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Integrating multiomics analysis
and machine learning to refine
the molecular subtyping and
prognostic analysis of stomach
adenocarcinoma

Miaodong Wang’3, Qin He'3, Zeshan Chen?" & Yijue Qin?

Stomach adenocarcinoma (STAD) is a common malignancy with high heterogeneity and a lack of
highly precise treatment options. We downloaded the multiomics data of STAD patients in The Cancer
Genome Atlas (TCGA)-STAD cohort, which included mRNA, microRNA, long non-coding RNA, somatic
mutation, and DNA methylation data, from the sxdyc website. We synthesized the multiomics

data of patients with STAD using 10 clustering methods, construct a consensus machine learning-
driven signature (CMLS)-related prognostic models by combining 10 machine learning methods,

and evaluated the prognosis models using the C-index. The prognostic relationship between CMLS
and STAD was assessed using Kaplan-Meier curves, and the independent prognostic value of CMLS
was determined by univariate and multivariate regression analyses. we also evaluated the immune
characteristics, immunotherapy response, and drug sensitivity of different CMLS groups. The results
of the multiomics analysis classified STAD into three subtypes, with CS1 resulting in the best survival
outcome. In total, 10 hub genes (CES3, AHCYL2, APOD, EFEMP1, CYP1B1, ASPN, CPE, CLIP3, MAP1B,
and DKK1) were screened and constructed the CMLS was significantly correlated with prognosis in
patients with STAD and was an independent prognostic factor for patients with STAD. Using the CMLS
risk score, all patients were divided into a high CMLS group and a low CMLS group. Patients in the low-
CMLS group had better survival, more enriched immune cells, and higher tumor mutation load scores,
suggesting better immunotherapy responsiveness and a possible “hot tumor” phenotype. Patients in
the high-CMLS group had a significantly poorer prognosis and were less sensitive to immunotherapy
but were likely to benefit more from chemotherapy and targeted therapy. In this study, 10 clustering
methods and 10 machine learning methods were combined to analyze the multiomics of STAD, classify
STAD into three subtypes, and constructed CMLS-related prognostic model features, which are
important for accurate management and effective treatment of STAD.
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PD-1 Programmed death receptor 1
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ssGSEA Single-sample gene set enrichment analysis
TME Tumor microenvironment

Enet Elastic Networks

SuperPC Supervisory principal component
Survival-SVM  Survival Support Vector Machines

RSF Random Survival Forest

GBM Generalized boosted regression modeling
(0N Overall survival

PES Progression-free survival

PFI Progression-free interval

IOBR Immunotumor Biology Research

TIDE Tumor Immune Dysfunction and Exclusion
NTP Nearest Template Prediction

EMT Epithelial mesenchymal transition

TGF Transforming growth factor

ITH Intra-Tumor Heterogeneity

Stomach cancer is highly malignant. According to epidemiologic surveys, there will about 1.1 million new cases
of stomach cancer worldwide in 2020; it is the fourth leading cause of death due to cancers worldwide!. Among
them, Asia has the highest incidence and mortality rate of stomach cancer, and the five-year survival rate is less
than 20%! . The most common type of stomach cancer is stomach adenocarcinoma (STAD), which accounts
for more than 95% of all types of stomach cancer®®. Patients with early STAD may have a better prognosis
through radical surgery. However, most patients have no prominent early symptoms, and when diagnosed, they
are already in the middle or late stage with metastasis; at this point, they have probably lost the chance of surgery,
and thus have a high mortality rate and poor prognosis>®. The treatments for advanced stomach cancer include
chemotherapy, radiotherapy, targeted therapy, and antiangiogenic drugs. However, the efficacy of these methods
is limited, the adverse effects are serious, and overall survival is significantly low”8,

Immunotherapy has made considerable progress in the treatment of stomach cancer. Programmed death
receptor 1 (PD-1) monoclonal antibodies have been approved for third-line treatment of advanced stomach
cancer, and PD-1 monoclonal antibody in combination with chemotherapy have become the new standard for
first-line treatment of advanced stomach cancer’, providing new strategies for first-line and backline treatment
of advanced STAD!®!. However, a large proportion of patients with STAD do not benefit from immunotherapy,
which is limited by tumor heterogeneity and the lack of efficacy predictive biomarkers'2. Therefore, accurate
screening of immunodominant populations is necessary, and molecular subtyping can help address this issue.
Zhao et al. determined via immunohistochemistry that breast cancers can be divided into five subtypes, of
which CD8+T cells in the IHC-IM subtype infiltrate a greater number of tumor cells and exhibit more potent
immunogenicity, implying that this subtype may be more effective for immunotherapy'®. Hong et al. classified
thyroid cancer into four subtypes based on transcriptome sequencing, genomic analysis, and clinicopathological
information; among them, there is an immune-enriched subtype in which tumors exhibit an increase in
immune infiltration and the overexpression of immune checkpoints!'®. These studies are important for accurately
screening immunodominant populations for cancer treatment.

High-throughput sequencing technology has developed rapidly in recent times'>. While single-omics
studies can unidirectionally provide a large amount of information on a tumors, cancer-host interactions,
molecular interactions within cancers, and associations between different histologies characteristics require
a multidimensional approach for representation. The use of integrated multiomics studies in conjunction
with advanced machine learning algorithms is a highly promising tool for gaining insights into the cancer
pathogenesis and heterogeneity'®!”. The combination of the two facilitates the development of precise diagnostic
strategies for cancer.

In this study, mRNA, microRNA (miRNA) and long non-coding RNA (IncRNA) expression profiles, and
genomic mutation and epigenomic DNA methylation data were combined, and three subtypes of STAD were
constructed using 10 multiomics integration methods. In total, 60 prognosis-related genes were identified based
on differential expression of different subtypes. We developed a Consensus machine learning-driven signature
(CMLS) based on prognostically relevant genes via 10 machine learning methods. Finally, the prognosis,
immune profile, immune response and drug treatment response of patients with STAD were predicted based
on the CMLS score, which served as a framework for accurate stratification of patients with STAD patients and
selection of personalized treatment strategies.

Materials and methods

Data preprocessing for multiomics data and multihub cohorts in STAD

We downloaded multiomics data for patients with STAD from The Cancer Genome Atlas (TCGA)-STAD
cohort, which include mRNA, miRNA, IncRNA, somatic mutation data, DNA methylation data, and clinical
data, from the sxdyc website (http://www.sxdyc.com/). Moreover, the sxdyc website performeds ID along with
the summarization and organization of these multiomics data to facilitate the subsequent clustering analysis.
Complete information on STAD in seven cohorts, GSE15459, GSE26253, GSE84437, GSE31210, GSE78220,
GSE91061, and GSE135222, was obtained from the Gene Expression Omnibus (GEO) database (http://www.nc
bi.nlm.nih.gov/geo), and information on a clinical trial was obtained from http://research-pub.gene.com/IMvig
or210CoreBiologies, which is available under a Creative Commons 3.0 license'8. We converted high-throughput
sequencing of the transcriptome into transcripts per kilobase million (TPM). All expression profiles from
the array were subsequently replicated and normalized. The limma software package was used for differential
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analysis of tumor and normal samples'®. Additionally, TPM expression was used to represent RNA sequencing
(RNA-seq) data®,

Multiomics consensus integration analysis
Five dimensions of information on the TCGA-STAD cohort samples were matched (n=348). The TPM data
were log2-transformed. The DNA methylation data were selected to probe the promoter CpG islands?'. Gene
mutation matrix was used to determine whether the had a shifted code insertion, deletion or in-frame insertion,
deletion, nonsense or missense or uninterrupted mutation, and splice site or translation initiation site mutation.
The “getElites” function of the MOVICS software package was used to screen the genetic features of the STAD
subtype multicombinatorial data?2. To screen the top 1,500 genes with the largest variations in mRNAs, IncRNAs,
miRNAs and methylation, we set the “method” parameter of the “getElites” function to “mad”. The “method”
parameter was set to “cox’, and the clinical data were combined to screen statistically significant prognostic genes
(P<0.05). For mutation data, we used the Oncoprint function of the maftools package to obtain the 5000 genes
with the highest mutation frequencies. The “method” parameter was subsequently set to “freq” to obtain the top
5% most frequently mutated genes in STAD. Data from the five dimensions were included in the next study.
After the above genetic characterization, we obtained the optimal number of clusters. We used the
“getClustNum” function in the MOVICS package to estimate the number of subgroups and finally categorized
them into three subtypes. We applied the “getMOIC” function for clustering analysis, which contains 10
clustering algorithms (SNE, COCA, CIMLR, NEMO, Consensus clustering, LRAcluster, IntNME, iClusterBayes,
PINSPlus, MoCluster). These 10 clustering algorithms were used as inputs to the “methodslist” parameter, and
the other parameters were default parameters. Then, we obtained the results of the 10 clustering methods, and
use the “getConsensusMOIC” function to integrate the results of the 10 clustering methods, with the “distance”
parameter set to “Euclidean”, and the “inkage” parameter was set to “average”?2. The integrated clustering result
is presented here.

Specific molecular characterization and stability of the consensus subtypes

To determine the differences in the activation status of biological pathways among the three subtypes, we
performed single-sample gene set enrichment analysis (ssGSEA) using the R software “GSVA” package to assess
the enrichment of relevant pathways in the three subtypes®®. Transcriptional regulatory networks (regulons) were
constructed using the Reconstruction of Transcriptional regulatory Networks and analysis of regulons (RTN)
R package. Tumor microenvironment (TME) scores, including the stromal score, immune score, and tumor
purity, were calculated using the R language “estimate” R package??, and the enrichment of 22 immune cells in
the three subtypes was determined by GSVA. For subtype stability, we clustering results were validated using
subtype-specific biomarkers from the validation cohort and then the consistency of the consensus clustering was
compared with nearest template prediction (NTP)?2,

Establishment of a consensus machine learning-driven signature

To obtain prognosis-related genes, we extracted differential genes in three subgroups in the TCGA-STAD
dataset. Prognosis-related genes were identified by conducting univariate Cox regression analysis, and P<0.05
was considered to be statistically significant. We constructed a CMLS-related prognostic models based on
prognostic-related genes using 10 machine learning 99 combination methods, in which the TCGA-STAD cohort
was used as the training set and the GSE15459 cohort was used as the validation set; the 10 machine learning
methods included Elastic Network (Enet), Lasso, CoxBoost, Stepwise Cox, Partial Least Squares regression of
cox (plsRcox), Supervised Principal Component (SuperPC), Ridge, Survival Support Vector Machine (survival-
SVM), Random Survival Forest (RSF), and Generalized Boosted Regression Modeling (GBM). The average
C-index of each model was calculated to evaluate the predictive ability of the model. Finally, the best combination
of algorithms was identified with robustness and clinical translational significance based on the C-index of the
training and validation sets.

Prognostic value of CMLS and prospects for clinical applications

We used the “surv-cutpoint” function of the survminer package to score each sample in the training and
validation sets of model results for CMLS and divided the samples into high and low CMLS groups based on
the median risk score. The prognostic relationship between CMLS and STAD was assessed using Kaplan-Meier
curves. To compare the value of our prognostic features with other \prognostic-related features of STAD in
published studies, we systematically searched and included 10 publications and 10 prognostic features and
calculated the score for each sample based on the published coefficients. Their prognostic predictive ability
was ultimately shown by the C-index. Univariate and multivariate Cox regression analyses of risk scores and
associated clinical parameters were performed in the TCGA-STAD cohort to determine whether risk scores
and associated clinical parameters could be used as independent predictors of overall survival (OS) in patients
with STAD. Based on the obtained predictors, column line plots were constructed using the R software “regplot”
package to predict the one-year and three-year OS of patients with STAD in TCGA, and calibration curves
were used to confirm that the predicted probability of survival agreed with the actual observed results. Decision
curves were used to assess the clinical benefit.

Immune characteristics and immunotherapy response in different risk groups based on CMLS
scores

We used the Immuno-Oncology Biology Research (IOBR) R package to analyze TME, immunotherapy
response, and immunosuppression in different CMLS risk groups?. The tumor mutational load (TMB) was also
determined and compared between the two groups®® and the prediction of patients with STAD was predicted
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by TMB combined with CMLS. Subclass mapping and the Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm were used in the GSE78220 and GSE135222 datasets to estimate immunotherapy response®’>°.

Significance of CMLS scores for drug sensitivity in different CMLS groups
The “oncoPredict” R package was used to predict drug sensitivity in patients with STAD with different CMLS
risk scores®, and P<0.05 was considered to be statistically significant.

Statistical analyses

All data were processed and analyzed using the R4.3.0 software through appropriate packages. Unpaired Student’s
t-test performed to determine the differences between two normally distributed variables. The Wilcoxon rank
sum test was performed to estimate the difference between two non-normally distributed variables. The Kruskal-
Wallis test was conducted for between-group comparisons of more than two groups.TIDE pairs of lists were
tested by conducting the two-sided Fisher exact test. All results were considered to be statistically significant at
P<0.05.

Result

Multi-omics consensus prognostic-related molecular subtypes in STAD

After preprocessing all data, we independently identified three isoforms using one of 10 multiomics integrated
clustering algorithms (Fig. 1A and B). We combined the clustering results with the unique molecular expression
patterns of mRNAs, IncRNAs, miRNAs, epigenetic methylation, and somatic mutations of STAD through a
consensus clustering approach (Fig. 1C and E). Our classification system revealed three subtypes, which were
strongly associated with overall survival (OS) (p<0.001; Fig. 1F). Among the three subtypes, cancer subtype 1
(CS1) had the best survival outcome (Fig. 1F).

Delineation of STAD integration consensus molecular subtypes

The enrichment of different molecular features in the samples using the ssGSEA algorithm. The results revealed
that the three subtypes had different responses to specific treatments, with the immunosuppressive oncogenic
pathway significantly enriched in CS2, while CS1 and CS3 were significantly enriched in the radiotherapy
pathway. This finding suggested that patients with the CS2 subtype may benefit more from immunotherapy and
that CS1 and CS3 patients may benefit more from radiotherapy (Fig. 2A). To investigate the differences in the
transcriptome, we further analyzed 23 transcription factors of STAD and potential regulators associated with
cancer chromatin remodeling, and found that ERBB2, FOXA1, FOXM1, GATA6, and ERBB3 regulators were
significantly activated in CS1 and CS3, whereas androgen receptor (AR), PGR, ESR1, STAT3, FGFR1, RARA,
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Fig. 1. Multi-omics integration of consensus subtypes of STAD. (A) Cluster prediction indices and gap
statistics were analyzed for multiomics clustering. (B) Sample similarity for each subgroup was assessed by
calculating Silhoutte scores. (C) Integrated heatmap of STAD multiomics data sharing pooled subtypes. (D) 10
multiomics clustering methods for clustering STAD. (E) Consensus clustering matrix of three novel prognostic
subtypes obtained by 10 multiomics clustering methods. (F) Survival outcomes of the three subtypes, with CS1
having the best survival outcome.
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Fig. 2. Molecular landscape and validation of STAD CSs. (A) Enrichment profiles of different molecular
features of the three isoforms. (B) The 23 transcription factor profiles of the three subtypes (top panel)

with potential regulators associated with chromatin remodeling of the three subtypes (bottom panel). (C)
Immunological profiles of the TCGA-STAD cohort, with the top of the heatmap representing the immunity
score, stroma score, and tumor purity; the expression of typical immune checkpoint genes is shown in the
top panel, and the enriched level of immune cells in the TME is shown in the bottom panel. (D) Validation of
STAD CS in a recent template of the GSE15459 cohort. (E) Survival analysis of patients with STAD CS in the
GSE15459 cohort. (F) Consistency of CS with NTP in the GSE15459 cohort.

and RXRA were significantly activated in CS2. Similarly, the pattern of differential regulation between different
CS subgroups was illustrated in the activity profiles of cancer chromatin remodeling-associated regulators
(Fig. 2B). The results suggested that these different transcriptional networks may be important differentiators
factors for the three molecular subtypes. The tumor immune microenvironment directly influences tumor
immune efficacy, and based on this fact, we quantified the level of enrichment of microenvironmental cells in
different subgroups. The results showed that immune cell infiltration increased significantly in CS2 but was low
in CS1 and CS3 (Fig. 2C). To confirm the stability of the subtypes, we selected 20 specific upregulated genes
associated with the three subtypes, used the nearest template prediction (NTP) algorithm as a classifier, and
validated it in the GSE15459 cohort. The results indicated that CS1 in GSE15459 had the best prognosis among
all subtypes (p<0.005) (Fig. 2D and E). We also assessed the concordance of CS with NTP (p <0.005; Fig. 2F).

CMLS construction via integrated machine learning

We performed univariate Cox regression analysis in the GSE15459 and TCGA cohorts to obtain 60 prognosis-
related genes, which were incorporated into the integrated machine learning framework to construct CMLS. The
TCGA dataset was used as a training set and the GSE15459 dataset was used as a validation set; subsequently,
consistent models were constructed based on 99 algorithm combinations and the average C-index of each
model was calculated to evaluate the predictive ability of the model. As shown in Fig. 3A, CoxBoost+ GBM was
used to construct the highest average C-index of 0.656, but since the C-index of its training set was only 0.618,
considering the insufficient fit of the model of this combined algorithm, we selected Lasso + StepCox[forward]
as the prediction model with high accuracy and translation relevance; the training set C-index was 0.666, the
validation set C-index was 0.623, and the average C-index was 0.645. The Lasso + StepCox algorithm model
consisted of 10 pivotal genes (CES3, AHCYL2, APOD, EFEMP1, CYP1B1, ASPN, CPE, CLIP3, MAP1B, DKK1)
(Fig. 3B and C). We subsequently calculated the CMLS scores for each sample in the training and test groups,
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Fig. 3. CMLS generation and prognostic values. (A) The C-index for the training and validation sets of the
prediction model for the 99 sets of algorithm combinations. (B) Hub genes were selected using the Lasso
algorithm. (C) The Results of one-way Cox regression analysis of pivotal genes in the training and validation
cohorts. (D) Survival probability of patients with high and low CMLS risk in the TCGA training set. (E)
Survival probability of patients with high and low CMLS risk in the GSE15459 validation set.

and the results revealed that patients with low CMLS were more likely to survive and have a better prognosis in
the TCGA and GSE15459 cohorts (Fig. 3D and E).

To show the prognostic value of the pivotal genes in STAD, we analyzed the Biomarker Exploration for
Solid Tumors (BEST) database (https://rookieutopia.com/app_direct/BEST/) via Kaplan-Meier analysis. These
10 genes were significantly associated with overall survival for each patient in the TCGA and GSE15459 cohorts
and these 10 genes were significantly associated with progression-free survival (PFS) and progression-free
interval (PFI) for each patient in the TCGA cohort. The results revealed that these 10 genes were significantly
associated with OS, PFS and PFI in patients with STAD (Figure S1-S3), which implied that the 10 pivotal genes
screened by the Lasso + StepCox algorithm were closely related to the prognosis of patients with STAD.

Comparison of the prognostic characteristics of patients with STAD

Many gene expression-based prognostic features have been reported in many diseases because of advances in
sequencing technology in recent years. TO compare our prognostic model features with those reported by other
researchers, we searched the literature for different prognostic features in patients with STAD over the past
five years and ultimately included 10 different features in our subsequent study (Table S1). The incorporated
features were related to different biological processes, which included processes such as immune infiltration,
apoptosis, and angiogenesis. CMLS showed excellent C-index performance in the TCGA and GSE15459
datasets, which ranked first among all models (Fig. 4A and B). As CMLS has promising clinical applications,
we screened independent prognostic factors of STAD by univariate and multivariate Cox analysis (Fig. 4C and
D) and integrated them to form a comprehensive column-line diagram (Fig. 4E). The calibration curve of the
comprehensive column-line diagram matched the actual situation (Fig. 4F). Decision curve analysis (DCA)
showed that the clinical benefit of column-line diagrams for patients was significantly greater than that of CMLS
alone (Fig. 4G).
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Cox analysis of hub genes in CMLS. (E) Column-line diagram of CMLS combined with clinical features. (F)
Calibration curves of the combined column-line plots. (G) DCA revealed that the combined column-line
diagram was more beneficial than CMLS alone for patients with STAD.

Immunologic characteristics of different CMLS subgroups

We analyzed the TME of STAD using the R package of IOBR and found that the infiltration levels of B cells, T cells,
natural killer cells, and M1 macrophages were significantly greater in patients with low CMLS than in patients
with high CMLS. This suggesting that immune-infiltrating cells were predominantly enriched in patients with
low CMLS and that patients with low CMLS were in a state of immune activation (Fig. 5A). Additionally, the
expression levels of fibroblasts and M2 macrophages were significantly lower in patients with high CMLS than
in patients with low CMLS, and some immunosuppressive and suppression-related pathways, such as epithelial
mesenchymal transition (EMT) and transforming growth factor (TGF)-p pathways, were also enriched in
patients with high CMLS than in patients with low CMLS, suggesting that patients with high CMLS were in an
immunosuppressive state (Fig. 5B and C). In contrast immunotherapy may be more effective in patients with low
CMLS (Fig. 5D). TMB is a biological marker of the degree of tumor mutations, and a positive correlation exists
between TMB and antigen recognition by T lymphocytes and the effectiveness of immunotherapy, which can be
used to predict the efficacy of immune checkpoint inhibitors®*2, We analyzed the differences in TMB between
the two groups of patients with high and low CMLS. The results revealed that TMB was greater in patients with
low CMLS (Fig. 5E), indicating a lower CMLS pair with greater immunogenicity. We also combined the CMLS
score with TMB for prognostic analysis. The results revealed that patients with lower CMLS and higher TMB
had the best prognosis (Fig. 5F).

The ability of CMLS to predict the response to immunotherapy

To determine the role of CMLS in immunotherapy in patients with STAD, we evaluated the distribution of
CMLS in patients with different remission levels after administering immunotherapy to patients with STAD
and revealed that patients with complete response (CR) and partial response (PR) had significantly lower CMLS
scores than patients with progressive disease (PD) versus stable disease (SD) (Fig. 6A). A subclass mapping
algorithm for a group of patients with STAD treated with immune checkpoint inhibitors revealed that patients
in the low-CMLS subgroup responded better to immune checkpoint inhibitors (Bonferroni corrected p=0.000
(Fig. 6B). Moreover, in the GSE78220 and GSE135222 datasets, that STAD patients with low CMLS who were
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Fig. 5. TME-associated molecular features in patients with high and low CMLS. (A) Distribution of TME
immune cell types in the high-CMLS and low-CMLS groups. (B) Distribution of immunosuppressive features
in the high-CMLS and low-CMLS groups. (C) Distribution of immune rejection features in the high-CMLS
and low CMLS groups. (D) Distribution of immunotherapy biomarkers in the high-CMLS and low-CMLS
groups. (E) Distribution of TMB in the high-CMLS and low-CMLS groups. (F) Survival analysis of CMLS
combined with TMB; *p <0.05, **p <0.01, ***p <0.001.

treated with immunotherapy had better prognostic outcomes (GSE78220, p<0.001 [Fig. 6C]; GSE135222,
p=0.017 [Fig. 6D]).

Analysis of the correlation between CMLS and drug sensitivity

To personalize treatment, we used the R package ‘pRRophetic’ to predict drug sensitivity in STAD patients
with different CMLS risk scores. The results were considered to be statistically significant at p <0.05. The high-
CMLS group benefited more from drugs such as 5-fluorouracil, cisplatin, gemcitabine, epirubicin, afatinib, and
darafenib, and had higher drug sensitivity than the low-CMLS group (Fig. 7A and F), suggesting that the high-
risk group may benefit from chemotherapy and targeted therapies. In contrast, the low-CMLS group benefitted
from only a few drugs, such as dasatinib, BMS-754,807 (IGF-1RIR inhibitor), and WEHI-539Bcl-XL (an
inhibitor) (Fig. 7G-I).

Discussion

Stomach adenocarcinoma is a highly aggressive malignancy, and biomarkers associated with cancer stratification
and prognosis at the molecular level are urgently needed to develop individualized treatment plans®. Single-
omics studies are limited by their inability to characterize organisms in multiple dimensions. Multiomics allows
for more comprehensive and systematic information through epigenomics, as well as enhance ambiguous
patterns in gene expression data. Complementary information between multiomics methods can be used to
interpret classification results more accurately and improve predictive performance®+*. Wang et al. established
35 primary cell models of prostate cancer by integrating multiomics data of lung cancer and accurately captured
the molecular features of prostate cancer and drug responses, providing a basis for the precise diagnosis and
treatment of prostate cancer’®. Similarly, Gao et al. analyzed multiomics data from patients with breast cancer
and found that CXCL12 plays an important role in predicting the response o immunotherapy and the prognosis
of patients with breast cancer”. In this study, we used 10 advanced multiomics clustering methods to identify
three prognostic subtypes with different characteristics, among which CS1 had the best survival outcome and
effectively identified high-risk patients with STAD, which provides some value for stratified management and
precision treatment of STAD.

Advanced machine learning algorithms models can assist in cancer diagnosis and prognosis®® and are also
effective tools for analyzing and understanding multiomics data of diseases®*. Ma et al.* used 10 machine learning
algorithms to construct a prognostic model of mitochondrial function and developed a mitochondria-related
score, which greatly assisted in the diagnosis and prognosis of stomach cancer patients. Wang et al.*! constructed
a prognostic model based on cancer-associated fibroblast genes and reported that three genes, CDH6, EGFLAM,
and RASGRF2, were significantly associated with immunotherapy, drug sensitivity, and prognosis in stomach
cancer. To understand the differences in molecular features between different prognostic subtypes. In this study,
we used a combination of 99 algorithms from 10 machine learning methods to select the best CMLS to predict
the prognosis and immunotherapeutic response in patients with STAD. After multidimensional validation, 10
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Fig. 6. Value of CMLS in predicting the response to immunotherapy in patients with STAD. (A) Distribution
of CMLS in patients with STAD who achieved CR, PR, PD, and SD after immunotherapy. (B) A subclass
mapping algorithm was used to predict the response to immunotherapy in the high-CMLS and low-CMLS
groups. (C) Survival analysis of patients in the high-STAD and low-STAD groups in the GSE78220 dataset after
immunotherapy was administered. (D) Survival analysis of patients in both the high-STAD group and low
STAD group in the GSE135222 dataset after immunotherapy was administered.

pivotal genes (including CES3, AHCYL2, APOD, EFEMP1, CYP1B1, ASPN, CPE, CLIP3, MAP1B, and DKK1)
were identified and used to construct a prognostic model for patients with STAD via Lasso + StepCox [forward].
We further analyzed these 10 genes with OS, PFS and PFI in patients with STAD and found that 10 genes were
significantly associated with the prognosis of patients with STAD. Based on the CMLS risk score, we divided all
patients into high-CMLS and low-CMLS groups. The results of Kaplan-Meier (KM) analysis and univariate and
multivariate Cox regression analyses revealed that patients in the low-CMLS subgroup had better survival and
that CMLS could risk stratify patients with STAD according to OS and served as an independent prognostic
factor for STAD. CMLS also demonstrated optimal prognostic value in every cohort compared to 10 previously
published prognostic characteristics.

Ten hub genes have been investigated in the context of cancer prognosis. For example, CES3 plays a
protective role in cancer progression*? and serves as an immune-related prognostic marker for colon cancer®.
Bioinformatics data suggested that APOD is a component of the stomach cancer risk model, which is associated
with immune cell infiltration and cellular senescence in stomach cancer***>. In a multicenter retrospective study,
high APOD expression was an independent prognostic risk factor for stomach cancer patients*®. AHCYL2
is expressed at low levels in STAD cells, which is associated with copper death in stomach cancer and is a
prognostic biomarker for stomach cancer?’. High expression of EFEMP1 is associated with a good prognosis in
stomach cancer patients, and its low expression is associated with stomach cancer differentiation, depth of tumor
infiltration, and lymph node metastasis*®. CYP1B1 is a drug-metabolizing enzyme that is highly expressed in
diffuse stomach cancers and is associated with lymphatic invasion and tumor TNM stage®®. Additionally, high
expression of CYP1BI reduces the sensitivity of stomach cancer cells to cisplatin, which in turn promotes the
progression of stomach cancer®’. CPE is a regulator of growth and metastasis in multiple cancer types and
has good prognostic value®!. CPE promotes epithelial-mesenchymal transition in stomach cancer cells, leading
to stomach cancer cell proliferation, invasion, and metastasis; high expression of CPE is also associated with
low survival and a poor prognosis in stomach cancer patients, which is associated with poor survival and a
poor prognosis®. A decrease in the expression of CLIP3 promotes glycolysis and induces radioresistance in

Scientific Reports |

(2025) 15:3843 | https://doi.org/10.1038/s41598-025-87444-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

A Risk B8 low Bl high B Risk B8 low Bl high C Risk B8 low Bl high
p<2.22e-16 1e-06 1.2e-07
L | e |
. 8 .
.
, 100 he . .
H . 5 24
£ F 2
g Se i ¢
= z § :
3 75 ] o
g & £ i
2 s g
S a4 52 ]
3 2 €
[ o 3
b 50 ]
. 2
. 0
low high low high low high
Risk Risk Risk
Risk B8 low Bl high E Risk 8 low Bl high Risk B8 fow B high
2e-05 5 1e-12 —20e00
20 3
8
. H
4 z
£ . 3 8
s 83 2
§ 10 S g 5
S g
S
& g K .
w [=} 4 .
05 2
.
0.0 1 : :
low high low high low high
Risk Risk Risk
Risk E8 low Bl high Risk B8 low Bl high Risk B8 low Bl high
1.6e-11 3 7.2e-12 7 8.6e-05
— e
.
.
! 6
Z 2
g‘ 2 s
3 22 25
] 2
H 3 g
8 5 2
2 8 24
82 & & 3
a 24 = "
. . 2
0 N .
low high low high low high
Risk Risk Risk

Fig. 7. Potential drugs for patients in the high-CMLS and low-CMLS groups. Comparison of the sensitivity of
A-T high-risk and low-risk patients to 5-fluorouracil (A), cisplatin (B), gemcitabine (C), epirubicin (D), afatinib
(E), darafenib (F), dasatinib (G), BMS-754,807 (H), and WEHI-539Bcl-XL (I).

cancer, and CLIP3 may be a protective prognostic biomarker®?. The overexpression of MAP1B, a microtubule
protein, is associated with poor cancer prognosis and is an independent prognostic marker®. Additionally,
the downregulation of DDK1 expression is associated with the proliferation, invasion, and chemosensitivity
of stomach cancer®. ASPN is highly expressed in stomach cancer, and its low expression inhibits stomach
cancer proliferation, migration, and invasion®®. ASPN can also reprogram the glucose metabolism pathway, thus
allowing stomach cancer cells to resist oxidative stress and promoting migration and invasion. These functions
of ASPN suggest that it is associated with the poor prognosis of stomach cancer patients’.

Although immunotherapy for malignant tumors has shown positive results, many patients do not benefit
from it because of intratumor heterogeneity (ITH)*®.ITH is a key factor in tumor lethality, the failure of immune
and targeted therapies, and drug resistance®. Using TCGA and GEO databases, some studies have also reported
gene expression-based immune landscapes in stomach cancer. For example, Deng et al. developed a degradome-
based prognostic signature (DPS) and reported that patients with low DPS STADs were associated with an
increase in immune infiltration abundance and TMB scores and a decrease in immune evasion®. Huang et al,,
on the other hand, developed prognostic models using three prognostic genes, and patients in the low-risk group
had better potential for immunotherapeutic outcomes®!. In our study, mRNA, miRNA, and IncRNA expression
profiles, genomic mutation data, and epigenomic DNA methylation data were combined to reveal immune
profiles and genomic alterations in different histological variants and risk cohorts, along with bioinformatics
and machine learning approaches. We analyzed the enrichment of dozens of immune-related features in the
high-CMLS and low-CMLS groupsand found that patients with low CMLS had more enriched immune cells
and higher TMBs, suggesting greater antitumor immunity; the results also indicated that patients with low
CMLS may be categorized as having a ‘hot tumor’ phenotype. However, patients with high CMLS have more
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fibroblasts and M2 macrophages enriched and multiple cancer pathways activated, such as the EMT and TGF-f
pathways, implying that these patients may be more consistent with a “cold tumor” phenotype®>®. We also
evaluated CMLS scores in patients with different clinical outcomes after immunotherapy and found that patients
in complete and partial remission had lower CMLS scores, suggesting that patients with low CMLS scores have
better survival outcomes. We performed subclass mapping to demonstrated a better response to immunotherapy
in the low-CMLS group, suggesting that the population sensitive to immunotherapy can be screened based on
CMLS scores, which has important implications for the precision treatment of patients with STAD.

As patients in the high-CMLS group were insensitive to immunotherapy, we predicted drug sensitivity
in STAD patients with high CMLS scores and found that the high-risk group was sensitive to 5-fluorouracil,
cisplatin, gemcitabine, epirubicin, and afatinib. Patients in the high CMLS group may benefit from chemotherapy
and targeted therapy. Some studies have shown that escitalopram oxalate in combination with 5-fluorouracil
has a synergistic inhibitory effects on stomach cancer®. Li et al. found that 5-fluorouracil enhanced the ability
of tumor necrosis factor-associated apoptosis-inducing ligands to induced apoptosis in stomach cancer cells
by inhibiting the MAPK pathway®. Cisplatin is also effective in combination with capecitabine for treating
human epidermal growth factor receptor 2-negative advanced stomach cancer and is well-tolerated®®. Moreover,
afatinib induces G1 cell cycle arrest and apoptosis for treating trastuzumab-sensitive and trastuzumab-resistant
HER?2 gene-amplified stomach cancer®”.

Compared to previous studies, our study has several advantages. First, for more precise and personalized
treatment of stomach cancer, we integrated five dimensions of histological data of STAD and used 10 advanced
clustering methods to classify STAD patients into three subtypes, which assisted in the stratified management and
treatment of STAD. Second, the 10 advanced clustering methods not only yielded more robust typing results but
also improved the accuracy of determining the survival time of patients with STAD. Thrid, we used 10 machine
learning methods to construct an STAD prognostic model after clustering. Finally, we screened 10 pivotal genes
based on the C-indexes of the training and validation sets and created CMLS, which was significantly associated
with aspects of STAD prognosis and the immune response. However, this study needs to be further combined
with molecular biology experiments to confirm its biological significance. The clinical value of CMLS also needs
to be validated by conducting a multicenter, prospective study in the clinic.

Conclusions

In this study, three molecular subtypes of STAD were identified using 10 clustering methods, which revealed the
prognostic differences among the three molecular subtypes and refined the molecular subtypes of STAD, which
is important for the stratified management of this disease. Using 10 machine learning algorithms, CMLS was
constructed, which exhibited superior performance in predicting the prognosis of patients with STAD. CMLS
was significantly correlated with immune efficacy and drug sensitivity in patients with STAD at different risks
levels. This finding indicating that CMLS is a promising biomarker. This study provided a strong foundation for
the early diagnosis and precise treatment of patients with STAD through multiple combinations and multiple
machine learning algorithms.

Data availability
The original contributions presented in the study are included in the article/supplementary material, further
inquiries can be directed to the corresponding author.
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