their interfaces are built for creating analysis work-
flows rather than accessing processed data. Hematopoietic
specific databases are found in ErythronDB (16) (specifi-
cally erythropoiesis) and Haemosphere (17), both provid-
ing multi-click access to analysis and data, with focus on
in-house data. The latter is specifically useful for the use
of multidimensional scaling plots to outline problematic
quality and cell types of the included data. The ambitious
Leukemia Gene Atlas (18) and Gene Expression Commons
(19) are no longer updated (last data addition from 2013)
and dedicated mouse database BloodExpress (20) has been
retired.

With this update of BloodSpot we embrace the newest
available techniques and data, both from bulk sequencing of
highly-purified FACS sorted cells and single cell RNA-seq,
to quickly visualize expression of genes or signatures across
hematopoietic cells, in the most informative way, to assist
researchers and clinicians within the fields of leukaemia,
stem cells, and development, to test and generate hypothe-
ses.

MATERIALS AND METHODS

In-house single cell data was processed as described in
(21) and external single cell data was obtained either as
deposited in github (Setty, M., Kiseliovas, V., Levine, J.,
Gayoso, A., Mazutis, L. and Pe’er, D. (2018) Palantir char-
acterizes cell fate continuities in human hematopoiesis.
bioRxiv, https://doi.org/10.1101/385328), Unique Molec-
ular Identifiers (UMIs) acquired and processed though
a standard workflow utilizing 10× genomics cellranger
(10), or as normalized and filtered read counts (8, 22).
Blueprint data was downloaded at the processing level
‘gene quantification.rsem grape2 crg.GRCh38’ (23). Puri-
fied FACS sorted early human progenitor data from Notta
et al. (24) was trimmed for NEXTERA adaptors using
trim galore (version 0.4.0, with additional parameters: -q
15 –stringency 3 –length 36) and aligned and quantified us-
ing star- 2.5.2b.

Single cell RNA sequencing data visualizations and di-
mensionality reduction was performed using a recent man-
ifold learning technique, Uniform Manifold Approxima-
tion and Projection (UMAP) (McInnes, L., Healy, J. (2018)
UMAP: Uniform Manifold Approximation and Projection
for Dimension Reduction, arXiv, https://arxiv.org/abs/1802.
03426). In essence UMAP optimizes towards retaining local
structure of the data, while preserving the global structure.
It was applied both for visualization (reducing the dimen-
sionality to two) and as a pre-processing step to the clus-
tering algorithm (reducing the dimensionality to 10). Fur-
thermore, k-means were used for clustering the single cell
datasets. The elbow method was used to determine the final
number of clusters, k. Briefly, plotting the inertia (within-
cluster sum of squares) for varying values of k allows for a

sensible k to be set, i.e. large enough that adding a new clus-
ter would not improve the inertia (Supplementary Figure
S1). By choosing a clustering algorithm and dimensional-
ity so that clusters in the 2D plot apparently become split
into separate clusters, it is possible not only to appreciate
the continuum of haematopoietic development, and assess
expression at different stages, but also to include relevant
information from dimensions which do not appear on the
two-dimensional plot. In the single cell data the abundant
zero-count values were excluded from the main expression
SinaPlot (26), as it greatly slowed the loading of the page,
without adding information, but have been retained for cal-
culations and visualizations on the UMAPs.

Signatures from DMAP (4) where calculated from the
processed and normalized expression matrix. Samples in-
cluded were common myeloid progenitor, megakaryocyte
and pre-B-cell. Differential testing was performed with
Limma (27) creating contrasts for each cell type against all
other (weighted) and requiring genes to have P > 0.05 and
log2-foldchange above 1 to be included in the signature. The
intensity of the expression levels of cells was used to colour
samples in the UMAP. The intensity is computed as the
mean of an expression score function across all genes of the
signatures. The function is given by the logarithm of the ex-
pression multiplied by the expression score function (x log
x).

RESULTS AND DISCUSSION

Single cell RNA-sequencing of haematopoietic stem and pro-
genitor cells

Development of new and sensitive library preparation pro-
tocols have made single cell resolution expression profil-
ing possible. In particular in the hematopoietic stem cell
compartment these advances provide an unprecedented op-
portunity to investigate early blood development in an un-
biased manner. We have included several recent unique
datasets for the study of hematopoietic progenitors at the
single cell level in mouse (21,22) and human (8, 10, Setty
et al.), and devised a new interface window for investigat-
ing their gene expression. Every single cell is visualized as
one dot in a dimensionality reduced UMAP plot , such that
the full continuum of differentiating cells can be assessed
and addressed in an antibody-independent manner. This in
effect means that the UMAP plots are a result of expres-
sion from all the genes and the cells, in such a way that cells
that are similar are close together, and cells that are dissim-
ilar are further apart. As in a principal component anal-
ysis (PCA) genes that are more informative are weighted
higher in the assessment of similarity, (higher variance, and
in this case also higher correlation, over cells). Importantly
for single cell sequencing of haematopoietic cells, UMAP
offers meaningful organization of cell clusters and also pre-
serves cellular continuums, unlike the popular t-SNE plot
(Becht, E., Dutertre, C.-A., Kwok, I.W.H., Ng, L.G., Gin-
houx, F. and Newell, E.W. (2018) Evaluation of UMAP as
an alternative to t-SNE for single-cell data. bioRxiv, https:
//doi.org/10.1101/298430); this advantage comes, at times,
at the cost of increased white space and overlapping dots in
the plots.
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Figure 1. UMAP embeddings of the expression levels of the cells from Paul et al. study visualized on two dimensions. (A) all cells are visualized, colour
corresponds to the type, as can be seen on legend. (B–D) The intensity of the expression levels of cells is computed as the mean of an expression score
function across all genes of the signatures Common Myeloid Progenitor (B), Megakaryocyte (C) and Pre-B-cell (D). As it is shown in the colour bar, more
intense colour corresponds to higher expression levels. Colour intensities are logarithm of the expression multiplied by expression (x log x) and was chosen
for visualization of expression, to help differentiate between regions with different expression levels.

Clustering of single cells in a UMAP space. With use of
k-means clustering in a 10D UMAP space we clustered un-
labelled single cells, and colour coded the clusters for inter-
pretability, and ease of interpretation in the SinaPlot (26).
The expression of a query gene will appear as the intensity
of colours on the UMAP, and is independent of the cluster-
ing. The clustering serves to evaluate the expression quanti-
tatively over the continuum, and also helps to discover cel-
lular connections that are not apparent in a 2D plot.

Validation of UMAP visualization. Expression of
hematopoietic signatures created from DMAP(4) was
used to assess the validity of the visualization and clus-
tering. In Figure 1 single cell data from Paul et al. (22) is
seen showing mean expression of DMAP gene signatures.
Figures for remaining cell types and single cell datasets
can be found in Supplementary Figures S2–S5. Whereas
distinct separation of each cell type is not to be expected,
it is clear that UMAP clusters and map regions that are
dominated by, and in some cases only contain, a single
classically defined cell type or its progenitor state.

Inclusion criteria. We have included large studies of FACS
sorted cells which broadly cover hematopoietic compart-

ments, as well as single cell datasets, which in an unbiased
way represent haematopoietic cells, independent of surface
markers. We included newly published data, which anal-
ysed >1000 cells and where we could re-find priming of cells
which have known precursors in the HCS compartment (as
shown in Figure 1 and Supplement Figures S2–S5).

RNA-sequencing of FACS purified cells

BloodSpot is now expanded with high quality RNA-seq of
FACS purified bulk sequencing data (23,24,28). Notewor-
thy is data from the BLUEPRINT epigenetics consortium:
further to the epigenetics assays the consortium provided a
conspectus of expression profiles from sorted populations
of the human hematopoietic system. This task was first per-
formed in microarrays by the DMAP (4) project, who con-
ducted this task with a sorting resolution and with a com-
pleteness of cell types that yet remains to be exceeded.

The BloodSpot database update

The BloodSpot webserver is updated with curated high
quality RNA-sequencing data from both single cell and
FACS sorted purified cells. It now includes >25 000 sam-
ples, that are presented in an easy-to-navigate manner, and
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requires only a gene name as input for results. The database
interface continues to be a one-click service, even if modi-
fications to data inclusion and statistical tests can be per-
formed, if required for publication purposes. On a gene
query a plot of expression will be shown along with sur-
vival data, or UMAP for single cell data, and a hierarchical
display based on the hematopoietic development or sam-
ple correlation. A dropdown can display correlating genes
or pathways and can be useful for hypothesis generation.
The database has a steady growing userbase and fills a niche
within existing databases. With this update we ensure that
the BloodSpot remains a resource at the forefront of the
hematopoietic field. New data will continuously be curated
and added to the database. Furthermore, biannual meetings
with a user group and developers will systematically review
new data releases since the last update, to ensure data is up
to date. The database should be relevant for all researchers
and clinicians within haematopoiesis, cellular development
and stem cells.

DATA AVAILABILITY

Umap is available in the GitHub repository https://github.
com/lmcinnes/umap

The Following data was acquired from Gene Expres-
sion Omnibus (GEO): GSE75478 (human single cells
HSC), GSE60101 (Mouse purified bulk), GSE108155 and
GSE72857 (Mouse single cell HSC). GSE76234 (Human
purified bulk)

Blueprint data was acquired from http://dcc.blueprint-
epigenome.eu and cd34+ (13) can be found at http://
support.10xgenomics.com/single-cell/datasets.

DMAP data was downloaded from http://www.
broadinstitute.org/dmap/home

Human HSC 10x genomics data was acquired from https:
//github.com/dpeerlab/Palantir/

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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7. Laurenti,E. and Göttgens,B. (2018) From haematopoietic stem cells
to complex differentiation landscapes. Nature, 553, 418–426.

8. Velten,L., Haas,S.F., Raffel,S., Blaszkiewicz,S., Islam,S., Hennig,B.P.,
Hirche,C., Lutz,C., Buss,E.C., Nowak,D. et al. (2017) Human
haematopoietic stem cell lineage commitment is a continuous process.
Nat. Cell Biol., 19, 271–281.

9. Chen,L., Ge,B., Casale,F.P., Vasquez,L., Kwan,T.,
Garrido-Martı́n,D., Watt,S., Yan,Y., Kundu,K., Ecker,S. et al. (2016)
Genetic drivers of epigenetic and transcriptional variation in human
immune cells. Cell, 167, 1398–1414.

10. Zheng,G.X.Y., Terry,J.M., Belgrader,P., Ryvkin,P., Bent,Z.W.,
Wilson,R., Ziraldo,S.B., Wheeler,T.D., McDermott,G.P., Zhu,J. et al.
(2017) Massively parallel digital transcriptional profiling of single
cells. Nat. Commun., 8, 14049.

11. Ilicic,T., Kim,J.K., Kolodziejczyk,A.A., Bagger,F.O., McCarthy,D.J.,
Marioni,J.C. and Teichmann,S.A. (2016) Classification of low quality
cells from single-cell RNA-seq data. Genome Biol., 17, 29.

12. Lun,A.T.L., McCarthy,D.J. and Marioni,J.C. (2016) A step-by-step
workflow for low-level analysis of single-cell RNA-seq data with
Bioconductor [version 2; referees: 3 approved, 2 approved with
reservations]. F1000Research, 5, 2122.

13. Zhang,Q., Ding,N., Zhang,L., Zhao,X., Yang,Y., Qu,H. and Fang,X.
(2016) Biological databases for hematology research. Genomics
Proteomics Bioinforma., 14, 333–337.

14. Wells,C.A., Mosbergen,R., Korn,O., Choi,J., Seidenman,N.,
Matigian,N.A., Vitale,A.M. and Shepherd,J. (2013) Stemformatics:
visualisation and sharing of stem cell gene expression. Stem Cell Res.,
10, 387–395.

15. Yu,J., Xing,X., Zeng,L., Sun,J., Li,W., Sun,H., He,Y., Li,J., Zhang,G.,
Wang,C. et al. (2012) Systemcell: a database populated with multiple
levels of experimental data from stem cell differentiation research.
PLoS One, 7, e35230.

16. Kingsley,P.D., Greenfest-Allen,E., Frame,J.M., Bushnell,T.P.,
Malik,J., McGrath,K.E., Stoeckert,C.J. and Palis,J. (2013) Ontogeny
of erythroid gene expression. Blood, 6, e5–e13.

17. de Graaf,C.A., Choi,J., Baldwin,T.M., Bolden,J.E., Fairfax,K.A.,
Robinson,A.J., Biben,C., Morgan,C., Ramsay,K., Ng,A.P. et al.
(2016) Haemopedia: An expression atlas of murine hematopoietic
cells. Stem Cell Rep., 7, 571–582.

18. Hebestreit,K., Gröttrup,S., Emden,D., Veerkamp,J., Ruckert,C.,
Klein,H.-U., Müller-Tidow,C. and Dugas,M. (2012) Leukemia gene
atlas - a public platform for integrative exploration of genome-wide
molecular data. PLoS One, 7, e39148.

19. Seita,J., Sahoo,D., Rossi,D.J., Bhattacharya,D., Serwold,T.,
Inlay,M.A., Ehrlich,L.I.R., Fathman,J.W., Dill,D.L. and
Weissman,I.L. (2012) Gene expression commons: An open platform
for absolute gene expression profiling. PLoS One, 7, e40321.

20. Miranda-Saavedra,D., De,S., Trotter,M.W., Teichmann,S.A. and
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