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Stomach adenocarcinoma (STAD) is a common malignancy with high heterogeneity and a lack of 
highly precise treatment options. We downloaded the multiomics data of STAD patients in The Cancer 
Genome Atlas (TCGA)-STAD cohort, which included mRNA, microRNA, long non-coding RNA, somatic 
mutation, and DNA methylation data, from the sxdyc website. We synthesized the multiomics 
data of patients with STAD using 10 clustering methods, construct a consensus machine learning-
driven signature (CMLS)-related prognostic models by combining 10 machine learning methods, 
and evaluated the prognosis models using the C-index. The prognostic relationship between CMLS 
and STAD was assessed using Kaplan-Meier curves, and the independent prognostic value of CMLS 
was determined by univariate and multivariate regression analyses. we also evaluated the immune 
characteristics, immunotherapy response, and drug sensitivity of different CMLS groups. The results 
of the multiomics analysis classified STAD into three subtypes, with CS1 resulting in the best survival 
outcome. In total, 10 hub genes (CES3, AHCYL2, APOD, EFEMP1, CYP1B1, ASPN, CPE, CLIP3, MAP1B, 
and DKK1) were screened and constructed the CMLS was significantly correlated with prognosis in 
patients with STAD and was an independent prognostic factor for patients with STAD. Using the CMLS 
risk score, all patients were divided into a high CMLS group and a low CMLS group. Patients in the low-
CMLS group had better survival, more enriched immune cells, and higher tumor mutation load scores, 
suggesting better immunotherapy responsiveness and a possible “hot tumor” phenotype. Patients in 
the high-CMLS group had a significantly poorer prognosis and were less sensitive to immunotherapy 
but were likely to benefit more from chemotherapy and targeted therapy. In this study, 10 clustering 
methods and 10 machine learning methods were combined to analyze the multiomics of STAD, classify 
STAD into three subtypes, and constructed CMLS-related prognostic model features, which are 
important for accurate management and effective treatment of STAD.
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Stomach cancer is highly malignant. According to epidemiologic surveys, there will about 1.1 million new cases 
of stomach cancer worldwide in 2020; it is the fourth leading cause of death due to cancers worldwide1. Among 
them, Asia has the highest incidence and mortality rate of stomach cancer, and the five-year survival rate is less 
than 20%1–3. The most common type of stomach cancer is stomach adenocarcinoma (STAD), which accounts 
for more than 95% of all types of stomach cancer4,5. Patients with early STAD may have a better prognosis 
through radical surgery. However, most patients have no prominent early symptoms, and when diagnosed, they 
are already in the middle or late stage with metastasis; at this point, they have probably lost the chance of surgery, 
and thus have a high mortality rate and poor prognosis5,6. The treatments for advanced stomach cancer include 
chemotherapy, radiotherapy, targeted therapy, and antiangiogenic drugs. However, the efficacy of these methods 
is limited, the adverse effects are serious, and overall survival is significantly low7,8.

Immunotherapy has made considerable progress in the treatment of stomach cancer. Programmed death 
receptor 1 (PD-1) monoclonal antibodies have been approved for third-line treatment of advanced stomach 
cancer, and PD-1 monoclonal antibody in combination with chemotherapy have become the new standard for 
first-line treatment of advanced stomach cancer9, providing new strategies for first-line and backline treatment 
of advanced STAD10,11. However, a large proportion of patients with STAD do not benefit from immunotherapy, 
which is limited by tumor heterogeneity and the lack of efficacy predictive biomarkers12. Therefore, accurate 
screening of immunodominant populations is necessary, and molecular subtyping can help address this issue. 
Zhao et al. determined via immunohistochemistry that breast cancers can be divided into five subtypes, of 
which CD8 + T cells in the IHC-IM subtype infiltrate a greater number of tumor cells and exhibit more potent 
immunogenicity, implying that this subtype may be more effective for immunotherapy13. Hong et al. classified 
thyroid cancer into four subtypes based on transcriptome sequencing, genomic analysis, and clinicopathological 
information; among them, there is an immune-enriched subtype in which tumors exhibit an increase in 
immune infiltration and the overexpression of immune checkpoints14. These studies are important for accurately 
screening immunodominant populations for cancer treatment.

High-throughput sequencing technology has developed rapidly in recent times15. While single-omics 
studies can unidirectionally provide a large amount of information on a tumors, cancer-host interactions, 
molecular interactions within cancers, and associations between different histologies characteristics require 
a multidimensional approach for representation. The use of integrated multiomics studies in conjunction 
with advanced machine learning algorithms is a highly promising tool for gaining insights into the cancer 
pathogenesis and heterogeneity16,17. The combination of the two facilitates the development of precise diagnostic 
strategies for cancer.

In this study, mRNA, microRNA (miRNA) and long non-coding RNA (lncRNA) expression profiles, and 
genomic mutation and epigenomic DNA methylation data were combined, and three subtypes of STAD were 
constructed using 10 multiomics integration methods. In total, 60 prognosis-related genes were identified based 
on differential expression of different subtypes. We developed a Consensus machine learning-driven signature 
(CMLS) based on prognostically relevant genes via 10 machine learning methods. Finally, the prognosis, 
immune profile, immune response and drug treatment response of patients with STAD were predicted based 
on the CMLS score, which served as a framework for accurate stratification of patients with STAD patients and 
selection of personalized treatment strategies.

Materials and methods
Data preprocessing for multiomics data and multihub cohorts in STAD
We downloaded multiomics data for patients with STAD from The Cancer Genome Atlas (TCGA)-STAD 
cohort, which include mRNA, miRNA, lncRNA, somatic mutation data, DNA methylation data, and clinical 
data, from the sxdyc website (http://www.sxdyc.com/). Moreover, the sxdyc website performeds ID along with 
the summarization and organization of these multiomics data to facilitate the subsequent clustering analysis. 
Complete information on STAD in seven cohorts, GSE15459, GSE26253, GSE84437, GSE31210, GSE78220, 
GSE91061, and GSE135222, was obtained from the Gene Expression Omnibus (GEO) database ​(​​​h​t​t​p​:​/​/​w​w​w​.​n​c​
b​i​.​n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​​​​​)​, and information on a clinical trial was obtained from ​h​t​​​​t​p​:​/​​/​r​​e​s​​e​​a​r​c​h​-​p​u​b​.​g​​e​n​e​.​c​o​m​/​I​M​v​i​g​
o​r​2​1​0​C​o​r​e​B​i​o​l​o​g​i​e​s​​​​​, which is available under a Creative Commons 3.0 license18. We converted high-throughput 
sequencing of the transcriptome into transcripts per kilobase million (TPM). All expression profiles from 
the array were subsequently replicated and normalized. The limma software package was used for differential 
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analysis of tumor and normal samples19. Additionally, TPM expression was used to represent RNA sequencing 
(RNA-seq) data20.

Multiomics consensus integration analysis
Five dimensions of information on the TCGA-STAD cohort samples were matched (n = 348). The TPM data 
were log2-transformed. The DNA methylation data were selected to probe the promoter CpG islands21. Gene 
mutation matrix was used to determine whether the had a shifted code insertion, deletion or in-frame insertion, 
deletion, nonsense or missense or uninterrupted mutation, and splice site or translation initiation site mutation.

The “getElites” function of the MOVICS software package was used to screen the genetic features of the STAD 
subtype multicombinatorial data22. To screen the top 1,500 genes with the largest variations in mRNAs, lncRNAs, 
miRNAs and methylation, we set the “method” parameter of the “getElites” function to “mad”. The “method” 
parameter was set to “cox”, and the clinical data were combined to screen statistically significant prognostic genes 
(P < 0.05). For mutation data, we used the Oncoprint function of the maftools package to obtain the 5000 genes 
with the highest mutation frequencies. The “method” parameter was subsequently set to “freq” to obtain the top 
5% most frequently mutated genes in STAD. Data from the five dimensions were included in the next study.

After the above genetic characterization, we obtained the optimal number of clusters. We used the 
“getClustNum” function in the MOVICS package to estimate the number of subgroups and finally categorized 
them into three subtypes. We applied the “getMOIC” function for clustering analysis, which contains 10 
clustering algorithms (SNF, COCA, CIMLR, NEMO, Consensus clustering, LRAcluster, IntNMF, iClusterBayes, 
PINSPlus, MoCluster). These 10 clustering algorithms were used as inputs to the “methodslist” parameter, and 
the other parameters were default parameters. Then, we obtained the results of the 10 clustering methods, and 
use the “getConsensusMOIC” function to integrate the results of the 10 clustering methods, with the “distance” 
parameter set to “Euclidean”, and the “inkage” parameter was set to “average”22. The integrated clustering result 
is presented here.

Specific molecular characterization and stability of the consensus subtypes
To determine the differences in the activation status of biological pathways among the three subtypes, we 
performed single-sample gene set enrichment analysis (ssGSEA) using the R software “GSVA” package to assess 
the enrichment of relevant pathways in the three subtypes23. Transcriptional regulatory networks (regulons) were 
constructed using the Reconstruction of Transcriptional regulatory Networks and analysis of regulons (RTN) 
R package. Tumor microenvironment (TME) scores, including the stromal score, immune score, and tumor 
purity, were calculated using the R language “estimate” R package24, and the enrichment of 22 immune cells in 
the three subtypes was determined by GSVA. For subtype stability, we clustering results were validated using 
subtype-specific biomarkers from the validation cohort and then the consistency of the consensus clustering was 
compared with nearest template prediction (NTP)22.

Establishment of a consensus machine learning-driven signature
To obtain prognosis-related genes, we extracted differential genes in three subgroups in the TCGA-STAD 
dataset. Prognosis-related genes were identified by conducting univariate Cox regression analysis, and P < 0.05 
was considered to be statistically significant. We constructed a CMLS-related prognostic models based on 
prognostic-related genes using 10 machine learning 99 combination methods, in which the TCGA-STAD cohort 
was used as the training set and the GSE15459 cohort was used as the validation set; the 10 machine learning 
methods included Elastic Network (Enet), Lasso, CoxBoost, Stepwise Cox, Partial Least Squares regression of 
cox (plsRcox), Supervised Principal Component (SuperPC), Ridge, Survival Support Vector Machine (survival-
SVM), Random Survival Forest (RSF), and Generalized Boosted Regression Modeling (GBM). The average 
C-index of each model was calculated to evaluate the predictive ability of the model. Finally, the best combination 
of algorithms was identified with robustness and clinical translational significance based on the C-index of the 
training and validation sets.

Prognostic value of CMLS and prospects for clinical applications
We used the “surv-cutpoint” function of the survminer package to score each sample in the training and 
validation sets of model results for CMLS and divided the samples into high and low CMLS groups based on 
the median risk score. The prognostic relationship between CMLS and STAD was assessed using Kaplan-Meier 
curves. To compare the value of our prognostic features with other \prognostic-related features of STAD in 
published studies, we systematically searched and included 10 publications and 10 prognostic features and 
calculated the score for each sample based on the published coefficients. Their prognostic predictive ability 
was ultimately shown by the C-index. Univariate and multivariate Cox regression analyses of risk scores and 
associated clinical parameters were performed in the TCGA-STAD cohort to determine whether risk scores 
and associated clinical parameters could be used as independent predictors of overall survival (OS) in patients 
with STAD. Based on the obtained predictors, column line plots were constructed using the R software “regplot” 
package to predict the one-year and three-year OS of patients with STAD in TCGA, and calibration curves 
were used to confirm that the predicted probability of survival agreed with the actual observed results. Decision 
curves were used to assess the clinical benefit.

Immune characteristics and immunotherapy response in different risk groups based on CMLS 
scores
We used the Immuno-Oncology Biology Research (IOBR) R package to analyze TME, immunotherapy 
response, and immunosuppression in different CMLS risk groups25. The tumor mutational load (TMB) was also 
determined and compared between the two groups26 and the prediction of patients with STAD was predicted 
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by TMB combined with CMLS. Subclass mapping and the Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm were used in the GSE78220 and GSE135222 datasets to estimate immunotherapy response27–29.

Significance of CMLS scores for drug sensitivity in different CMLS groups
The “oncoPredict” R package was used to predict drug sensitivity in patients with STAD with different CMLS 
risk scores30, and P < 0.05 was considered to be statistically significant.

Statistical analyses
All data were processed and analyzed using the R4.3.0 software through appropriate packages. Unpaired Student’s 
t-test performed to determine the differences between two normally distributed variables. The Wilcoxon rank 
sum test was performed to estimate the difference between two non-normally distributed variables. The Kruskal-
Wallis test was conducted for between-group comparisons of more than two groups.TIDE pairs of lists were 
tested by conducting the two-sided Fisher exact test. All results were considered to be statistically significant at 
P < 0.05.

Result
Multi-omics consensus prognostic-related molecular subtypes in STAD
After preprocessing all data, we independently identified three isoforms using one of 10 multiomics integrated 
clustering algorithms (Fig. 1A and B). We combined the clustering results with the unique molecular expression 
patterns of mRNAs, lncRNAs, miRNAs, epigenetic methylation, and somatic mutations of STAD through a 
consensus clustering approach (Fig. 1C and E). Our classification system revealed three subtypes, which were 
strongly associated with overall survival (OS) (p < 0.001; Fig. 1F). Among the three subtypes, cancer subtype 1 
(CS1) had the best survival outcome (Fig. 1F).

Delineation of STAD integration consensus molecular subtypes
The enrichment of different molecular features in the samples using the ssGSEA algorithm. The results revealed 
that the three subtypes had different responses to specific treatments, with the immunosuppressive oncogenic 
pathway significantly enriched in CS2, while CS1 and CS3 were significantly enriched in the radiotherapy 
pathway. This finding suggested that patients with the CS2 subtype may benefit more from immunotherapy and 
that CS1 and CS3 patients may benefit more from radiotherapy (Fig. 2A). To investigate the differences in the 
transcriptome, we further analyzed 23 transcription factors of STAD and potential regulators associated with 
cancer chromatin remodeling, and found that ERBB2, FOXA1, FOXM1, GATA6, and ERBB3 regulators were 
significantly activated in CS1 and CS3, whereas androgen receptor (AR), PGR, ESR1, STAT3, FGFR1, RARA, 

Fig. 1.  Multi-omics integration of consensus subtypes of STAD. (A) Cluster prediction indices and gap 
statistics were analyzed for multiomics clustering. (B) Sample similarity for each subgroup was assessed by 
calculating Silhoutte scores. (C) Integrated heatmap of STAD multiomics data sharing pooled subtypes. (D) 10 
multiomics clustering methods for clustering STAD. (E) Consensus clustering matrix of three novel prognostic 
subtypes obtained by 10 multiomics clustering methods. (F) Survival outcomes of the three subtypes, with CS1 
having the best survival outcome.
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and RXRA were significantly activated in CS2. Similarly, the pattern of differential regulation between different 
CS subgroups was illustrated in the activity profiles of cancer chromatin remodeling-associated regulators 
(Fig. 2B). The results suggested that these different transcriptional networks may be important differentiators 
factors for the three molecular subtypes. The tumor immune microenvironment directly influences tumor 
immune efficacy, and based on this fact, we quantified the level of enrichment of microenvironmental cells in 
different subgroups. The results showed that immune cell infiltration increased significantly in CS2 but was low 
in CS1 and CS3 (Fig. 2C). To confirm the stability of the subtypes, we selected 20 specific upregulated genes 
associated with the three subtypes, used the nearest template prediction (NTP) algorithm as a classifier, and 
validated it in the GSE15459 cohort. The results indicated that CS1 in GSE15459 had the best prognosis among 
all subtypes (p < 0.005) (Fig. 2D and E). We also assessed the concordance of CS with NTP (p < 0.005; Fig. 2F).

CMLS construction via integrated machine learning
We performed univariate Cox regression analysis in the GSE15459 and TCGA cohorts to obtain 60 prognosis-
related genes, which were incorporated into the integrated machine learning framework to construct CMLS. The 
TCGA dataset was used as a training set and the GSE15459 dataset was used as a validation set; subsequently, 
consistent models were constructed based on 99 algorithm combinations and the average C-index of each 
model was calculated to evaluate the predictive ability of the model. As shown in Fig. 3A, CoxBoost + GBM was 
used to construct the highest average C-index of 0.656, but since the C-index of its training set was only 0.618, 
considering the insufficient fit of the model of this combined algorithm, we selected Lasso + StepCox[forward] 
as the prediction model with high accuracy and translation relevance; the training set C-index was 0.666, the 
validation set C-index was 0.623, and the average C-index was 0.645. The Lasso + StepCox algorithm model 
consisted of 10 pivotal genes (CES3, AHCYL2, APOD, EFEMP1, CYP1B1, ASPN, CPE, CLIP3, MAP1B, DKK1) 
(Fig. 3B and C). We subsequently calculated the CMLS scores for each sample in the training and test groups, 

Fig. 2.  Molecular landscape and validation of STAD CSs. (A) Enrichment profiles of different molecular 
features of the three isoforms. (B) The 23 transcription factor profiles of the three subtypes (top panel) 
with potential regulators associated with chromatin remodeling of the three subtypes (bottom panel). (C) 
Immunological profiles of the TCGA-STAD cohort, with the top of the heatmap representing the immunity 
score, stroma score, and tumor purity; the expression of typical immune checkpoint genes is shown in the 
top panel, and the enriched level of immune cells in the TME is shown in the bottom panel. (D) Validation of 
STAD CS in a recent template of the GSE15459 cohort. (E) Survival analysis of patients with STAD CS in the 
GSE15459 cohort. (F) Consistency of CS with NTP in the GSE15459 cohort.
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and the results revealed that patients with low CMLS were more likely to survive and have a better prognosis in 
the TCGA and GSE15459 cohorts (Fig. 3D and E).

To show the prognostic value of the pivotal genes in STAD, we analyzed the Biomarker Exploration for 
Solid Tumors (BEST) database (https://rookieutopia.com/app_direct/BEST/) via Kaplan-Meier analysis. These 
10 genes were significantly associated with overall survival for each patient in the TCGA and GSE15459 cohorts 
and these 10 genes were significantly associated with progression-free survival (PFS) and progression-free 
interval (PFI) for each patient in the TCGA cohort. The results revealed that these 10 genes were significantly 
associated with OS, PFS and PFI in patients with STAD (Figure S1–S3), which implied that the 10 pivotal genes 
screened by the Lasso + StepCox algorithm were closely related to the prognosis of patients with STAD.

Comparison of the prognostic characteristics of patients with STAD
Many gene expression-based prognostic features have been reported in many diseases because of advances in 
sequencing technology in recent years. TO compare our prognostic model features with those reported by other 
researchers, we searched the literature for different prognostic features in patients with STAD over the past 
five years and ultimately included 10 different features in our subsequent study (Table S1). The incorporated 
features were related to different biological processes, which included processes such as immune infiltration, 
apoptosis, and angiogenesis. CMLS showed excellent C-index performance in the TCGA and GSE15459 
datasets, which ranked first among all models (Fig. 4A and B). As CMLS has promising clinical applications, 
we screened independent prognostic factors of STAD by univariate and multivariate Cox analysis (Fig. 4C and 
D) and integrated them to form a comprehensive column-line diagram (Fig. 4E). The calibration curve of the 
comprehensive column-line diagram matched the actual situation (Fig.  4F). Decision curve analysis (DCA) 
showed that the clinical benefit of column-line diagrams for patients was significantly greater than that of CMLS 
alone (Fig. 4G).

Fig. 3.  CMLS generation and prognostic values. (A) The C-index for the training and validation sets of the 
prediction model for the 99 sets of algorithm combinations. (B) Hub genes were selected using the Lasso 
algorithm. (C) The Results of one-way Cox regression analysis of pivotal genes in the training and validation 
cohorts. (D) Survival probability of patients with high and low CMLS risk in the TCGA training set. (E) 
Survival probability of patients with high and low CMLS risk in the GSE15459 validation set.
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Immunologic characteristics of different CMLS subgroups
We analyzed the TME of STAD using the R package of IOBR and found that the infiltration levels of B cells, T cells, 
natural killer cells, and M1 macrophages were significantly greater in patients with low CMLS than in patients 
with high CMLS. This suggesting that immune-infiltrating cells were predominantly enriched in patients with 
low CMLS and that patients with low CMLS were in a state of immune activation (Fig. 5A). Additionally, the 
expression levels of fibroblasts and M2 macrophages were significantly lower in patients with high CMLS than 
in patients with low CMLS, and some immunosuppressive and suppression-related pathways, such as epithelial 
mesenchymal transition (EMT) and transforming growth factor (TGF)-β pathways, were also enriched in 
patients with high CMLS than in patients with low CMLS, suggesting that patients with high CMLS were in an 
immunosuppressive state (Fig. 5B and C). In contrast immunotherapy may be more effective in patients with low 
CMLS (Fig. 5D). TMB is a biological marker of the degree of tumor mutations, and a positive correlation exists 
between TMB and antigen recognition by T lymphocytes and the effectiveness of immunotherapy, which can be 
used to predict the efficacy of immune checkpoint inhibitors31,32. We analyzed the differences in TMB between 
the two groups of patients with high and low CMLS. The results revealed that TMB was greater in patients with 
low CMLS (Fig. 5E), indicating a lower CMLS pair with greater immunogenicity. We also combined the CMLS 
score with TMB for prognostic analysis. The results revealed that patients with lower CMLS and higher TMB 
had the best prognosis (Fig. 5F).

The ability of CMLS to predict the response to immunotherapy
To determine the role of CMLS in immunotherapy in patients with STAD, we evaluated the distribution of 
CMLS in patients with different remission levels after administering immunotherapy to patients with STAD 
and revealed that patients with complete response (CR) and partial response (PR) had significantly lower CMLS 
scores than patients with progressive disease (PD) versus stable disease (SD) (Fig.  6A). A subclass mapping 
algorithm for a group of patients with STAD treated with immune checkpoint inhibitors revealed that patients 
in the low-CMLS subgroup responded better to immune checkpoint inhibitors (Bonferroni corrected p = 0.000 
(Fig. 6B). Moreover, in the GSE78220 and GSE135222 datasets, that STAD patients with low CMLS who were 

Fig. 4.  Clinical practice value of CMLS. (A–B) Comparison of CMLS with 10 other published models in the 
TCGA-STAD and GSE15459 cohorts. (C) Univariate Cox analysis of hub genes in CMLS. (D) Multivariate 
Cox analysis of hub genes in CMLS. (E) Column-line diagram of CMLS combined with clinical features. (F) 
Calibration curves of the combined column-line plots. (G) DCA revealed that the combined column-line 
diagram was more beneficial than CMLS alone for patients with STAD.
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treated with immunotherapy had better prognostic outcomes (GSE78220, p < 0.001 [Fig.  6C]; GSE135222, 
p = 0.017 [Fig. 6D]).

Analysis of the correlation between CMLS and drug sensitivity
To personalize treatment, we used the R package ‘pRRophetic’ to predict drug sensitivity in STAD patients 
with different CMLS risk scores. The results were considered to be statistically significant at p < 0.05. The high-
CMLS group benefited more from drugs such as 5-fluorouracil, cisplatin, gemcitabine, epirubicin, afatinib, and 
darafenib, and had higher drug sensitivity than the low-CMLS group (Fig. 7A and F), suggesting that the high-
risk group may benefit from chemotherapy and targeted therapies. In contrast, the low-CMLS group benefitted 
from only a few drugs, such as dasatinib, BMS-754,807 (IGF-1RIR inhibitor), and WEHI-539Bcl-XL (an 
inhibitor) (Fig. 7G-I).

Discussion
Stomach adenocarcinoma is a highly aggressive malignancy, and biomarkers associated with cancer stratification 
and prognosis at the molecular level are urgently needed to develop individualized treatment plans33. Single-
omics studies are limited by their inability to characterize organisms in multiple dimensions. Multiomics allows 
for more comprehensive and systematic information through epigenomics, as well as enhance ambiguous 
patterns in gene expression data. Complementary information between multiomics methods can be used to 
interpret classification results more accurately and improve predictive performance34,35. Wang et al. established 
35 primary cell models of prostate cancer by integrating multiomics data of lung cancer and accurately captured 
the molecular features of prostate cancer and drug responses, providing a basis for the precise diagnosis and 
treatment of prostate cancer36. Similarly, Gao et al. analyzed multiomics data from patients with breast cancer 
and found that CXCL12 plays an important role in predicting the response o immunotherapy and the prognosis 
of patients with breast cancer37. In this study, we used 10 advanced multiomics clustering methods to identify 
three prognostic subtypes with different characteristics, among which CS1 had the best survival outcome and 
effectively identified high-risk patients with STAD, which provides some value for stratified management and 
precision treatment of STAD.

Advanced machine learning algorithms models can assist in cancer diagnosis and prognosis38 and are also 
effective tools for analyzing and understanding multiomics data of diseases39. Ma et al.40 used 10 machine learning 
algorithms to construct a prognostic model of mitochondrial function and developed a mitochondria-related 
score, which greatly assisted in the diagnosis and prognosis of stomach cancer patients. Wang et al.41 constructed 
a prognostic model based on cancer-associated fibroblast genes and reported that three genes, CDH6, EGFLAM, 
and RASGRF2, were significantly associated with immunotherapy, drug sensitivity, and prognosis in stomach 
cancer. To understand the differences in molecular features between different prognostic subtypes. In this study, 
we used a combination of 99 algorithms from 10 machine learning methods to select the best CMLS to predict 
the prognosis and immunotherapeutic response in patients with STAD. After multidimensional validation, 10 

Fig. 5.  TME-associated molecular features in patients with high and low CMLS. (A) Distribution of TME 
immune cell types in the high-CMLS and low-CMLS groups. (B) Distribution of immunosuppressive features 
in the high-CMLS and low-CMLS groups. (C) Distribution of immune rejection features in the high-CMLS 
and low CMLS groups. (D) Distribution of immunotherapy biomarkers in the high-CMLS and low-CMLS 
groups. (E) Distribution of TMB in the high-CMLS and low-CMLS groups. (F) Survival analysis of CMLS 
combined with TMB; *p < 0.05, **p < 0.01, ***p < 0.001.
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pivotal genes (including CES3, AHCYL2, APOD, EFEMP1, CYP1B1, ASPN, CPE, CLIP3, MAP1B, and DKK1) 
were identified and used to construct a prognostic model for patients with STAD via Lasso + StepCox [forward]. 
We further analyzed these 10 genes with OS, PFS and PFI in patients with STAD and found that 10 genes were 
significantly associated with the prognosis of patients with STAD. Based on the CMLS risk score, we divided all 
patients into high-CMLS and low-CMLS groups. The results of Kaplan-Meier (KM) analysis and univariate and 
multivariate Cox regression analyses revealed that patients in the low-CMLS subgroup had better survival and 
that CMLS could risk stratify patients with STAD according to OS and served as an independent prognostic 
factor for STAD. CMLS also demonstrated optimal prognostic value in every cohort compared to 10 previously 
published prognostic characteristics.

Ten hub genes have been investigated in the context of cancer prognosis. For example, CES3 plays a 
protective role in cancer progression42 and serves as an immune-related prognostic marker for colon cancer43. 
Bioinformatics data suggested that APOD is a component of the stomach cancer risk model, which is associated 
with immune cell infiltration and cellular senescence in stomach cancer44,45. In a multicenter retrospective study, 
high APOD expression was an independent prognostic risk factor for stomach cancer patients46. AHCYL2 
is expressed at low levels in STAD cells, which is associated with copper death in stomach cancer and is a 
prognostic biomarker for stomach cancer47. High expression of EFEMP1 is associated with a good prognosis in 
stomach cancer patients, and its low expression is associated with stomach cancer differentiation, depth of tumor 
infiltration, and lymph node metastasis48. CYP1B1 is a drug-metabolizing enzyme that is highly expressed in 
diffuse stomach cancers and is associated with lymphatic invasion and tumor TNM stage49. Additionally, high 
expression of CYP1B1 reduces the sensitivity of stomach cancer cells to cisplatin, which in turn promotes the 
progression of stomach cancer50. CPE is a regulator of growth and metastasis in multiple cancer types and 
has good prognostic value51. CPE promotes epithelial-mesenchymal transition in stomach cancer cells, leading 
to stomach cancer cell proliferation, invasion, and metastasis; high expression of CPE is also associated with 
low survival and a poor prognosis in stomach cancer patients, which is associated with poor survival and a 
poor prognosis52. A decrease in the expression of CLIP3 promotes glycolysis and induces radioresistance in 

Fig. 6.  Value of CMLS in predicting the response to immunotherapy in patients with STAD. (A) Distribution 
of CMLS in patients with STAD who achieved CR, PR, PD, and SD after immunotherapy. (B) A subclass 
mapping algorithm was used to predict the response to immunotherapy in the high-CMLS and low-CMLS 
groups. (C) Survival analysis of patients in the high-STAD and low-STAD groups in the GSE78220 dataset after 
immunotherapy was administered. (D) Survival analysis of patients in both the high-STAD group and low 
STAD group in the GSE135222 dataset after immunotherapy was administered.
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cancer, and CLIP3 may be a protective prognostic biomarker53. The overexpression of MAP1B, a microtubule 
protein, is associated with poor cancer prognosis and is an independent prognostic marker54. Additionally, 
the downregulation of DDK1 expression is associated with the proliferation, invasion, and chemosensitivity 
of stomach cancer55. ASPN is highly expressed in stomach cancer, and its low expression inhibits stomach 
cancer proliferation, migration, and invasion56. ASPN can also reprogram the glucose metabolism pathway, thus 
allowing stomach cancer cells to resist oxidative stress and promoting migration and invasion. These functions 
of ASPN suggest that it is associated with the poor prognosis of stomach cancer patients57.

Although immunotherapy for malignant tumors has shown positive results, many patients do not benefit 
from it because of intratumor heterogeneity (ITH)58.ITH is a key factor in tumor lethality, the failure of immune 
and targeted therapies, and drug resistance59. Using TCGA and GEO databases, some studies have also reported 
gene expression-based immune landscapes in stomach cancer. For example, Deng et al. developed a degradome-
based prognostic signature (DPS) and reported that patients with low DPS STADs were associated with an 
increase in immune infiltration abundance and TMB scores and a decrease in immune evasion60. Huang et al., 
on the other hand, developed prognostic models using three prognostic genes, and patients in the low-risk group 
had better potential for immunotherapeutic outcomes61. In our study, mRNA, miRNA, and lncRNA expression 
profiles, genomic mutation data, and epigenomic DNA methylation data were combined to reveal immune 
profiles and genomic alterations in different histological variants and risk cohorts, along with bioinformatics 
and machine learning approaches. We analyzed the enrichment of dozens of immune-related features in the 
high-CMLS and low-CMLS groupsand found that patients with low CMLS had more enriched immune cells 
and higher TMBs, suggesting greater antitumor immunity; the results also indicated that patients with low 
CMLS may be categorized as having a ‘hot tumor’ phenotype. However, patients with high CMLS have more 

Fig. 7.  Potential drugs for patients in the high-CMLS and low-CMLS groups. Comparison of the sensitivity of 
A-I high-risk and low-risk patients to 5-fluorouracil (A), cisplatin (B), gemcitabine (C), epirubicin (D), afatinib 
(E), darafenib (F), dasatinib (G), BMS-754,807 (H), and WEHI-539Bcl-XL (I).
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fibroblasts and M2 macrophages enriched and multiple cancer pathways activated, such as the EMT and TGF-β 
pathways, implying that these patients may be more consistent with a “cold tumor” phenotype62,63. We also 
evaluated CMLS scores in patients with different clinical outcomes after immunotherapy and found that patients 
in complete and partial remission had lower CMLS scores, suggesting that patients with low CMLS scores have 
better survival outcomes. We performed subclass mapping to demonstrated a better response to immunotherapy 
in the low-CMLS group, suggesting that the population sensitive to immunotherapy can be screened based on 
CMLS scores, which has important implications for the precision treatment of patients with STAD.

As patients in the high-CMLS group were insensitive to immunotherapy, we predicted drug sensitivity 
in STAD patients with high CMLS scores and found that the high-risk group was sensitive to 5-fluorouracil, 
cisplatin, gemcitabine, epirubicin, and afatinib. Patients in the high CMLS group may benefit from chemotherapy 
and targeted therapy. Some studies have shown that escitalopram oxalate in combination with 5-fluorouracil 
has a synergistic inhibitory effects on stomach cancer64. Li et al. found that 5-fluorouracil enhanced the ability 
of tumor necrosis factor-associated apoptosis-inducing ligands to induced apoptosis in stomach cancer cells 
by inhibiting the MAPK pathway65. Cisplatin is also effective in combination with capecitabine for treating 
human epidermal growth factor receptor 2-negative advanced stomach cancer and is well-tolerated66. Moreover, 
afatinib induces G1 cell cycle arrest and apoptosis for treating trastuzumab-sensitive and trastuzumab-resistant 
HER2 gene-amplified stomach cancer67.

Compared to previous studies, our study has several advantages. First, for more precise and personalized 
treatment of stomach cancer, we integrated five dimensions of histological data of STAD and used 10 advanced 
clustering methods to classify STAD patients into three subtypes, which assisted in the stratified management and 
treatment of STAD. Second, the 10 advanced clustering methods not only yielded more robust typing results but 
also improved the accuracy of determining the survival time of patients with STAD. Thrid, we used 10 machine 
learning methods to construct an STAD prognostic model after clustering. Finally, we screened 10 pivotal genes 
based on the C-indexes of the training and validation sets and created CMLS, which was significantly associated 
with aspects of STAD prognosis and the immune response. However, this study needs to be further combined 
with molecular biology experiments to confirm its biological significance. The clinical value of CMLS also needs 
to be validated by conducting a multicenter, prospective study in the clinic.

Conclusions
In this study, three molecular subtypes of STAD were identified using 10 clustering methods, which revealed the 
prognostic differences among the three molecular subtypes and refined the molecular subtypes of STAD, which 
is important for the stratified management of this disease. Using 10 machine learning algorithms, CMLS was 
constructed, which exhibited superior performance in predicting the prognosis of patients with STAD. CMLS 
was significantly correlated with immune efficacy and drug sensitivity in patients with STAD at different risks 
levels. This finding indicating that CMLS is a promising biomarker. This study provided a strong foundation for 
the early diagnosis and precise treatment of patients with STAD through multiple combinations and multiple 
machine learning algorithms.

Data availability
The original contributions presented in the study are included in the article/supplementary material, further 
inquiries can be directed to the corresponding author.
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