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ABSTRACT Extracellular electron exchange in Methanosarcina species and closely
related Archaea plays an important role in the global carbon cycle and enhances the
speed and stability of anaerobic digestion by facilitating efficient syntrophic interac-
tions. Here, we grew Methanosarcina acetivorans with methanol provided as the
electron donor and the humic analogue, anthraquione-2,6-disulfonate (AQDS), pro-
vided as the electron acceptor when methane production was inhibited with bromo-
ethanesulfonate. AQDS was reduced with simultaneous methane production in the
absence of bromoethanesulfonate. Transcriptomics revealed that expression of the
gene for the transmembrane, multiheme, c-type cytochrome MmcA was higher in
AQDS-respiring cells than in cells performing methylotrophic methanogenesis. A
strain in which the gene for MmcA was deleted failed to grow via AQDS reduction
but grew with the conversion of methanol or acetate to methane, suggesting that
MmcA has a specialized role as a conduit for extracellular electron transfer. En-
hanced expression of genes for methanol conversion to methyl-coenzyme M and
the Rnf complex suggested that methanol is oxidized to carbon dioxide in AQDS-
respiring cells through a pathway that is similar to methyl-coenzyme M oxidation in
methanogenic cells. However, during AQDS respiration the Rnf complex and re-
duced methanophenazine probably transfer electrons to MmcA, which functions as
the terminal reductase for AQDS reduction. Extracellular electron transfer may en-
able the survival of methanogens in dynamic environments in which oxidized humic
substances and Fe(III) oxides are intermittently available. The availability of tools for
genetic manipulation of M. acetivorans makes it an excellent model microbe for
evaluating c-type cytochrome-dependent extracellular electron transfer in Archaea.

IMPORTANCE The discovery of a methanogen that can conserve energy to support
growth solely from the oxidation of organic carbon coupled to the reduction of an
extracellular electron acceptor expands the possible environments in which meth-
anogens might thrive. The potential importance of c-type cytochromes for extracel-
lular electron transfer to syntrophic bacterial partners and/or Fe(III) minerals in some
Archaea was previously proposed, but these studies with Methanosarcina acetivorans
provide the first genetic evidence for cytochrome-based extracellular electron trans-
fer in Archaea. The results suggest parallels with Gram-negative bacteria, such as
Shewanella and Geobacter species, in which multiheme outer-surface c-type cyto-
chromes are an essential component for electrical communication with the extracel-
lular environment. M. acetivorans offers an unprecedented opportunity to study
mechanisms for energy conservation from the anaerobic oxidation of one-carbon or-
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ganic compounds coupled to extracellular electron transfer in Archaea with implica-
tions not only for methanogens but possibly also for Archaea that anaerobically oxi-
dize methane.

KEYWORDS AQDS reduction, Methanosarcina, c-type cytochrome, extracellular
electron transfer, genetics, transcriptome

Extracellular electron exchange is central to the environmental function of diverse
Archaea that oxidize and/or produce methane. Some methanogens can divert

electrons from methane production to the reduction of extracellular electron carriers
such as Fe(III), U(VI), V(IV), and anthraquinone-2,6-disulfonate (AQDS), a humic acid
analog (1–9). Diversion of electron flux from methane production to extracellular
electron transfer may influence the extent of methane production and metal geochem-
istry in anaerobic soils and sediments. Methanogens such as Methanothrix (formerly
Methanosaeta) and Methanosarcina species can accept electrons via direct interspecies
electron transfer from electron-donating partners, such as Geobacter species, in impor-
tant methanogenic environments such as anaerobic digesters and rice paddy soils
(10–12). Anaerobic methane oxidation also plays an important role in the global carbon
cycle and diverse anaerobic methane-oxidizing archaea (ANME) transfer electrons
derived from methane oxidation to extracellular electron acceptors, such as other
microbial species, Fe(III), or extracellular quinones (13–20). The electrical contacts for
extracellular electron exchange have yet to be definitively identified in any of these
Archaea.

It has been hypothesized that outer-surface cytochromes enable electron transfer to
electron-accepting microbial partners or Fe(III) in some ANME (13–19). Genes for
multiheme c-type cytochromes that are present in ANME genomes can be highly
expressed and in some instances the encoded proteins have been detected (14, 19).
The putative function of outer-surface cytochromes is terminal electron transfer to
extracellular electron acceptors, similar to the role that outer surface c-type cyto-
chromes play in extracellular electron transfer in Gram-negative bacteria such as
Shewanella and Geobacter species (21–23). Similar c-type cytochrome electrical contacts
have been proposed for Fe(III)-reducing Archaea, such as Ferroglobus and Geoglobus
species (24–26). However, the study of the mechanisms for extracellular electron
transfer in these archaea has been stymied by the lack of microorganisms available in
pure culture that can grow via extracellular electron transfer and are genetically
tractable.

Tools are available for genetic manipulation of the methanogen Methanosarcina
acetivorans (27–29). A methyl�coenzyme M reductase from an uncultured ANME was
introduced into M. acetivorans to generate a strain that could convert methane to
acetate with simultaneous reduction of Fe(III) (30). Most of the electrons from the
methane consumed were recovered in acetate (30), and it was not shown that energy
was conserved from Fe(III) reduction. In vitro reactions catalyzed by membrane vesicles
of wild-type M. acetivorans suggested that the membrane-bound heterodisulfide re-
ductase HdrDE reduced Fe(III)-citrate and AQDS and that an outer-surface multiheme
c-type cytochrome might also function as a potential electron donor for Fe(III)-citrate
reduction (31). However, in vitro assays with cell components are not a definitive
approach for determining the physiologically relevant mechanisms involved in the
reduction of Fe(III) and AQDS. This is because constituents that do have access to
extracellular electron acceptors in vivo are exposed to extracellular electron acceptors
in vitro and many reduced cofactors and redox-proteins, including c-type cytochromes,
can nonspecifically reduce these electron acceptors (32). Analysis of the phenotypes of
intact cells that result from specific gene deletions can provide more conclusive
evidence.

We report here that M. acetivorans can be grown without methane production with
AQDS as the sole electron acceptor. Analysis of gene expression patterns and pheno-
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types of gene deletion strains suggest a mechanism for energy conservation during
extracellular electron transfer.

RESULTS AND DISCUSSION
Growth of M. acetivorans with AQDS as the sole terminal electron acceptor. In

medium with methanol provided as the electron donor and AQDS as a potential
electron acceptor, M. acetivorans simultaneously produced methane and reduced
AQDS (Fig. 1a). The addition of bromoethanesulfonate (BES) inhibited methane pro-
duction and increased the extent of AQDS reduction (Fig. 1B; Fig. S1). The metabolism
of methanol (Fig. 1c) was accompanied by an increase in cell numbers (Fig. 1D). In the
BES-amended cultures, 6.3 � 0.43 mM (mean of triplicate cultures � the standard
deviation) methanol was consumed with the reduction of 15.7 � 0.61 mM AQDS. When
the need to divert some of the methanol metabolized to cell biomass is considered, this
stoichiometry is consistent with the oxidation of methanol to carbon dioxide, with
AQDS serving as the sole electron acceptor: CH3OH � 3AQDS � H2O ¡ 3AH2QDS �

CO2. Methanol consumption stopped once all the AQDS was reduced in the BES-
amended cultures (Fig. 1C). However, in the absence of BES, all of the methanol could
be consumed because methanol was also converted to methane.

The growth of M. acetivorans with AQDS as the sole electron acceptor (Fig. 1) is the
first example of a methanogen conserving energy to support growth with electron
transfer to an external electron acceptor. The ability of M. acetivorans to grow in this
manner and the availability of tools for genetic manipulation (27–29) provide an
opportunity for functional analysis of extracellular electron transfer by an archaeon.

Transcriptomics and gene deletion studies demonstrate that the multiheme
c-type cytochrome MmcA is involved in AQDS reduction. In order to obtain insight
into potential electron carriers involved in AQDS reduction, the transcriptome of cells
grown with AQDS as the sole electron acceptor in the presence of BES was compared

FIG 1 Growth of M. acetivorans with methanol provided as an electron donor and AQDS as an electron acceptor
in the presence or absence of BES. (A) Methane and AH2QDS concentrations generated by cultures grown without
BES. (B) Methane and AH2QDS concentrations generated by cultures grown with BES. (C and D) Methanol
concentrations (C) and cell numbers (D) from cultures grown in the presence or absence of BES. The complete
inhibition of methane production in the presence of BES is also shown on an expanded scale in Fig. S1.
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to the transcriptome of cells grown with methanol in the absence of AQDS or BES, so
that methane production was the sole route of electron flux. The generation time
(0.69 � 0.13 days) of the cells grown via methanogenesis (Fig. S2) was longer than
previously reported (generation time, 6.3 h; [33]). The lower growth rate in our study
might be due to the omission of cysteine and lower sulfide content in our medium
(0.3 mM compared to 0.5 mM) in order to reduce medium constituents that might
abiotically reduce AQDS. However, methanogenic growth was �4-fold faster than
growth via AQDS respiration in the presence of BES (generation time, 2.9 � 0.18 days).
Consistent with the lower growth rate, most of the genes related to cell growth (amino
acid biosynthesis; protein synthesis; biosynthesis of purines, pyrimidines, nucleosides,
and nucleotides; and transcription) had greater expression in methanogenic cells than
cells grown via AQDS respiration (see Table S1B in the supplemental material).

Remarkably, despite the lower growth rate on AQDS, the gene MA0658, which
encodes a seven-heme, outer-surface c-type cytochrome, was 4.5-fold more highly
expressed in AQDS-reducing versus methanogenic cells (Table 1). For future reference,
this cytochrome was designated MmcA (membrane multiheme cytochrome A). Multi-
heme c-type cytochromes are of particular interest as potential electron carriers in
extracellular electron transport because of the well-documented role of multiheme
c-type cytochromes in bacteria such as Shewanella and Geobacter species that are
highly effective in extracellular electron transfer (21–23). MA3739, a gene coding for a
five-heme c-type cytochrome, was transcribed at similar levels as mmcA, and 4.1-fold-
higher expression was detected in AQDS-reducing than methanogenic cells (Table 1).

There are three other putative c-type cytochrome genes in the M. acetivorans
genome (26). MA0167, which encodes a monoheme cytochrome with predicted local-
ization in the cell membrane, was six times more highly expressed in cells grown via
AQDS respiration (Table 1). Functional analysis of the outer membrane of G. sulfurre-
ducens has suggested that a monoheme c-type cytochrome may play a role in regu-
lating the expression of multiheme c-type cytochromes, possibly by providing a sensor
function (34, 35). It is possible that the protein encoded by MA0167 plays a similar role
in M. acetivorans. The expressions of MA2925 and MA2908, both of which encode
two-heme c-type cytochromes, were comparable in AQDS-reducing versus methano-
genic cells (Table 1). These cytochromes are homologous to methylamine utilization
protein G (MauG) and the diheme cytochrome c peroxidase (CcpA). MauG is required
for aerobic methylamine metabolism (36–38), and CcpA proteins reduce hydrogen
peroxide to water and protect the cell from reactive oxygen species (39, 40). Thus, it
seems unlikely that either of these cytochromes is involved in extracellular electron
transfer.

In order to evaluate the potential role of c-type cytochromes in AQDS reduction,
deletion mutant strains were constructed in M. acetivorans for each c-type cytochrome
gene in the genome (Table 1). Only the deletion of mmcA inhibited AQDS reduction
(Fig. 2A). Deletion of mmcA had a slight impact on methanogenic growth with

TABLE 1 Differential expression of genes encoding c-type cytochrome proteins in M.
acetivorans cellsa

Locus

No. of:

Predicted localization
Fold
upregulationb P FDR

Heme
groups

Transmembrane
helices

MA0658 7 1 Membrane 4.53 0.002 0.006
MA3739 5 0 Unknown 4.14 0.047 0.031
MA0167 1 1 Membrane 5.97 0.018 0.037
MA2925 2 1 Membrane NS
MA2908 2 1 Membrane NS
aCells were grown with methanol provided as the electron donor and AQDS as the electron acceptor in the
presence of BES or were grown via methanogenesis with methanol as the substrate. Genes were only
considered differentially expressed if the P value and FDR (false discovery rate) were �0.05. NS, no
significant difference in read abundance between conditions.

bThat is, in AQDS/BES versus methanogenesis.
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methanol (Fig. 2B). These results suggest that MmcA is a major component for
extracellular electron transfer to AQDS but not for the conversion of methanol to
methane.

Previous studies have suggested that MmcA is part of the Rnf complex, which is
required for acetoclastic methanogenesis (41), and that mmcA is cotranscribed with Rnf
genes located in the same region of the chromosome (42). However, deletion of the
MmcA gene did not substantially impact growth on acetate (Fig. 2B) or transcription of
other genes from the Rnf complex (Fig. S2). Furthermore, the expression profiles of
mmcA and genes for the Rnf complex were also different (Tables 1 and 2).

Model for electron transport to AQDS via MmcA. MmcA is a strong candidate for
the terminal AQDS reductase because its localization in the cell membrane (42) is likely
to provide access to AQDS and because of the well-known role of outer-membrane
multiheme c-type cytochromes in reduction of AQDS and various forms of Fe(III) in
Gram-negative bacteria such as Shewanella and Geobacter species (21–23, 43). It was
previously suggested that MmcA could be a terminal reductase for the reduction of
soluble Fe(III)-citrate, based on the in vitro oxidation of MmcA in membrane vesicles
upon addition of Fe(III)-citrate (31). Such in vitro assays can be poor predictors of in vivo
activity because Fe(III)-citrate typically oxidizes c-type cytochromes in vitro, regardless
of physiological function, due to its very positive redox potential. However, as detailed
below, multiple lines of evidence support a model in which energy can be conserved

FIG 2 Impact of deletion of c-type cytochrome genes on growth of M. acetivorans under different conditions. (A)
AH2QDS production during growth with methanol as the electron donor and AQDS as the acceptor in the presence
of BES. The locus for the deleted cytochrome gene is designated next to the corresponding symbol. (B) Growth of
wild-type and ΔMA0658 strains under methanogenic conditions as measured as the A600 with methanol or acetate
provided as the substrates.

TABLE 2 Comparison of transcripts from genes coding for components of the Rnf and Mrp complexes in M. acetivorans cellsa

Locus Description Gene
Fold
upregulationb P FDR

MA0659 Electron transport complex protein RnfC rnfC 1.52 0.02 0.04
MA0660 Electron transport complex protein RnfD rnfD NS
MA0661 Electron transport complex protein RnfG rnfG 1.66 0.006 0.01
MA0662 Electron transport complex protein RnfE rnfE 1.45 0.02 0.05
MA0663 Electron transport complex protein RnfA rnfA 1.66 0.006 0.01
MA0664 Electron transport complex protein RnfB rnfB 1.57 0.008 0.01
MA4572 Multisubunit sodium/proton antiporter, MrpA subunit mrpA 5.44 5.77 � 10–8 5.07 � 10–6

MA4665 Multisubunit sodium/proton antiporter, MrpB subunit mrpB 5.41 8.99 � 10–8 6.06 � 10–6

MA4570 Multisubunit sodium/proton antiporter, MrpC subunit mrpC 6.50 7.25 � 10–8 5.71 � 10–6

MA4569 Multisubunit sodium/proton antiporter, MrpD subunit mrpD 4.84 1.38 � 10–7 7.21 � 10–6

MA4568 Multisubunit sodium/proton antiporter, MrpE subunit mrpE 3.70 3.79 � 10–6 5.56 � 10–5

MA4567 Multisubunit sodium/proton antiporter, MrpF subunit mrpF 4.79 3.78 � 10–7 1.28 � 10–5

MA4566 Multisubunit sodium/proton antiporter, MrpG subunit mrpG 4.57 3.39 � 10–7 1.20 � 10–5

aCells were grown with methanol and AQDS in the presence of BES or were grown via methanogenesis with methanol as the substrate. Genes were only considered
differentially expressed if the P value and FDR were �0.05. NS, no significant difference in read abundance.

bThat is, in AQDS/BES versus methanogenesis.
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when MmcA serves as the terminal reductase during in vivo methanol oxidation
coupled to AQDS reduction (Fig. 3).

During methane production from methanol, methanol is converted to CH3-CoM by
the activity of three enzymes, methyltransferase 1 (MtaB), methyltransferase 2 (MtaA),
and methanol corrinoid protein (MtaC) (44–46). The oxidation of one molecule of
CH3-CoM to CO2 generates the reducing equivalents necessary to reduce three mole-
cules of CH3-CoM to methane. During methanol oxidation coupled to AQDS reduction
in the presence of BES, the step that reduces CH3-CoM to methane is blocked, but the
option for CH3-CoM oxidation remains (Fig. 3). Genes coding for enzymes involved in
the oxidation of CH3-CoM to carbon dioxide were more highly expressed in methano-
genic cells, consistent with increased transcription of growth-related genes in metha-
nogenic cells and the need for this pathway to generate reductants to support
methanogenesis (Table S2).

Differential expression of genes encoding isomers of MtaB, MtaA, and MtaC sug-
gested that there might be some differences in the route for methanol conversion to
CH3-CoM (Table 3). The genes for the isomers MtaB1, MtaA1, and MtaC1 were more
highly transcribed in methanogenic cells, whereas AQDS-respiring cells had greater
expression of genes coding for the alternative MtaB, MtaA, and MtaC isomers (Table 3).
Differences in the activity of these isomers are unknown, but in previous studies mtaA1,
mtaB1, and mtaC1 genes were highly transcribed during methanogenesis from meth-
anol and MtaA1 was required for growth on methanol, whereas MtaA2 was dispensable
(46).

Oxidation of methanol to carbon dioxide is expected to yield reduced ferredoxin
and reduced F420 (F420H2). It is likely that the Rnf complex oxidizes reduced ferredoxin
with electron transfer to MmcA (47). Transcripts for genes coding for components of
the Rnf complex were slightly higher (�1.5-fold) than those in methanogenic cells
(Table 2), suggesting an important role for the Rnf complex in energy conservation
from methanol oxidation coupled to AQDS reduction.

FIG 3 Proposed model for extracellular electron transport to AQDS by M. acetivorans when methanol is provided
as the electron donor and methanogenesis is prevented by the addition of BES.
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In methanogenic cells, the membrane-bound Fpo complex (F420:methanophenazine
oxidoreductase) oxidizes F420H2 derived from methanol oxidation with the reduction of
methanophenazine and proton translocation (48–52). Transcription of all Fpo subunit
genes was higher in methanogenic cells than AQDS-reducing cells, as expected be-
cause of the importance of Fpo in oxidizing F420H2 in cells producing methane
(Table S3). However, all of the Fpo complex genes were also being actively expressed
in AQDS-respiring cells, suggesting that Fpo is important for the oxidation of F420H2

generated in methanol-oxidizing, AQDS-reducing cells. The reduced methano-
phenazine that Fpo generates from F420H2 oxidation could transfer electrons to MmcA
(41, 42, 47, 53). Although it has also been proposed that reduced methanophenazine
may be able to directly transfer electrons to extracellular electron carriers in M.
acetivorans (31), the requirement for MmcA for growth via AQDS reduction indicates
that this is an unlikely route for AQDS reduction.

In methanogenic cells, reduced methanophenazine could also donate electrons to the
membrane-bound heterodisulfide reductase HdrDE (52, 54–59). In vitro evidence with
membrane vesicles suggested that HdrDE can reduce AQDS with CoM-SH and CoB-SH
oxidation to form CoM-S-S-CoB (31). However, the redox-active components of HdrE and
HdrD responsible for electron transfer to an electron acceptor are embedded in the
membrane and the cytoplasm, respectively (52), and thus unlikely to access extracellular
AQDS in vivo. The relative expressions of hdrD and hdrE were slightly lower in AQDS-
reducing cells than in methanogenic cells (Table S2). Furthermore, the inability of the
MmcA-deficient strain to grow via AQDS reduction indicates that HdrDE is not capable of
functioning as the sole AQDS reductase to support growth. Thus, based on the lack of
strong evidence for a role for HdrDE, the likely simpler and more direct route for AQDS-
dependent oxidation of reduced methanophenazine is electron transfer to MmcA.

Based on these considerations and current understanding of the function of the
redox proteins involved (52, 60, 61), it is apparent that a net positive export of Na� and
H� outside the cell membrane during AQDS respiration that can support the genera-
tion of ATP is feasible (Fig. 3). In this model, two Na� must be translocated into the cell
for the initial oxidation of CH3-S-CoM (62–64). Two moles of F420H2 and one mole of
reduced ferrodoxin are generated per mole of CH3-S-CoM oxidized to carbon dioxide.
Fpo oxidizes the F420H2 with H� translocation and the reduction of methanophenazine
(49–51). The reduced methanophenazine transfers electrons to MmcA, which reduces

TABLE 3 Differential expression of genes encoding methanol methyltransferase enzymes in M. acetivorans cellsa

Locus Annotation Gene
Fold
upregulationb P FDR

MA4379 Co-methyl-5-hydroxybenzimi-
dazolylcobamide:2-mercapto-ethanesulphonic
acid methyltransferase, isozyme 1

mtaA1 –1.68 0.01 0.02

MA0455 Methanol:5-hydroxybenzimidazolyl-cobamide
methyltransferase, isozyme 1

mtaB1 –6.84 0.02 0.04

MA0456 Corrinoid-containing methyl-accepting
protein, isozyme 1

mtaC1 –7.95 0.01 0.03

MA4392 Methanol:5-hydroxybenzimidazolylcobamide
methyltransferase, isozyme 2

mtaB2 68.55 5.70 � 10–11 2.56 � 10–7

MA4391 Corrinoid-containing methyl-accepting
protein, isozyme 2

mtaC2 48.28 3.27 � 10–10 5.54 � 10–7

MA1615 Co-methyl-5-hydroxybenzimidazolylcobamide:2-
mercapto-ethanesulphonic acid methyltransferase,
isozyme 2

mtaA2 5.39 1.77 � 10–7 8.04 � 10–6

MA1616 Methanol:5-hydroxybenzimidazolylcobamide
methyltransferase, isozyme 3

mtaB3 9.66 5.24 � 10–8 4.89 � 10–6

MA1617 Corrinoid-containing methyl-accepting protein,
isozyme 3

mtaC3 8.49 2.52 � 10–7 1.00 � 10–5

aCells were grown with methanol provided as an electron donor and AQDS provided as an electron acceptor in the presence of BES or cells grown via
methanogenesis with methanol as the substrate. Negative values indicate that genes were more significantly expressed in methanogenic cells. Genes were only
considered differentially expressed if the P value and FDR were �0.05.

bThat is, in AQDS/BES versus methanogenesis.
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AQDS. The Rnf complex oxidizes the reduced ferredoxin coupled with Na� transloca-
tion (41, 47, 65) and the reduction of MmcA. MmcA may transfer protons, as well as
electrons during AQDS reduction, as observed in other c-type cytochromes (66–71). The
ATP synthase couples both Na� and H� transport to ATP synthesis (72), but the
H�/Na� antiporter complex Mrp can be important for balancing external Na�/H� ratios
(73). Genes for Mrp were highly expressed in AQDS-reducing cells (Table 2).

Uncertainties in the stoichiometry of Na�/H� transport per ATP synthesized and the
total amount of H� translocated prevent an accurate estimate of the theoretical ATP yield
per mole of methanol oxidized with the reduction of AQDS. However, the proposed
metabolic route suggests a likely mechanism for net ATP synthesis to support the observed
growth of M. acetivorans with methanol oxidation coupled to AQDS reduction.

Implications. The discovery that M. acetivorans can conserve energy to support
growth from the oxidation of a one-carbon compound coupled to the reduction of an
extracellular electron acceptor has important implications for the biogeochemistry of
anaerobic soils and sediments and provides a genetically tractable model microbe for
further analysis of the mechanisms of extracellular electron transfer in Archaea. Humic
substances and Fe(III) are often abundant extracellular electron acceptors in a wide
variety of anaerobic soils and sediments, and their availability for microbial respiration
can reduce the extent of methane production (74–77). Competition for electron donors
between methanogens and Fe(III)- and humic-reducing microorganisms is one factor
(78–80). However, the finding that some methanogens may conserve energy by
reducing extracellular electron acceptors suggests a mechanism for methanogens to
survive in environments in which Fe(III) and oxidized forms of humic substances are
abundant and then rapidly switch to methane production as these extracellular elec-
tron acceptors are depleted.

A comprehensive survey of the ability of diverse methanogens to conserve energy to
support growth from electron transport to extracellular electron acceptors is warranted.
Most methanogens, including other Methanosarcina species, lack membrane-bound mul-
tiheme cytochromes like MmcA and would need other mechanisms for extracellular
electron transfer. The findings that MmcA is not essential for methane production and that
expression of mmcA was increased when AQDS served as an electron acceptor suggest that
the primary role of MmcA is extracellular electron transfer. If so, the presence of MmcA
further suggests that there are environments in which the capacity for extracellular electron
transfer substantially benefits M. acetivorans.

A wide diversity of archaea are capable of extracellular electron transfer (81). For
archaea such as Ferroglobus placidus (24), Geoglobus ahangari (25), and diverse ANME
(13–19), it has been proposed that outer-membrane cytochromes are the terminal
reductase. It also appears that methanogens have evolved efficient means of extracel-
lular electron transport; however, the mechanisms are poorly understood. The rapid
nonphysiological reduction of extracellular electron acceptors by a range of redox-
active proteins and cofactors in vitro necessitates genetically tractable model organisms
for physiologically relevant functional studies. Thus, M. acetivorans may serve as an
important model organism for better understanding cytochrome-based extracellular
electron transfer in Archaea.

MATERIALS AND METHODS
Strains and growth conditions. Methanosarcina acetivorans strains were routinely cultured under

strict anaerobic conditions at 37°C in a previously described (27) medium with either 8.5 mM methanol
or 40 mM acetate provided as the substrates.

M. acetivorans mutant strains were constructed with M. acetivorans WWM1 (Δhpt) (82) as the parent
strain, as described previously (28). For the construction of MA0658, MA3739, MA2908, MA0167, and
MA2925 deletion strains, genes were replaced with the pac gene (puromycin resistance gene). First,
regions 500 to 1,000 bp upstream and downstream from the target genes were amplified by PCR (see
Table S4 and Fig. S4 in the supplemental material). The DNA fragments of the upstream and downstream
regions of MA0658 were digested with SacI/XbaI and EcoRI/XhoI. Upstream and downstream regions of
MA3739 were digested with SalI/XbaI and SacI/NotI. Upstream and downstream regions of MA2908,
MA0167, and MA2925 were digested with XhoI/HindIII and BamHI/NotI. The upstream fragment was
ligated into the pJK3 plasmid (27). The downstream fragment was ligated into the pJK3 plasmid already
containing the upstream fragment. This recombinant plasmid was then linearized and used for trans-
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formation. The deletion and replacement of all genes with pac was verified with primers (Table S4). All
transformants were selected on medium supplemented with puromycin (2 �M final concentration), as
previously described (27).

Additions of anthraquinone-2,6,-disulphonate (AQDS) were made from a concentrated stock to
provide a final concentration of 16 mM. Cysteine was omitted from all cultures. When noted,
2-bromoethanesulfonate (BES) was added from a concentrated stock to provide a final concentration of
15 mM. Growth with AQDS was measured by determining numbers of cells stained with acridine orange
with epifluorescence microscopy (83). For comparing methanogenic growth in wild-type and mutant
cells, growth was monitored by spectrometry at an absorbance of 600 nm (84).

Analytical techniques. Methanol concentrations were monitored with a gas chromatograph
equipped with a headspace sampler and a flame ionization detector (Clarus 600; Perkin-Elmer, Inc., San
Jose, CA). Methane in the headspace was measured by gas chromatography with a flame ionization
detector (Shimadzu, GC-8A) as previously described (85). The production of reduced AQDS reduction was
monitored by spectrophotometry at an absorbance of 450 nm as previously described (86).

RNA extraction. Cells were harvested from triplicate 50 ml cultures of M. acetivorans grown with
methanol (10 mM) provided as the electron donor and AQDS (16 mM) in the presence of the methano-
genesis inhibitor BES (15 mM) or via methanogenesis with 40 mM methanol provided as the substrate.
Cells were harvested when AQDS-respiring cultures had reduced �8 mM AQDS (midexponential phase)
and when methanogenic cells reached an optical density at 600 nm of 0.5.

Cells were split into 50-ml conical tubes (BD Sciences), mixed with RNAProtect (Qiagen) in a 1:1 ratio, and
pelleted by centrifugation at 3,000 � g for 15 min at 4°C. Pellets were then immediately frozen in liquid
nitrogen and stored at –80°C. Total RNA was extracted from all six cell pellets according to the previously
described protocol (87) and cleaned using an RNeasy minikit (Qiagen). All six RNA samples (three AQDS-
respiring and three methanogenic) were then treated with Turbo DNA-free DNase (Ambion, Austin, TX). In
order to ensure that samples were not contaminated with genomic DNA, PCR with primers targeting the 16S
rRNA gene was done with RNA that had not been reverse transcribed. Further enrichment of mRNA was done
with the MICROBExpress kit (Ambion), according to the manufacturer’s instructions.

RT-PCR analysis. Total RNA was prepared from M. acetivorans hpt and ΔMA0658 strains grown
methanogenically with acetate (40 mM). Complementary DNA (cDNA) was prepared by reverse tran-
scription with AMV reverse transcriptase (New England Biolabs, Ipswich, MA) with the primers TCAGCA
TGCCTCATTCCAAC (MA0659) or TCGCAGACAGCCTTAACGTC (MA0664) according to the manufacturer’s
specifications. This cDNA was then used as a template for PCR with the following primers: CAGTGACC
TCGCTTATGTCC/TCAGCATGCCTCATTCCAAC (MA0695) or TGTGGAGGTTGCGGATTTGC/TCGCAGACAGCCT
TAACGTC (MA0664). The amplified fragments were analyzed by agarose gel electrophoresis.

Illumina sequencing and data analysis. Directional multiplex libraries were prepared with the
ScriptSeq v2 RNA-Seq Library preparation kit (Epicentre), and paired-end sequencing was performed on
a Hi-Seq 2000 platform at the Deep Sequencing Core Facility at the University of Massachusetts Medical
School in Worchester, MA.

All raw data generated by Illumina sequencing were quality checked by visualization of base quality
scores and nucleotide distributions with FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Initial raw nonfiltered forward and reverse sequencing libraries contained an average of
134,187,478 � 20,358,059 reads that were �100 bp in length (Table S5). Sequences from all of the
libraries were trimmed and filtered with Trimmomatic (88), with the sliding window approach set to trim
bases with quality scores lower than 3, strings of 3�N’s, and reads with a mean quality score lower than
20. Bases were also cut from the start and end of reads that fell below a threshold quality of 3, and any
reads smaller than 50 bp were eliminated from the library. These parameters yielded an average of
90,596,717 � 23,433,670 quality reads per RNA-Seq library.

All paired-end reads were then merged with FLASH (89), resulting in 40,312,494 � 8,686,910 reads
with an average read length of 145 bp. After merging the QC-filtered reads, SortMeRNA (90) was used
to separate all rRNA reads from nonribosomal reads, and this resulted in 30,679,551 � 6,275,120 mRNA
reads.

Mapping of mRNA reads. Trimmed and filtered mRNA reads from the triplicate samples for the two
different culture conditions were mapped against the M. acetivorans strain C2A genome (NC_003552)
downloaded from IMG/MER (img.jgi.doe.gov) using ArrayStar software (DNAStar). Analyses of reads from
all three biological replicates for each condition demonstrated that the results were highly reproducible
(Table S5 and Fig. S5).

Reads were normalized and processed for differential expression studies using the edgeR package in
Bioconductor (91), with AQDS/BES considered the experimental condition and methanol the control.
Genes with P values of �0.05 were considered differentially expressed. Using these criteria, 1,188 genes
were downregulated, 2,121 genes were not differentially expressed, and 1,182 genes were upregulated
(Table S1).

Genome data analysis. Gene sequence data for M. acetivorans C2A was acquired from the U.S.
Department of Energy Joint Genome Institute (http://www.jgi.doe.gov) or from GenBank at the National
Center for Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov). Initial analyses were done
with tools available on the Integrated Microbial Genomes (IMG) website (img.jgi.doe.gov). Some protein
domains were identified with NCBI conserved domain search (92) and Pfam search (93) functions.
Transmembrane helices were predicted with TMpred (94), TMHMM (95), and HMMTOP (96), and signal
peptides were identified with PSORTb v3.0.2 (97) and Signal P v4.1 (98).

Data availability. Illumina sequence reads have been submitted to the SRA NCBI database under
BioProject PRJNA509433 and Biosample SAMN10580613 (SRX5113605 to SRX5113610).
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