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Objective: The intestinal microbiome is associated with various autoimmune diseases.

Regional difference is the main influencing factor of intestinal microbial difference. This

study aimed to identify the differences in fecal microbiome between autoimmune hepatitis

(AIH) patients and healthy controls (HCs) in Central China, and to validate the efficacy of

fecal microbiome as a diagnostic tool for AIH.

Design: We collected 115 fecal samples from AIH patients (N= 37) and HCs (N= 78) in

Central China and performed gene sequencing. Fecal microbiomes were characterized

and microbial markers for AIH were identified.

Results: Fecal microbial diversity showed a downward trend in AIH compared

with HCs. Fecal microbial communities significantly differed between both groups.

At the phylum level, Verrucomicrobia abundance was significantly increased, while

Lentisphaerae and Synergistetes were significantly decreased in the AIH patients vs.

the HCs. Compared to the HCs, 15 genera, including Veillonella, Faecalibacterium, and

Akkermansia, were enriched, while 19 genera, such as Pseudobutyrivibrio, Lachnospira,

and Ruminococcaceae, were decreased in the AIH patients. Ten genera, including

Veillonella, Faecalibacterium, and Akkermansia, predominated in the AIH patients. Five

microbial biomarkers were deemed optimal diagnostic tools for AIH. The probability of

disease was significantly increased in AIH group vs. HCs, achieving 83.25% value of area

under the curve.
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Conclusion: We present the characteristics of AIH patients in Central China for the

first time. Five microbial biomarkers, including Lachnospiraceae, Veillonella, Bacteroides,

Roseburia, and Ruminococcaceae, achieved a high potential distinguishing AIH patients

from HCs.

Keywords: autoimmune hepatitis, diagnosis, fecal microbiome, microbial biomarkers, operational taxonomic unit

INTRODUCTION

The human intestinal mucosa is extremely vulnerable to
changes in the surrounding environment. Its microbial residents
comprise a unique system that imperceptibly affects host
immunity and metabolism (Sommer et al., 2017). Recently, the
alterations in the intestinal flora characterized by perturbations
in microbial composition and function were associated with
autoimmune diseases such as rheumatoid arthritis (RA) (Alpizar
Rodriguez et al., 2019), autoimmune liver disease (AILD) (Wei
et al., 2019), multiple sclerosis (MS) (Jangi et al., 2016), and type
1 diabetes (T1D) (Vatanen et al., 2018). Increasing attention has
been given to fecal microbiota as intestinal microecology plays
important roles in the diagnosis and pathogenesis of numerous
diseases (Sun et al., 2018).

Autoimmune hepatitis (AIH) is a chronic, non-specific liver
inflammation mediated by the immune system. Epidemiological
statistics show that the incidence of AIH in China is up to
20/100,000, and the average annual incidence rate of white people
in northern Europe is 1.07∼ 1.9/100000 (Lohse et al., 2015).
Its etiology is correlated with several genetic and environmental
factors but has not yet been fully elucidated (Wei et al., 2019).
AIH is globally distributed and occurs in children and adults.
It is characterized by etiological and clinical heterogeneity
and is distinct from other hypothetical autoimmune liver
diseases such as primary bile cirrhosis (PBC) and primary
sclerosing cholangitis (PSC). However, it shares certain features
in common with these conditions (Wang et al., 2016). Rapid
and timely diagnosis is important because of the high mortality

rate of untreated AIH. Long-term AIH is associated with an
increased risk of cirrhosis and/or hepatocellular carcinoma

(HCC). Diagnostic criteria have been established and verified
for AIH. Nevertheless, there are certain confounders including

autoantibody variability (such as autoantibody-negative AIH),
drug-induced AIH, similarities among AIH, PBC, and PSC,
overlap syndrome (OS), and post-transplant AIH (Anand et al.,
2018).

There are strong correlations between the intestinal

microbiome and various chronic liver diseases. Previous
research attempted to establish whether there was a distinction

between patients with AIH and healthy controls (HCs) in terms

of their intestinal microbial communities (Li et al., 2018). Mouse
model-based experiments demonstrated the involvement of
intestinal microbiomes in AIH diagnosis and pathogenesis
(Yuksel et al., 2015; Li et al., 2017). In a recent study, 91 patients
with AIH and 98 matched HCs underwent 16S rRNA gene
sequencing. The former had lower α-diversity and distinct
overall microbial compositions compared to the latter (Wei

et al., 2019). However, regional difference is the main influencing
factor of intestinal microbial difference (He et al., 2018). Herein,
we aimed to identify the differences in fecal microbiome between
AIH patients and HCs in Central China, and to validate the
efficacy of fecal microbiome as a diagnostic tool for AIH.

MATERIALS AND METHODS

Participant Inclusion and Exclusion Criteria
The study was designed and performed in accordance with
PRoBE (prospective specimen collection and retrospective
blinded evaluation), the Helsinki Declaration, and the Rules of
Good Clinical Practice (Ren et al., 2019). Before commencing
the experiments, ethical clearance was sought from the
First Affiliated Hospital of Zhengzhou University (No. 2017-
XY-002). Written informed consent was secured for each
enrolled participant.

All fecal samples originated from newly diagnosed AIH
patients admitted to the outpatient department of the First
Affiliated Hospital of Zhengzhou University between 2018 and
2019. A diagnosis of AIH was confirmed if the patient conformed
to the following criteria: (1) 1999 International AIH Group
(IAIHG) score≥ 10, or (2) 2008 IAIHG simplified AIH score≥ 6,
or (3) characteristic AIH histology, and (4) diagnosed as AIH for
the first time. Newly diagnosed patients with AIH were excluded
for the following reasons: (1) diagnosis of primary biliary
cholangitis (PBC), (2) diagnosis of overlap syndrome (OS), (3)
antibiotic consumption within the past 2 wks, (4) diagnosis of
non-alcoholic steatohepatitis (NASH), viral hepatitis, alcoholic
liver disease (ALD), or drug-induced liver injury (DILI) (Balitzer
et al., 2017; Sebode et al., 2018), (5) had been treated with steroids
or UDCA.

Thirty-seven newly diagnosed patients with AIH and 78
age-, gender-, and body mass index (BMI)-matched healthy
controls (HCs) from the physical examination department of the
First Affiliated Hospital of Zhengzhou University were enrolled
in the study. Fecal samples from the enrolled participants
were prospectively collected and subjected to 16S rRNA
Miseq sequencing.

Human Fecal Sample Collection and DNA
Extraction
Each participant provided a fresh stool sample. Routine fecal
testing was performed to assess stool consistency. The samples
were divided into five 200-mg pieces and immediately stored at
−80◦C. A QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden,
Germany) was used to perform the DNA extraction (Tang et al.,
2018).
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PCR Amplification and MiSeq Sequencing
The forward primers 5′-ACTCCTACGGGAGGCAGCA-3′

and the reverse primer 5′-GGACTACHVGGGTWTCTAAT-
3′ targeting the hypervariable V3–V5 region (338F/806R)
of the 16S rRNA gene was used in the PCR amplification
of the extracted DNA. PCR amplification was performed in
a 20-µL reaction system consisting of 4 µL of 5× Fastpfu
buffer, 2 µL of 2.5mM dNTPs, 0.4 µL of forward primer
(5µM), 0.4 µL of reverse primer (5µM), 0.4 µL of TransStart
Fastpfu DNA polymerase (TransGen Biotech, Beijing, China),
and 10 ng of template DNA. PCR was conducted in an
ABI GeneAmp R© 9700 (Thermo Fisher Scientific, Waltham,
MA, USA) using the following program: 95◦C for 2min;
30 cycles of 95◦C for 30 s, 55◦C for 30 s, 72◦C for 30 s, and
a final extension at 72◦C for 5min (Ren et al., 2019). The
PCR products were detected on a 2% (w/v) agarose gel
and the bands were extracted and purified with AxyPrepTM

DNA gel (Axygen Scientific, Waltham, MA, USA) and
a PCR Cleanup System (Promega, Madison, WI, USA).
The purified PCR products were mixed and DNA libraries
were constructed following the manufacturer’s instructions.
Sequencing was performed on an Illumina MiSeq Platform by
Shanghai Mobio Biomedical Technology Co. Ltd., Shanghai,
China (Ren et al., 2013). The raw Illumina read data were
deposited in the European Nucleotide Archive Database
of the European Bioinformatics Institute under accession
number PRJNA556801.

Sequence Data Processing
Before the barcodes and primers were removed, the filtered
reads were assigned to various samples based on the specific
barcodes. The paired-end sequenced reads of each library
were overlapped with the default parameters using FLASH
v. 1.2.10 (Magoc and Salzberg, 2011). The overlapped reads
generated by FLASH were subjected to quality control to
filter out mismatches in the barcode/primer region, ambiguous
bases, and reads with >5 in the overlap region. The reads
were de-multiplexed and assigned to various samples based
on the barcodes. Chimeric sequences were detected and
removed with UCHIME v. 4.2.40 (Edgar et al., 2011). The
Broad Institute 16S “gold standard” database served as a
reference (microbiome util-r20110519 version; http://drive5.
com/uchime/gold.fa) to match the operational taxonomic
units (OTUs).

Operational Taxonomic Unit (OTU)
Clustering and Taxonomy Annotation
After randomly selecting equal numbers of reads from all
samples, the OTUs were binned with the UPARSE pipeline
(Edgar, 2013) as follows: (1) Abundant sequences and singletons
were removed. (2) Unique sequences were binned into the OTUs
with the “usearch-cluster_otus” command. (3) The selected
sequences were aligned against the OTU sequences with the
“usearch-usearch_global-id 0.97” command. (4) The identity
threshold was set to 0.97. (5) The OTU composition table was
created (Lu et al., 2019).

The gross OTUs were counted at each taxonomic level
(phylum, class, order, family, and genus). The results were
presented in a statistical table listing the OTU sequence numbers
of each sample.

Bacterial Diversity and Taxonomic Analysis
Bacterial community diversity was assessed by the Shannon
and Simpson indices and calculated in the “vegan” package of
R. Chao and Ace estimators were used to describe bacterial
community richness. Rarefaction curves were plotted to compare
microbial community richness among samples and validate their
sequencing data. Venn diagrams were plotted to identify the
common and unique OTUs in multiple samples and reveal
OTU similarity and overlap. Dominant species heatmaps were
plotted with Heatmap Builder. Microbial community barplots
were generated by species composition analysis (Ren et al., 2019).

A principal coordinate analysis (PCoA) was conducted with
R (http://www.R-project.org/) to disclose the microbiome spaces
between samples. PCoA is functionally similar to non-metric
multidimensional scaling (NMDS) analysis (Ren et al., 2014).
The phyloseq package was used to calculate the weighted and
unweighted unifrac distances. The former were calculated in
phyloseq using the command “Unifrac (X1, weighted = T,
normalized = T, fast = T).” For the latter, the parameter was
“weighted = F.” X1 is a composite of a sequence table and
a phylogenetic tree. A custom R program function provided
by EBML (http://enterotype.embl.de/enterotypes.html#dm) was
used to calculate the Jensen-Shannon distance. The Spearman
coefficient distance was calculated with “as.dist (1-cor (dat),
method = “spearman”).” The output data comprise the OTU
composition table (Ren et al., 2017).

A phylogenetic tree was plotted as follows: (1) The sequences
were aligned withMUSLE. (2) Fast TreeMPwas used to calculate
the unrooted phylogenetic tree with a generalized time-reversible
(gtr) model. (3) A custom perl script furnished by Microbes
Online (reroot.pl, www.microbesonline.org/programmers.html)
was used to re-root the phylogenetic tree.

Bacterial taxonomic analyses were performed at the phylum,
class, order, family, and genus levels and comparisons were
made between the AIH and HCs groups via a Wilcoxon rank-
sum test. A linear discriminant analysis (LDA) was conducted
using the linear discriminant analysis effect size (LEfSe)
method (http://huttenhower.sph.harvard.edu/galaxy/root?tool_
id=lefse_upload) to characterize the fecal microbiomes. The LDA
was combined with a non-parametric Kruskal-Wallis rank-sum
test (P < 0.05) and the Wilcoxon rank-sum test to screen for key
biomarkers (community members). The LDA score of log10 = 2
was set as the cutoff value.

Gene Function Prediction
Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt) predicts the metabolic functions
of bacterial flora and 16S rRNA gene sequences in Kyoto
Encyclopedia of Genes and Genomes (KEGG), Clusters of
Orthologous Groups (COG), and Rfam. The core of the
KEGG database is a biological metabolic pathway analysis
database (KEGG PATHWAY Database, http://www.genome.jp/
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TABLE 1 | Clinical characteristics.

Characteristics AIH (n = 37) HC (n = 78) P-value

Age, years, median

(min–max)

50

(25–72)

49.5

(36-65)

0.469

Gender, Female, n (%) 34 (91.89%) 67 (85.9%) 0.358

BMI, kg/m2,

median (min–max)

21.89

(18.47–29.34)

22.04

(18.31–29.34)

0.962

HEPATIC FUNCTION, MEDIAN (MIN–MAX)

ALT, U/L 160 (47–553) 16 (7–38) 0.000-

AST, U/L 95 (40–407) 20 (11–33) 0.000

AKP, U/L 70 (40–263) 69 (32–157) 0.296

GGT, U/L 90 (54–321) 17 (7–49) 0.000

TB, umol/L 20 (6–71) 11.305 (3.8–18.12) 0.000

ALB, g/L 36 (29–54) 47.35 (39.6–53.2) 0.000

IMMUNOGLOBULIN, MEDIAN (MIN–MAX)

IgG, g/L 21.3 (9.82–44)

IgM, g/L 1.5 (0.51–4.2)

IgA, g/L 1.8 (0.6–8.63)

AUTOANTIBODY, ±, +%

ANA 33/4; 89.19%

ASMA 5/32; 13.51%

SLA/LP 9/28; 24.32%

Continuous variables were compared using Wilcoxon rank sum test between both groups. Fisher’s exact test compared categorical variables. Statistical analyses were performed using

SPSS version 20.0 for Windows (SPSS Inc., Chicago, IL).

BMI, body mass index; AIH, autoimmune hepatitis; ALT, alanine aminotransferase; AST, aspartate aminotransferase; AKP, alkaline phosphatase; GGT, gamma-glutamyltransferase; TB,

total bilirubin; ALB, albumin.

kegg/pathway.html). Its metabolic pathway categories include
Metabolism, Genetic Information Processing, Environmental
Information Processing, Cellular Processes, Organismal Systems,
and Human Diseases. Each metabolic pathway classification is
subdivided into multiple grades. The second level comprises
45 metabolic pathway subfunctions, the third level corresponds
to a metabolic pathway map, and the fourth level contains
explanatory information for each KO (KEGGorthologous group)
in the metabolic pathway.

PICRUSt predicts the metabolic functions of bacteria and
ancient bacteria by comparing the 16S rRNA gene sequencing
data against a reference database of microbial genomes with
known metabolic functions.

The annotation information corresponding to each functional
spectrum database per sample and the abundance matrix for the
predicted functional groups may be obtained from the prediction
results of PICRUSt.

Relative differences in 16S rRNA gene copy number among
species were considered during the prediction process. The
original species abundance data were corrected to enhance
prediction accuracy and reliability (Wang et al., 2018).

OTU Biomarker Identification and
Probability of Disease (POD) Construction
A random forest model (R 3.4.1; random forest 4.6–12 package)
was used to select significantly different OTUs in each sample
group. The generalization error was estimated by 10× cross-
validation. TheOTU frequency profile was generated bymapping

reads from the AIH and HC groups onto these represented
sequences (Fouhy et al., 2019). The cross-validation error curve
was plotted after the 10× cross-validation. The cutoff point
was that with the lowest cross-validation error. The sum of the
minimum error and the SD at the corresponding point were
defined as the cutoff value. All sets of OTU markers with errors
below the cutoff value (≤30) were listed. The optimal set was that
with the fewest OTUs. The minimal OTU combination revealing
differences between both groups with the highest accuracy
was identified. Subsequent analysis such as receiver operating
characteristic curve (ROC) was then performed. Statistical
significance was determined with a Wilcoxon rank-sum test (P
< 0.05) (Deschasaxux et al., 2018).

The POD index was defined as the ratio of the number of
randomly generated decision trees predicting samples as “AIH”
to that of healthy controls. To evaluate the diagnostic efficacies
of the selected biomarkers, the ROC was plotted and the area
under curve (AUC) was calculated using pROC (R 3.8.1) (Tilg
et al., 2018).

Statistical Analysis
SPSS v. 20.0 (IBM Corp., Armonk, NY, USA) was used to
process the data. Statistical significance of the differences
between both groups was calculated. A Wilcoxon rank-sum test
was conducted to compare the continuous variables between
groups. Fisher’s exact test was used to compare categorical
variables between groups. Spearman’s rank test was used for the
correlation analysis.
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FIGURE 1 | Relative reduction of fecal microbial diversity in patients with AIH (N = 37) and HCs (N = 78). (A) Specaccum species accumulation curves for number of

samples and estimated richness. Estimated OTU richness approached saturation in all samples. Fecal microbial diversity estimated by Shannon index (B) was

significantly decreased in patients with AIH (blue) compared with HCs (red). (C) Venn diagram displaying overlaps between groups showed that 672 of the 874 OTUs

were shared between the AIH (blue) and HCs (red) groups. Thirty of the 874 OTUs were unique to AIH. AIH, autoimmune hepatitis; HCs, healthy controls; OTUs,

operational taxonomic units. Significant differences by *P < 0.05; **P < 0.01, ***P < 0.001.

RESULTS

Characteristics of the Participants
One hundred and fifteen stool samples were prospectively
collected from 37 newly diagnosed patients with AIH and 78
age-, gender-, and BMI-matched HCs after a strict selection
and exclusion process. Clinical characteristics of the AIH and
control groups are shown in Table 1. Most of the AIH patients
were middle-aged and elderly women. Clinical characteristics
were matched between the AIH and HCs groups (P > 0.05).
Liver function indices such as alanine aminotransferase (ALT),
aspartate aminotransferase (AST), γ-glutamyltransferase (GGT),
and total bilirubin (TB) were higher in the AIH patients than
the HCs group (P < 0.001). Compared to the HCs group, serum
albumin (ALB) was significantly lower in the AIH patients (P
< 0.001).

Data Quality and Intestinal Microbial
Diversity in AIH Patients
The rarefaction analysis disclosed that OTU richness in each
group approached saturation. Microbial richness was higher in
the AIH (n = 37) than the HCs (n = 78) group (Figure 9A).
Similar results were obtained for the Shannon-Wiener and Rank-
Abundance curves (Figures 9B,C).

The Specaccum species accumulation curves (Figure 1A)
revealed that OTU richness approached saturation in all samples.
The Shannon index (Figure 1B) of AIH group was lower than
that of HCs group, but the difference was not statistically
significant (P = 0.215). Fecal microbiome diversity showed a
downward trend in AIH compared with HCs.

The Venn diagram showed that 672 of the 874
OTUs were common to both groups (Figure 1C) while 30
of them were unique to AIH. Notably, compared with HCs
group, there were 172 OTUs lost in AIH group, implying the
microbial differences between AIH and HCs group.

Differences in Fecal Microbiome Between
AIH and Healthy Individuals
The β-diversity was determined byNMDS analysis of unweighted
UniFracIn and described the microbiome space between both
groups. Samples from the AIH (blue) and HCs (red) groups
separated in the direction of the NMDS2 axis. Therefore, the
fecal microbial communities in patients with AIH were markedly
distinct from those of the HCs (Figure 2A).

Similar results were obtained for the PCoA of unweighted
UniFrac PC1-3 (Figure 2B). Samples from the AIH (blue) and
HCs (red) groups separated in the direction of the PC3 axis. This
finding confirmed that the fecal microbial communities were
substantially different between the AIH patients and the HCs.

The microbial community heatmap showed that
34 OTUs including Enterobacteriaceae, Veillonella,
Ruminococcaceae_uncultured, Roseburia, and Bacteroides
were enriched in the fecal microbial communities of the
AIH patients relative to those of the HCs. In contrast,
five OTUs including Bacteroides, Bilophila, Blautia, and
Lachnospiraceae_uncultured were drastically depleted in the
fecal microbiomes of patients with AIH compared with those
of the HCs (Figure 3). In order to show the divergence more
intuitively, we further use histogram (Figure 10) to exhibit that
there are significant differences in the abundance of five OTUs
including OTU387 (Ruminococcaceae_uncultured), OTU151
(Bacteroides), OTU678 (Roseburia), OTU866 (Veillonella), and
OTU114 (Lachnospiraceae_uncultured) between AIH and HCs
groups (P < 0.05).

Composition and Comparison of Fecal
Microbiomes in AIH and HCs
Relative microbial abundances of each fecal sample at the
phylum, class, order, family, and genus levels were calculated
and plotted on basis of their OTU annotations. To compare the
fecal microbial communities at each taxonomic level between the
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FIGURE 2 | Comparisons of β-diversity in fecal microbiomes of AIH (N = 37) and HCs (N = 78). (A) β-diversity was calculated by NMDS analysis of unweighted

UniFrac. Samples of AIH (blue) and HCs (red) groups were distinctly separated in the direction of the NMDS2 axis which means that individuals with AIH were

substantially different from healthy individuals. (B) PCoA of unweighted UniFrac PC1-3 showed that the samples of the AIH (blue) and HCs (red) groups were distinctly

separated in the direction of the PC3 axis which means that the overall fecal microbiota compositions were markedly different between AIH and HCs. Each symbol

represents a sample (blue, AIH; red, HCs). Variance explained by the PCs is indicated by parentheses on the axes. AIH, autoimmune hepatitis; HCs, healthy controls;

NMDS, non-metric multidimensional scaling; PCoA, principal coordinate analysis.

FIGURE 3 | Heatmaps for relative abundances of differential OTUs between AIH (N = 37) and HCs (N = 78). For each sample, the columns show relative abundance

data for differential OTUs on the right. The relative abundance of each OTU was used to plot the heatmap (blue, low abundance; red, high abundance). Group data

are shown above the plot: HCs, left, blue line; AIH patients, right, red line. Each row represents one OTU. AIH, autoimmune hepatitis; HCs, healthy controls; OTUs,

operational taxonomic units.

AIH patients and the HCs, significant differences in microbial
composition between groups were analyzed by a Wilcoxon rank-
sum test. False discovery rates (FDR) and q were calculated for P
(Cohen et al., 2019).

Microbial community barplots for the AIH and HCs groups
reflected relative microbial abundances at the phylum and

genus levels for each sample (Figures 11A,B). At the phylum
level, the cumulative average proportion of Bacteroidetes,
Firmicutes, and Proteobacteria for AIH and HCs was 90%
and there were no significant changes between both groups.
Phyla ranking fourth in the AIH and HCs groups were
Verrucomicrobia and Fusobacteria, respectively (Figure 4A).
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FIGURE 4 | Composition and comparison of fecal microbiomes in AIH (N = 37) and HCs (N = 78). Composition of fecal microbiota at the (A) phylum and (B) genus

levels in AIH versus. HCs. Comparison of fecal microbiota at the (C) phylum and (D) genus levels between groups. Significant differences in the abundance of

predominant genera between AIH (blue) and HCs (red). The average abundance of each bacterium is depicted as mean ± SE. P-values were calculated by a

Wilcoxon rank-sum test and shown in Supplementary Data S1, S2. *P < 0.05; **P <0.01; ***P < 0.001; AIH, autoimmune hepatitis; HCs, healthy controls.

At the genus level, Bacteroides, Prevotella, Faecalibacterium,
Ruminococcaceae_uncultured, Lachnospiraceae_incertae_sedis,
Subdoligranulum, Pseudobutyrivibrio, and Fusobacterium
accounted on average for > 60% in both groups (Figure 4B).
Twelve families including Verrucomicrobia, Lactobacillaceae,
Leptotrichiaceae, Enterobacteriaceae, and Veillonellaceae were
significantly higher, while 16 families including Alcaligenaceae,
Victivallaceae, Erysipelotrichaceae, Acidaminococcaceae,
and Lachnospiraceae were significantly lower in the
AIH patients.

The abundance of phylum Verrucomicrobia (P = 0.0005; q
= 0.002) in the patients with AIH was significantly higher than

that in the HCs group. In contrast, Lentisphaerae (P = 0.0007;
q = 0.002) and Synergistetes (P = 0.0275; q = 0.0579) were
significantly lower in the AIH than the HCs group (Figure 4C).

The abundances of 15 genera such as
Veillonella, Faecalibacterium, Klebsiella, Akkermansia,
Enterobacteriaceae_unclassified, and Megasphaera were
significantly higher in the AIH than the HCs group. The
abundances of 19 genera including Pseudobutyrivibrio,
Blautia, Lachnospira, Erysipelotrichaceae_incertae_sedis,
Ruminococcaceae_incertae_sedis, Phascolarctobacterium, and
Alistipes were significantly lower in the AIH than the HCs group
(Figure 4D).
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FIGURE 5 | LEfSe and LDA analyses based on OTU characterizations of microbiota in AIH (N = 37) and HCs (N = 78). (A) Cladogram generated by the LEfSe

method indicating phylogenetic distribution of fecal microbiomes associated with AIH patients and HCs. Each filled circle represents one phylotype. Phylum and class

are indicated by name on the cladogram. Order, family, and genus are listed on the right panel. Circle size is proportional to phylotype abundance. By default, it is

arranged outward from phylum to genus. Red circles in the branches represent microbial communities playing pivotal roles in AIH. Green circles represent microbial

groups playing important roles in HC. Yellow circles represent microbial groups of little significance in either group. Default LDA > 2 and P < 0.05 indicate different

species and higher abundance in one group than the other. (B) Histogram of LDA scores calculated for selected taxa showing significant difference in microbe type

and abundance between AIH (green) and HCs (red). LDA score on log10 scale indicated at bottom. Significance of the microbial marker increases with LDA score.

AIH, autoimmune hepatitis; HCs, healthy controls; OTUs, operational taxonomic units; LEfSe, linear discriminant analysis effect size; LDA, linear discriminant analysis.

At the phylum and genus levels, certain fecal microbial
communities such as Verrucomicrobia, Lentisphaerae,
Synergistetes, Faecalibacterium, and Veillonella were significantly
different between the AIH and HCs groups (P < 0.05)
(Supplementary Data S1, S2). Moreover, significant differences
were observed between the AIH and HCs groups at the
microbial class, order and family levels (Figures 12A–C)
(Supplementary Data S3–S5) (P < 0.05).

Phylogenetic Characteristics of The Fecal
Microbial Communities in AIH Patients
A LEfSe analysis (Figure 5A) and the LDA genus score
(Figure 5B) confirmed that 27 microbial biomarkers in AIH
clearly distinguished between patients with AIH and the HCs.
Moreover, the divergence between both groups was highly
significant (P<0.05). Biomarker names, LDA scores, log values
and P-value are shown in Supplementary Data S6.

Cladogram in Figure 5A using LEfSe method indicated that
the phylogenetic distribution of intestinal microbiome associated
with patients with AIH (green) and healthy controls (red). The
AIH microbiome was characterized by a preponderance
of Lactobacillaceae, Family_XI, Verrucomicrobiaceae,
Veillonellaceae, Enterobacteriaceae and Pasteurellaceae, whereas
the HCs microbiome was characterized by a preponderance of

Lachnospiraceae, Desulfovibrionaceae, Porphyromonadaceae,
and Alcaligenaceae.

LDA scores in Figure 5B showed the significant bacterial
genus difference between AIH and HCs. Ten genera including
Veillonella, Faecalibacterium, Klebsiella, Gemella, Akkermansia,
and Lactobacillus predominated in AIH patients (P < 0.05;
LDA > 2). Twenty genera including Phascolarctobacterium,
Incertae_Sedis, Sutterella, Ruminococcus, Pseudobutyrivibrio, and
Lachnospira predominated in the HCs (P < 0.05; LDA > 2).

Gene Function Analysis
To elucidate the functional and metabolic alterations of the
intestinal microbiomes between AIH and HCs group, the
metagenomes were next inferred from the 16S rRNA data
and the functional potential of the gut microbiota were
analyzed using PICRUSt. The differentially abundant KEGG
pathways across the AIH (N = 37) and HC (N = 78) groups
were identified by LEfSe (Figure 6A). Twenty-four pathways
were validated by multivariate association with linear models
algorithm (MaAsLin), adjusting for covariates. Ten pathways
including methane metabolism, chloroalkane and chloroalkene
degradation, pyruvate metabolism, and lysine biosynthesis
were enriched in the HCs (P < 0.05; LDA > 2). Fifteen
pathways including bacterial secretion, glutathione metabolism,
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FIGURE 6 | Functional analysis of predicted metagenomes. (A) Differentially abundant KEGG pathways across AIH (N = 37) and HCs (N = 78) identified by LEfSe.

Histogram of LDA scores calculated for selected pathways showing significant difference in gene functions between AIH (green) and HCs (red). LDA score on log10
scale indicated at bottom. Significance of the microbial marker increases with LDA score. AIH, autoimmune hepatitis; HCs, healthy controls; OTUs, operational

taxonomic units; LEfSe, linear discriminant analysis effect size; LDA, linear discriminant analysis. (B) Scatterplots of relative abundances of histidine metabolism and

age. A positive correlation was found between the abundance of histidine metabolism and age (Spearman’s correlation coefficient = 4.48e−04, FDR = 0.2389, N =

115). AIH, autoimmune hepatitis; LDA, linear discriminant analysis; LEfSe, linear discriminant analysis effect size; MaAsLin, multivariate association with linear models

algorithm.
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FIGURE 7 | Associations between fecal microbiomes and AIH disease status. Heatmap showing partial Spearman’s correlation coefficients among 30 genera and

clinical AIH indices. Positive values (red) indicate positive correlations. Negative values (blue) indicate inverse correlations. Solid lines represent P ≤ 0.01. Dotted lines

represent 0.01 < P ≤ 0.05. Intensity of shading in circles is proportional to the magnitude of the association. Correlation direction was determined by Spearman’s

method. *P < 0.05; **P <0.01; ***P < 0.001; AIH, autoimmune hepatitis; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT,

γ-glutamyltransferase; TB, total bilirubin; ALB, albumin; AKP, alkaline phosphatase.

FIGURE 8 | Identification of microbial OTU-based AIH markers by random forest models. (A) Five OTUs were selected by random forest models as the optimal AIH

biomarkers. (B) POD was significantly higher in AIH than HCs. (C) The POD index had AUC = 83.25% with 95% CI = 75.61–90.89% between AIH and HC. AIH,

autoimmune hepatitis; HCs, healthy controls; OTUs, operational taxonomic units; CV error, cross-validation error; POD, probability of disease; AUC, area under the

curve.
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FIGURE 9 | Data quality of bacterial 16S rRNA gene sequences. (A) Rarefaction analysis showed that estimated OTUs richness basically approached saturation in

each group, and it was significantly increased in AIH (n = 37) (red) vs. HCs (n = 78) (blue). Similar results were also obtained in (B) Shannon-Wiener curve and (C)

Rank-Abundance curve, showing that the sequencing data of the sample is of high quality. AIH, Autoimmune hepatitis; HCs, healthy controls; OTUs, Operational

Taxonomy Units.

riboflavin metabolism, cell motility and secretion, nitrogen
metabolism, lipopolysaccharide biosynthesis, and protein folding
and associated processing were enriched in the AIH patients (P
< 0.05; LDA > 2). Notably, glutathione metabolism was highly
enriched in the AIHmicrobiome while pyruvate metabolism and
lysine biosynthesis were significantly depleted in AIH, which
might be associated with disease status.

Scatterplots Figure 6B demonstrated a positive correlation
between abundance of histidine metabolism and age (Spearman’s
correlation coefficient = 4.48e−04; FDR = 0.2389; N = 115).
Thus, the histidine metabolism pathway should be excluded from
the analysis as it is highly correlated with age.

Correlation Between Fecal Microbiome
and AIH Disease Status
A Spearman’s rank test was performed to analyze correlations
between the AIH-associated genera and the clinical
characteristics of individuals with AIH. Potential interferences
such as age, gender and BMI were considered. The distance
correlation plots in Figure 7 (Supplementary Data S7) revealed
partial Spearman correlation coefficients among 30 genera
and the clinical indices AST, ALT, GGT, TB, ALB, and AKP
of the AIH group. There were positive correlations between
AST and the abundances of ten genera including Veillonella,
Lactobacillus, Megasphaera, Klebsiella, and Akkermansia (P
< 0.05). Moreover, these ten aforementioned genera were
positively correlated with ALT. However, 13 genera including
Ruminococcaceae_incertae sedis, Flavonifractor, Bilophila and
Butyricimonas were negatively correlated with AST (P <

0.05). There were significant positive correlations between
the abundances of Veillonella, Lactobacillus, Megasphaera,
Klebsiella, and Faecalibacterium and AST, ALT, GGT, and TB in
the AIH group (P < 0.05). Parabacteroides was the only genus
positively correlated with AKP (P< 0.05). Eight genera including
Lactobacillus, Klebsiella, and Enterobacteriaceae_unclassified
were negatively correlated with ALB. No genera were positively
correlated with ALB.

FIGURE 10 | Relative abundances of five OTUs between AIH (N = 37) and

HCs (N = 78). The relative abundance of five OTUs between AIH (blue) and

HCs (red) is shown in histogram. The relative abundance of each OTU is

depicted as mean ± SE. P were calculated by a Wilcoxon rank-sum test.

*P < 0.05; **P < 0.01; ***P < 0.001; AIH, autoimmune hepatitis; HCs, healthy

controls; OTUs, operational taxonomic units.

Potential Use of Fecal Microbiome-Based
Signatures in AIH Diagnosis
The smallest OTU combination that could accurately identify the
differences between the AIH and HCs groups was established. A
cross-validation curve revealed five OTU biomarkers including
Lachnospiraceae, Veillonella, Bacteroides, Roseburia, and
Ruminococcaceae (Figure 8A).

The microflora data and the five OTU biomarkers
were used to calculate the POD index (Figure 8B). It
was markedly higher in the AIH group than that in
HCs group.
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FIGURE 11 | Composition of fecal microbiota on taxonomic level between AIH (n = 37) (right) versus HCs (n = 78) (left). The microbial community barplot of AIH and

HCs visually reflected the relative abundance of microbiome at (A) phylum level and (B) genus level for each sample. AIH, Autoimmune hepatitis; HCs, healthy controls.

The AIH-associated microbial genera distinguish AIH from
HCs. The AUCwas∼0.8325 and the 95% confidence interval was
0.7561–0.9089 (P < 0.001) (Figure 8C).

DISCUSSION

Previous studies reported the importance of fecal microbiomes in
various liver disorders such as chronic hepatitis B (CHB) (Wang
et al., 2017), cirrhosis (Qin et al., 2014), non-alcoholic fatty liver
disease (NAFLD) (Caussy et al., 2019), HCC (Ren et al., 2019),
and PBC (Tang et al., 2018). Notably, Wei Y et al demonstrated
the alterations of gut microbiome in AIH patients in East China
(Wei et al., 2019).However, it is still important to perform
microbiome studies of AIH in different geographic populations.

In this study, we identified the differences in fecal microbiome
between AIH patients and HCs in Central China for the
first time, and indicated the efficacy of fecal microbiome
as a diagnostic tool for AIH. A total of 37 patients with
AIH and 78 matched HCs underwent 16S rRNA gene
sequencing. The former exhibited distinct overall microbial

compositions compared to the latter. Ten genera including
Veillonella, Faecalibacterium, Akkermansia, and Lactobacillus
were predominated in AIH, while twenty genera including
Sutterella, Ruminococcus, Pseudobutyrivibrio, and Lachnospira
were enriched in HCs. The analysis of NMDS and PCoA
confirmed a significant divergence between the AIH and HCs
in terms of fecal microbial community composition. Based on
a random forest model, five OTUs including Lachnospiraceae,
Veillonella, Bacteroides, Roseburia, and Ruminococcaceae were
selected as the optimal biomarkers to distinguish AIH patients
from HCs, and achieved an AUC value of 83.25%, suggesting
that fecal microbiomes could distinguish the AIH patients from
healthy individuals.

Most of the findings in this study corroborate previous
reports with several exceptions. There are some differences and
advantages of this paper from other published study. Our study
is mainly aimed at the intestinal microbial difference of AIH
patients in Central China, whereas the patients in the research
of (Wei et al., 2019) are from East China. Our results showed
that there were significant differences of five bacteria between
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FIGURE 12 | Comparison of fecal microbiome on taxonomic level between AIH (N = 37) and HCs (N = 78). Comparison of fecal microbiota at (A) the class level; (B)

order level and (C) family level between AIH (blue) and HCs (red). The average abundance values for each bacterium is depicted as mean ± SE. P values were

calculated using the Wilcoxon rank sum test, and are shown in Supplementary Data S3-Data S5. Significant differences by *P < 0.05; **P < 0.01, and ***P < 0.001.

AIH, Autoimmune hepatitis; HC, healthy controls.

AIH patients and healthy individuals, in which Ruminococcaceae,
Veillonella, Roseburia, and Bacteroides were enriched in AIH
group, while Lachnospiraceae was enriched in HCs group. The
results in (Wei et al., 2019) showed that Veillonella, Lactobacillus,
Oscillospira, and Clostridiales were significantly different in AIH
and HCs group. Notably, the AUC value in our study achieved
83.25%, while the AUC value in Wei et al. (2019) was 78%.

The differences in the findings from the two studies are
mainly attributed to different geographic population. Regional
difference is the main influencing factor of intestinal microbial
difference. A recent study of He et al. (2018) investigated the
differences of intestinal flora in 10 000 people in different areas of
Guangdong Province, and suggested that there was a significant
relationship between intestinal microbial differences and regional
differences. Accordingly, it is pivotal and necessary to study the
differences of intestinal microbiome of AIH patients in different
regions in order to elucidate the possible pathogenesis of AIH
and to establish a diagnostic model. In this paper, we present the
characteristics of AIH patients in Central China for the first time,
and have certain innovation and reference value.

Moreover, in our study, the diagnostic criteria of AIH were
based on the patients’ liver function, the autoantibodies and
the immunoglobulins, which was consistent with the diagnostic
methods presented in the guidelines (Lohse et al., 2015). The
subjects included in our study were out-patients with AIH, which
were relative early stage, with only mild symptoms. They had
never been treated with steroids and UDCA, since these drugs
might greatly impact the microbiome analysis. Therefore, the
microbial diagnosis model established by us realizes the early
diagnosis and non-invasive diagnosis of AIH patients. From the
view point of clinical diagnosis and treatment, our study has a
significant clinical application value.

Furthermore, we found the reduction of Ruberia and
Ruminoccocaceae in the AIH patients. So we speculate that
the alterations of intestinal microbiomes may be involved in
the occurrence and development of AIH. The components
of intestinal microorganisms or their metabolites promote the
progression of AIH. Targeted intestinal microbiota may be a new

therapeutic target for AIH. Ruberia and Ruminoccocaceae are
protective bacteria, which provide a clear target for the treatment
of AIH. Increasing these two bacteria may prevent the occurrence
and development of AIH.

Ruminococcus degrades mucin, produces short chain fatty
acids (SCFAs), and is diminished in certain autoimmune
disorders such as IBD, AIH, and psoriatic arthritis. SCFAs
may inhibit effector T cell activation and repress redundant
local and systemic inflammatory responses (Makki et al., 2018).
Ruminococcus may promote SCFA production, increase the
number of Th1 and Th17 cells, and upregulate IL-10 which is
anti-inflammatory and crucial to intestinal homeostasis. When
Ruminococcus abundance is substantially decreased, metabolic
inflammation may be induced (Liao et al., 2019).

As a new diagnostic tool for diseases, gut microbiome has
attracted more, and more attention. The gut microbiome have
been reported to involve in various diseases like cirrhosis (Qin
et al., 2014), NAFLD (Caussy et al., 2019), HCC (Ren et al.,
2019), and PBC (Tang et al., 2018). These microbial markers have
many advantages when applied to disease diagnosis, such as high
accuracy and efficiency, especially their non-invasive nature.

For instance, Shen et al. (2017) evaluated the relationship
between gut dysbiosis and NAFLD. NAFLD patients had lower
gut microbiota diversity than healthy subjects. Proteobacteria
and Fusobacteria phyla were more abundant in NAFLD patients.
Additionally, Loomba et al. (2017) recently reported anAmerican
cohort that included patients with NAFLD and fibrosis. They
identified a set of 40 features, which included 37 bacterial species
that were used to construct a random forest classifier model
to distinguish mild/moderate NAFLD from advanced fibrosis
with a high AUC value of 0.936. These findings represent a
major advancement in the field of gut microbiome research, and
specifically, its use as a diagnostic marker for disease.

The sample size of the present study was a little small, which is
mainly attributed to the fact that the number of newly diagnosed
patients with AIH is much smaller than that of revisit patients.
Most of the clinical patients with AIH are revisit patients who
have received drug treatment. However, the subjects included in
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our study were newly diagnosed patients with AIH, which had
never been treated with steroids and UDCA. Due to the strict
inclusion and exclusion criteria, the final sample size is a little
small. Therefore, the establishment of non-invasive diagnostic
model for AIH using gut microbiota requires larger clinical
samples and multicenter clinical studies to validate.

Additionally, another serious disadvantage of this paper is that
individual’s microbiology was associated with many confounding
factors such as time (the community types of stool sample were
more unstable before freezing), diet, environment and antibiotic
treatment. For example, in an 8-week in-hospital study, Ang
et al. (2020) performed gene sequencing and metabolomics
analysis of fecal samples and found significant changes in gut
microbial community structure and function during Ketogenic
Diets, which suggests that diet does interferes with intestinal
microecology. And also, those functional aspects which are
simply extrapolated from the compositional data cannot be
guaranteed to be deterministic in practice. In order to minimize
the interfering effects of confounding factors, the only thing
we can do is to enlarge the sample size, manage to improve
the standardization of sampling procedure to minimize the
influence of other interfering factors. Accordingly, a much more
systematic study would examine a large, randomly selected
sample of individuals with various diet habits, gender, age and
from different areas.

In conclusion, this study was the first to present the
characteristics of gut microbiomes in AIH patients in Central
China. The microbial diagnosis model was established to
distinguish patients with AIH from healthy individuals in Central
China, realizing the early diagnosis and non-invasive diagnosis of
AIH patients.
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