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Abstract: Anthocyanins are natural pigments with antioxidant effects that exist in various fruits and
vegetables. The accumulation of anthocyanins is induced by environmental signals and regulated
by transcription factors in plants. Numerous evidence has indicated that among the environmental
factors, light is one of the most signal regulatory factors involved in the anthocyanin biosynthesis
pathway. However, the signal transduction of light and molecular regulation of anthocyanin synthesis
remains to be explored. Here, we focus on the research progress of signal transduction factors for
positive and negative regulation in light-dependent and light-independent anthocyanin biosynthesis.
In particular, we will discuss light-induced regulatory pathways and related specific regulators of
anthocyanin biosynthesis in plants. In addition, an integrated regulatory network of anthocyanin
biosynthesis controlled by transcription factors is discussed based on the significant progress.

Keywords: anthocyanin biosynthesis; transcription factors; environmental regulation; light signal;
regulatory network

1. Introduction

Plant growth and development are greatly affected by the environment. Anthocyanin
production is affected by various environmental factors such as light, low temperature,
drought, and salinity [1–3]. Light is a particularly important environmental factor in-
ducing anthocyanin accumulation in plants. Different types of anthocyanin are widely
distributed in various plant tissues such as flowers, fruits, stems, leaves, and underground
tubers [4]. The anthocyanin accumulation in these plant tissues is shown as light-dependent
or light-independent biosynthesis. The different light quality and intensity are perceived
by receptors or signal factors to transduce them into downstream transcription factors [5].
Next, metabolites are synthesized by enzymes encoded by structural genes that are regu-
lated by transcription factors to respond to light. Anthocyanins belonging to the flavonoids
are important secondary metabolites to adapt to harmful environmental stress in plants.

Anthocyanins are universal water-soluble flavonoid pigments that are responsible
for the widest color of leaves, petals, fruits, seeds, stems, and tubers of plants (Liu et al.,
2021) [6]. Moreover, they have been shown to play a beneficial role in the visual activity,
cancer, heart disease, and age-related neurodegenerative disorders [7], although no effects
or even a negative effect on health-related parameters have also been reported [6,8]. An-
thocyanins consist of an anthocyanidin backbone with sugar and acyl conjugates while
anthocyanidins are composed of two aromatic benzene rings and an oxygenated hete-
rocycle [9,10]. Due to the number of hydroxyl groups and glycosyl groups in the rings,
anthocyanins have potent antioxidant activity to scavenge free radicals and reactive oxygen
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species (ROS) during environmental stresses [6]. Therefore, anthocyanins have protective
effects during plant development through absorbing excess UV light, preventing lipid
peroxidation and suppressing the activity of ROS. Then, plants have evolved to the biosyn-
thetic pathways of anthocyanins to resist various abiotic stresses including UV irradiation,
drought, high salinity, and low temperature [11].

Recently, a great number of studies have revealed that anthocyanin accumulated when
plants are under environmental stress. In Arabidopsis, the accumulation of photoprotective
anthocyanin pigments is light-dependent [12], which improves salt resistance under salt
stress [13]. In Chinese bayberry fruit, blue light can enhance anthocyanin accumulation and
improve the commercial and nutritional value of Chinese bayberry fruit [14]. In addition,
the anthocyanin of ‘Red Globe’ in grape is a typical light-dependent accumulation, whose
anthocyanin synthesis in the berry skin is induced by light [15]. In red apples, anthocyanin
biosynthesis is also regulated by the light-induced expression of MdMYB1 [16]. Moreover,
abiotic stress-induced anthocyanin accumulation and UVR8 (UV RESISTANCE LOCUS 8)
expression are also indicated to be light-dependent and both H2O2 and NO are involved
in UV-B-induced anthocyanin accumulation in radish sprouts [17]. Next, the pathway
of light induces signal factors to activate the transcription of anthocyanin biosynthesis
genes to produce anthocyanins for stress tolerance is concluded. However, many signal
transduction regulators and key transcription factors in the complicated anthocyanin
biosynthesis regulatory network remain to be identified. To provide a detailed overview
of the known molecular regulatory mechanisms of light-dependent and -independent
anthocyanin biosynthesis in plants and provide a theoretical foundation for the application
of colored photo-selective nets in the breeding of crops, fruits, and ornamental plant species,
this review focuses on known physiological, biochemical, and molecular mechanisms
involved in the light regulation of anthocyanin biosynthesis and their role in abiotic
stress tolerance.

2. Anthocyanins Accumulation in Plants

In the natural environment, anthocyanins participate in the formation of multicol-
ors in fruits, flowers, leaves, even roots of plants [7,18]. Different kinds of anthocyanins
modified by methylation and hydroxylation at different positions of C6-C3-C6 carbon
skeleton structures decide different colors varying from orange, red, and purple to blue in
plants [7,19] (Table 1). The physiological role of anthocyanin in plants consists of defending
against viral, bacterial, and fungicidal activities, absorbing excess visible and UV light
irradiance, attracting pollinators and seed dispersers, and scavenging excess ROS under
abiotic stresses [6,11,20]. Anthocyanins are synthesized in the endoplasmic reticulum and
transported to accumulate in the vacuoles of a wide range of cells and tissues in both the
vegetative and reproductive organs of plants [20]. The synthesis of anthocyanins in plants
is controlled by structural genes and can be divided into four stages [21,22]. The early stage
is from phenylalanine to 4-coumaryl CoA sequentially catalyzed by phenylalanine ammo-
nialyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL). Then,
4-coumaroyl CoA is converted to dihydrokaempferol (DHK), which is regulated by chal-
cone synthase (CHS), chalcone isomerase (CHI), and flavanone 3-hydroxylase (F3H). DHK
can also be converted to dihydroquercetin (DHQ) by flavonoid 3′-hydroxylase (F3′H) or cat-
alyzed by flavonoid 3′5′-hydroxylase (F3′5′H) to form dihydromyricetin. Next, DHK, DHQ,
and dihydromyricetin are separately converted to leucopelargonidin, leucocyanidin, and
leucodelphinidin by dihydroflavonol 4-reductase (DFR). Finally, these leucoanthocyanidins
are catalyzed by anthocyanidin synthase/leucoanthocyanidin dioxygenase (ANS/LDOX)
to form colored anthocyanidins (pelargonidin, cyanidin, delphinidin) [23]. Then, these
anthocyanidins can be further modified by UDP-glucose flavonoid glucosyltransferase
(UFGT), acetylase, O-methyltransferase (OMT), and anthocyanin transferase (AT) [24] to
produce stable and water-soluble pigments (Figure 1). These flavonoid products vary in
different plants due to the evolution of anthocyanin metabolism under environmental
selective pressures [25]. Anthocyanins show potent antioxidant activities and are effective
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scavengers of ROS in vitro [26,27]. In addition, anthocyanins are involved in regulating
ROS-induced signaling responding to environmental cues [28–30]. Anthocyanins may be
regulators of the ROS-signaling network due to their ability to interact with protein and
to enhance the activity of protein through the ROS reaction [20,31,32]. However, the func-
tional roles of flavonoids in plants remain indistinct not only for their numerous varieties,
but also for their different influences in different plant species. According to different
properties of solubility, light absorption, and distribution patterns in various parts of the
plant, anthocyanins have been cataloged numerically [33], and the composition profile of
anthocyanins varied under different stresses [34,35]. The biological functions of different
types of anthocyanins still need to be identified in various plants. Moreover, the roles of
family genes, encoded enzymes of the anthocyanin biosynthetic pathway, also need to be
clarified [36–38].

Table 1. Chemical structure and physical characters of the six common anthocyanindins.

Chemical Structure
Substitution Anthocyanidin

Name Color
λmax in the

Visible SpectrumR1 R2
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3. Regulatory Pathway of Anthocyanin Biosynthesis
3.1. Regulatory Factors Involved in Anthocyanin Biosynthesis

According to the research of Arabidopsis, it is well known that early anthocyanin
biosynthetic genes (CHS, CHI, F3H, F3′H, and FLS) are regulated by R2R3-MYB tran-
scription factors MYB11, MYB12, MYB111, and MYB75 while the late biosynthetic genes
(DFR, ANS/LDOX, UFGT) are regulated by the MBW complex (R2R3-MYBs such as
MYB75, MYB90, MYB113, and MYB114, bHLH, and WD40) [39–41]. In addition to MYB-
bHLH-WDR transcription factors, other regulatory proteins have also been identified to
be involved in anthocyanin biosynthesis in plants including members of the NAC tran-
scription family [42,43], MADS-box proteins [44–46], bZIP transcription factors [47–49],
WRKY transcription factors [50], and SPL transcription factors [51,52]. These transcription
factors take positive or negative roles in regulating the expression of structural anthocyanin
biosynthesis genes and determine the anthocyanin accumulation in developmental and
environmental regulation.

3.2. The Activation of Positive R2R3-MYB Factors Is Sufficient for Promoting
Anthocyanin Biosynthesis

Among these transcription factors, MYB transcription factors play a significant role
in regulating anthocyanin biosynthesis. Many anthocyanin-related R2R3-MYB factors
have been identified from many plants such as Arabidopsis [39], grape [53], Gerbera [54],
eggplant [55], tomato [55], populous [56], apple [57,58], etc. Most of these are R2R3-MYB
proteins with the motif [D/E]LX2[R/K]X3LX6LX3R in the R3 domain, which is necessary
to interact with bHLH acting as activators to increase anthocyanin accumulation [59]. In
Arabidopsis, MYB75 (PAP1), MYB90 (PAP2), MYB113 (PAP3), and MYB114 (PAP4) show
very high conserved sequences, and their overexpression increases the accumulation of
anthocyanin through TTG1- and bHLH-dependent regulating late anthocyanin pathway
genes [39]. In addition, the transcription level of PAP1 is higher than that of the other
three MYB genes in young seedlings of Arabidopsis. In AtMYB75 transgenic tomato plants,
anthocyanin production was also induced in tomato plants [60]. Moreover, overexpressing
a single SlMYB75 TF can lead to abundant anthocyanin accumulation in both vegetative and
reproductive organs of tomatoes [61] and another MYB TF SlAN2-like was also identified
to be responsible for the Aft phenotype (anthocyanin fruit). In blueberry, VcMYBL1 has
been identified to interact with VcbHLHL1 to promote anthocyanin biosynthesis [62]. In
apple, MdMYB3 is also characterized to activate transcriptional flavonoid pathway genes
and regulate the accumulation of anthocyanin in the skin of apple fruits [63]. SmMYB1
isolated in eggplant can interact with a heterologous bHLH, but the C-terminal domain in
SmMYB1 is essential for transcriptional activation of anthocyanin genes [64].

3.3. The Varieties of R2R3 MYBs Determine the Regulatory Specificity of
Anthocyanin Accumulation

These R2R3 MYBs have conserved R2R3 domain sequences, which determine antho-
cyanin pathway specificity. For example, in Arabidopsis, PAP4 activates the transcription
of UFGT, which can produce anthocyanins from anthocyanidins, while TT2 regulates the
expression of ANR, which is specific to proanthocyanin biosynthesis [65]. Alteration of indi-
vidual amino acids of the R2R3 domain in PAP4 and TT2 can lead to changes in activation
of the ANR and UFGT promoter. The amino-acid change in TT2 (Gly39 →Arg) can switch
TT2 specificity toward the anthocyanin pathway while the amino-acid mutant (Arg39 →
Gly) and exchange of motif (Ala-Asn-Asp-Val→ Asp-Asn-Glu-Ile90−93) in PAP4 switches
PAP4 specificity toward the PA pathway [65]. The orthologs VvMYBA2 and VvMYBPA2
in grapevine also have similar amino acids for pathway specificity [65]. Therefore, the
anthocyanin pathway specificity is determined by the amino acid composition of the R2R3
domain in MYB transcription factors and the cis-elements in the promoters of anthocyanin
biosynthetic genes. Due to the conservation of R2R3-MYB, regulatory differences are deter-
mined by promoter divergence rather than the divergence of the regulators [65,66]. Then,
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it is not difficult to understand that MYB transcription factors particularly regulate the ex-
pression of different anthocyanin pathway genes in various plants. In Arabidopsis, MYB11,
MYB12, and MYB111 activate promoters of early genes (CHS, CHI, F3H, and FLS) but not of
late genes (F3′H and DFR) [67,68]. However, the expression of PAL1 and CHS remains un-
changed in MYB75, MYB90, MYB113, and MYB114 RNAi seedlings, and the transcription
for the late genes DFR, F3′H, UGT75C1, LDOX, and GST12 is reduced [39]. In apple fruit,
MdMYB114 also promotes anthocyanin accumulation by directly controlling the expression
of late genes MdANS, MdUFGT, and MdGST [58], but in turnip (Brassica rapa), BrMYB75
can bind the promoter of early gene CHS to regulate anthocyanin biosynthesis [36]. More-
over, overexpression of MdMYB90-like in apple bud can induce the expression of both
early and late genes including MdCHS, MdCHI, MdANS, and MdUFGT [57]. In tomatoes,
two anthocyanin-related R2R3-MYB factors take different tissue-specific regulatory roles
in anthocyanin accumulation. One is SlAN2/SlMYB75, which is as a positive regulator
of anthocyanin biosynthesis in vegetative tissues of tomato plants including hypocotyls,
cotyledons, stems, and leaves [69], and the other is SlAN2-like/Aft, which determines
anthocyanins in the fruits of tomato plants [70,71].

3.4. The Negative MYB Proteins Repress Overexpression of Anthocyanin Biosynthetic Genes to
Maintain the Balance of Pigment Accumulation

In contrast, some MYB proteins play a negative role in regulating anthocyanin biosyn-
thesis such as AtMYB4, AtMYB7, AtMYBL2, AtCPC in Arabidopsis [72,73], FaMYB1 in
strawberry [74], VvMYBC2-L1 in grapevine [75], and SlTRY, SlMYBATV in tomato [76,77].
AtMYB4 and AtMYB7, with the C-terminal EAR (ERF-associated amphiphilic repression)
transcription repressor motif (with LxLxL or DLNxxP core sequence), repress the flavonoid
biosynthesis by negatively regulating DFR and UGT gene expression [78], while AtMYBL2
with the C2 repressor motif (pdLNLD/ELxiG/S) can suppress the expression of DFR
and TT8 to regulate anthocyanin biosynthesis [73]. Moreover, AtCPC, which is just like
AtMYBL2 with single-repeat R3, acts as competitive inhibition of the MBW complex to
negatively regulate the anthocyanin pathway in Arabidopsis [79]. In grape berry, the R2R3-
MYB protein VvMYBC2-L1 as AtMYB4 has also conserved the C2 motif in the C-terminal
region and acts as a direct repressor to downregulate the expression of phenylpropanoid
synthesis genes or as an indirect repressor to compete with MYB activator via binding
affinity with the promoter of bHLH and WD40 [80]. The R2R3-MYB repressor FaMYB1
with the DNEV motif in strawberry is different to the AtMYB4 motif DNEI and the different
motifs in the C-terminus of AtMYB4-like and FaMYB1-like repressors show potentially
distinct mechanisms of action. SlTRY, SlMYBATV in tomato such as AtCPC, and AtMYBL2
belong to single-repeat R3-MYB factors without a repressive motif, but they retain the
motif responsible for binding to bHLH. The role of these MYB repressors in anthocyanin
biosynthesis has been reviewed in detail [81,82]. Therefore, the regulation of MYB repres-
sors and activators maintains the balance of accumulation of anthocyanin in plants, and
MYB transcription factors are considered key components that provide specificity for the
downstream genes and cause tissue-specific anthocyanin accumulation [83].

3.5. Different bHLH Proteins Interact with MYB Factors to Form Specific MBW Complex

As cofactors of MYB activators and repressors, bHLH proteins incorporating the
MYB-interacting region, WD40/AD domain, basic helix–loop–helix domain, and ACT
domain are responsible for MYB interaction and promoter binding of anthocyanin biosyn-
thetic genes [84]. The bHLH family has been divided into 26 subfamilies [85] and the
IIIf subfamily bHLH members are involved in both flavonoid biosynthesis and trichome
formation [86]. The binding of the bHLH proteins with WD40 protein can be modulated
by different R2R3 MYB proteins. In Arabidopsis, three bHLH TFs, GL3, EGL3, and TT8,
have been shown to interact with R2R3-MYB proteins and regulate flavonoid biosynthe-
sis [39,87]. AtTT8 can interact with AtTTG1 to form stable MBW complexes with different
R2R3 MYBs while AtGL3 and AtEGL3 show competitive complex formation with some
R2R3 MYBs [88]. The AtTTG1–bHLH interactions are modulated positively and negatively
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through the addition of R2R3 MYB proteins in Arabidopsis, [88]. PhAN1 and PhJAF13 in
petunia have also been identified to be involved in anthocyanin [89,90]. In Solanaceous
plants, AN1 directly regulates the expression of biosynthetic genes, whereas JAF13 can
regulate the transcription of AN1 [91]. Then, the IIIf subfamily bHLHs can also be further
divided into JAF13 clade and AN1 clade [90]. In the petunia hybrid, the interaction of
PhAN1 with PhAN11 is promoted by the addition of the phAN4 R2R3 MYB protein, while
the interaction of PhJAF13 with PhAN11 is significantly reduced in the presence of R2R3
MYB proteins [88]. Therefore, in different species, even in different tissues of the same
plant, the functions of the bHLHs and MBW complexes vary. For example, AcMYB123
and AcbHLH42 can activate the function of the promoters of AcF3GT1 and AcANS and
be involved in the spatiotemporal regulation of anthocyanin biosynthesis, specifically in
the inner pericarp of kiwifruit [92]. MdbHLH3 can also bind to the promoters of MdDFR,
MdUFGT, and MdMYB1 to activate their expression, which is involved in anthocyanin
biosynthesis in apples. The individual combinations of bHLH and R2R3 MYB proteins
regulate the expression of different anthocyanin synthetic genes and determine the spa-
tiotemporal pigment accumulation in plants.

3.6. WD40 Protein, the Stabilizer of MBW Complex

The WD40 protein has 4–10 random WD repeat domains, which consist of 40 amino
acid sequences ending in tryptophan (W) and aspartic acid (D). In Arabidopsis, AtTTG1, a
member of the WD 40 proteins, is related to seedling anthocyanin accumulation and seed
coat pigmentation [93]. AtTTG1-GL3/EGL3/TT8-TT2/MYB5 complexes are responsible
for seed while AtTTG1-GL3/EGL3/TT8-PAP are relevant in vegetative tissue [94,95].
MdTTG1, the WD40 protein in apple, can interact with MdbHLH3 and MdMYB9 to
control the expression of downstream structural genes [96]. Among the MBW complexes,
WD40, which is involved in stabilizing the MBW complex, is generally similar between
anthocyanin-pigmented and non-pigmented tissues [97,98].

3.7. Other Regulation Proteins beyond MBW Complex

In addition to the MBW complex, the NAC, MADS, bZIP, WRKY, SPL transcription fac-
tors are also involved in the regulation of anthocyanin biosynthesis. A NAC transcription
factor, MdNAC42, can interact with MdMYB10 to positively regulate anthocyanin accumu-
lation in red-fleshed apples [43]. Moreover, MdHY5, a bZIP protein, promotes anthocyanin
biosynthesis by positively regulating its own transcription and that of MdMYB10 and even
downstream anthocyanin biosynthesis genes through binding to E-box and G-box motifs
in apple [49]. MdHY5 can also promote the expression of MdNAC52, which regulates
the expression of MdMYB9 and MdMYB11 to increase anthocyanin biosynthesis [46]. An-
other MdbZIP44, an ABA-induced bZIP transcription factor, can interact with MdMYB1
to enhance the binding of MdMYB1 to its downstream genes and promote anthocyanin
accumulation [47]. MdWRKY40, a wounding-responsive protein in apple, has also been
identified to interact with MdMYB1 and enhance the binding of MdMYB1 to its target genes
for anthocyanin biosynthesis [99]. In Arabidopsis, a WRKY TF TTG2 can interact with the
WD-repeat protein TTG1 in the MBW complex to form a four-component complex involved
in the PA pathway [100,101]. However, AtWRKY41 represses anthocyanin accumulation
by negatively regulating the expression of AtMYB75, AtMYB111, and AtMYBD in Ara-
bidopsis [50]. As in apple, MdWRKY41 is negatively regulated by MdHY5, which weakens
the effect of the MdWRKY41-MdMYB16 repressor on anthocyanin accumulation [102]. To
VmTDR4, the MADS-box protein in bilberry regulates the accumulation of anthocyanins
through direct or indirect control of R2R3 MYB transcription factors [45]. In addition,
the FcMADS9 protein in fig promotes anthocyanin accumulation, and ethylene has been
proven to be involved in its regulation [103]. Furthermore, the coloration regulation of
SlMADS-RIN in tomato and MdMADS1 in apple is related to ethylene, which suggests a
link between MADS-box transcription factors regulating anthocyanin accumulation and
ethylene [104–106]. Conversely, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE
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(SPL) genes targeted by miR156, take a negative role in anthocyanin accumulation through
destabilization of an MYB-bHLH-WD40 transcriptional activation complex [52]. In a word,
a large number of anthocyanin activators and repressors have been confirmed to be in-
volved in regulating the expression of anthocyanin biosynthetic gene components and
the stabilization of the MBW complex. Therefore, anthocyanin biosynthesis is positively
or negatively regulated by multi-transcription factors through interacting with the MBW
complex or directly binding to the promoters of anthocyanin biosynthetic genes (Figure 2).
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Figure 2. The regulatory pathway of anthocyanin biosynthesis in plants. NAC, WRKY, MADS-box
can interact with MYB to form BMW complex and positively regulate the expression of anthocyanin
synthetic genes. In the regulatory pathway, the expression of NAC, MYB is regulated by HY5, NAC,
and WRKY, and the expression of WRKY is also regulated by HY5. However, some negative regulators
such as VvMYBC2-L1, AtMYB4, FaMYB1 belonging to R2R3-MYBs, SlTRY, SlMYBATV, AtCPC, and
AtMYBL2 belonging to R3-MYBs interact with bHLH to compete with MYB and disturb the MBW
complex. Another negative regulator SPL can also interact with bHLH to affect MYB-bHLH-WD40
complex. The transcription factor HY5 and MBW complex which consists of different MYB proteins
such as SlAN2 and SlAN2-like and bHLH proteins such as SlAN1 and SlJAF13 in tomato can bind to
the promoters of different anthocyanin synthetic genes to activate their transcription and accumulate
anthocyanin in specific vegetative tissue or fruits.

4. Light Induced Anthocyanin Accumulation in Plants
4.1. Light Receptor and Light Signal Transduction

Light is essential for plant growth and development, but excess high-energy UV
irradiance can cause damage to a cell, and anthocyanin accumulation in plants benefits
plants in enhancing resistance to UV stress [20,107]. Plants have developed sophisticated
photoreceptor systems such as phytochromes (red/far-red photoreceptors), cryptochromes,
and phototropin (blue/UV-A photoreceptors) and UVR8 (UV-B photoreceptors) to adapt
to variable light radiation [108]. Many plants accumulate anthocyanin in a light-dependent
manner, that is, anthocyanin biosynthesis of these species is light induction. For exam-
ple, the anthocyanin accumulation in fruits such as tomato [70], apple [16,109,110], pear
(Pyrus pyrifolia) [111,112], lychee (Litchi chinensis) [113], and grape (Vitis vinifera) [114].
Photoreceptors sense the different light environments and bring about structural change
or modification of the receptor protein. Then, the activated receptor proteins transfer to
the nucleus and interact with positive transcription factors or inactivate a master negative
regulator COP1 to regulate the expression of downstream genes [108].

Phytochromes have been reported to perceive a high red/far-red ratio to convert
from the Pr to Pfr isoform, and the active Pfr form can interact with PIFs to regulate
light-regulated gene expression. In addition, activated phytochromes can rearrange the
COP1–SPA complex to make it non-functional or inactivate the COP1-SPA E3 ligase to avoid
the degradation of positive transcription factors such as HY5 [115–117]. Moreover, the
photoactivated cryptochrome oligomers interact with cryptochrome-interacting proteins
such as COP1, CIB, SPA, BIC, PIF, PPK, AUX/IAA, AGB, and phytochrome to form a
cryptochrome complexome mediating blue-light regulation of transcription or protein
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stability [118]. The CRY–COP1–SPA interaction positively regulates the abundance of the
HY5 protein [119]. For the UV-B receptor, UVR8 protein absorbing UV-B light causes the
UVR8 dimer to break and the resulting monomer migrates into the nucleus to interact with
COP1 and form UVR8–COP1–SPA complexes [120–122]. The UVR8–COP1–SPA interaction
also results in the stabilization of HY5 to initiate UV-B mediated gene expression. Natural
UV light intensities and high temperatures have been reported to induce increased acylation
levels of anthocyanidin (the delphinidin and petunidin derivatives) in Vitis vinifera [123],
and the flavonol and anthocyanin accumulation is also impacted in the treatment of light
quality/quantity (UV-B) and temperatures during the berry development of grape [124].
This implies that different light quality/quantity can affect the activity of anthocyanin
biosynthetic genes to produce different anthocyanidin derivatives that are also regulated
by other abiotic factors such as temperature and drought [125].

4.2. Light Signal Transduction Factor HY5

HY5, which is unstable in darkness and is degraded by COP1 via the 26S proteasome
pathway or is light stable through SPA by dissociating with COP1 [126], has been identified
to act as a master regulator of light signal transduction and directly activate the expres-
sion of anthocyanin biosynthesis and regulatory genes including MdMYB1 in apple [49]
and AtPAP1/MYB75 in Arabidopsis [127]. HY5 can bind the T/G-box (CACGTT), E-box
(CAATTG), GATA-box (GATGATA), ACE-box (ACGT), Z-box (ATACGGT), and C-box
(GTCANN) as well as the hybrid C/G- (G) and C/A-boxes in the promoters of many
genes that are involved in light signaling [128] and anthocyanin biosynthesis [127]. In
tomatoes, the light-responsive SlAN2-like can activate the expression of both anthocyanin
biosynthetic genes and their regulatory genes to accumulate anthocyanin. However, if a
functional SlAN2-like gene is driven by the fruit-specific promoter in a tomato cultivar, the
high-level anthocyanins will accumulate in both the peel and flesh with light-independent
biosynthesis [70]. Then, a light signal is perceived by photoreceptors and transduced to
HY5 and other regulated proteins to activate MYB transcription factors for light-dependent
anthocyanin biosynthesis.

4.3. HY5-Dependent and -Independent Pathway Regulate Light-Dependent and -Independent
Anthocyanin Biosynthesis Separately

However, when the MYB regulated proteins and anthocyanin biosynthetic genes
are activated to express constitutively, the anthocyanin accumulation will display light-
independent biosynthesis. The research of light in regulating anthocyanin biosynthesis
in dark-red and bicolored cherry cultivars showed that light is necessary for anthocyanin
biosynthesis in bicolored cherries, but not in the dark-red fruits [129]. In blueberry (Vac-
cinium spp.), the UV-B treatment induces HY5 expression to upregulate VcMYBPA1 and
downregulate VcMYBC2, then promotes the accumulation of anthocyanins in the green
fruit stage. Whereas in the mature fruit stage, anthocyanin synthesis is inhibited by
increased VcMYBC2 levels when exposed to UV-B light through the HY5-independent
pathway [130]. The stage-dependent anthocyanin biosynthesis in UV-B exposed blueberry
is coordinately balanced by the anthocyanin-related MYB activators and repressors. Then,
the light-dependent anthocyanin biosynthesis is regulated by ‘double-negative logic’ [82],
that is, anthocyanin accumulation is determined by light-induced nuclear export or inacti-
vation of the repressor COP1–SPA complex [131], de-repressing the HY5, and activating the
MBW complex and anthocyanin biosynthesis. Certainly, other protein factors such as B-box
(BBX) proteins can also respond to light and interact with HY5 to regulate the transcription
of anthocyanin biosynthetic genes. In red pears, both PpBBX16 and PpBBX18 can form the
PpBBX–PpHY5 complex to activate the expression of PpMYB10 and regulate anthocyanin
accumulation [111,132], but PpBBX21, a negative regulator, can hinder the formation of
the PpBBX18–PpHY5 complex and repress anthocyanin biosynthesis [132]. Moreover,
MdBBX22 promotes UV-B-induced anthocyanin biosynthesis by MdBBX22-MdHY5 in-
teraction in apple, and the expression of MdBT2 is suppressed by UV-B treatment which
can degrade the MdBBX22 protein through the 26S proteasome pathway [133]. MdTCP46
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and MdMYB1 also play positive roles in anthocyanin biosynthesis induced by high light
intensity, but under low light intensity, MdBT2 ubiquitinates and degrades the MdTCP46
(Teosinte branched1/cycloidea/proliferating transcription factor 46) and MdMYB1 pro-
teins to repress anthocyanin biosynthesis [110]. Furthermore, blue light signal transduction
module CRY-COP1-HY5 contributes to the anthocyanin biosynthesis induced by blue light
in red pear, but red light does not affect anthocyanin accumulation [112]. However, in ripen-
ing bilberry fruits, blue and red light are effective in inducing anthocyanin and delphinidin
accumulation via CRY2/COP1 and HY5 or ABA-signal transduction [134]. Red light,
blue light, and red/blue compound light also induce the strawberry fruit coloration [135].
Therefore, light intensity and light quality can induce different signal transduction factors
involved in light-dependent anthocyanin biosynthesis.

However, some potato, turnip, and sweet potato varieties accumulate pigments as
underground tubers, and it is obvious that the regulation of light-independent anthocyanin
biosynthesis in these tubers is disintegrated in the HY5-COP1 signaling pathway. In addi-
tion, candidate HY5-independent regulators have been identified to regulate anthocyanin
biosynthesis in tomatoes [136], which broadens our understanding of light-dependent and
-independent anthocyanin biosynthesis. In flesh-colored tubers of the potato, cells lose
pigment production when purple cells are continuously subcultured, turning from purple
to white. StMYBATV, an anthocyanin repressor, may contribute to stopping anthocyanin
biosynthesis in potato cell culture. Moreover, the level of DNA methylation is also associ-
ated with reprogramming the metabolism of anthocyanins [137]. In Aft/Aft atv/atv tomato
plants, SlMYBATV loses its function to compete with SlAN2-like to interact with SlJAF13,
which makes SlAN2-like interact with SlJAF13 and SlAN11 to form an MBW complex
to activate the expression of SlAN1 and SlAN11 in a HY5-independent manner. Then,
SlAN2-like interacts with SlAN1 and SlAN11 to regulate the transcription of anthocyanin
biosynthetic genes to accumulate pigments in fully purple-skinned tomatoes [71]. Briefly,
light signals induce anthocyanin accumulation via the HY5-mediated expression of an-
thocyanin biosynthetic genes. However, the regulation of light-independent anthocyanin
biosynthesis is due to protein factors located upstream of the anthocyanin biosynthesis
pathway to activate the expression of the MYB transcription factor and MBW components.
The protein factors might be loss-functional repressors or HY5-independent activators
(Figure 3).
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Figure 3. A simplified model of light-dependent and -independent regulation of anthocyanin
biosynthesis in plants. During light-dependent anthocyanin biosynthesis, photoreceptors sense
different wavelengths of light and are activated to be transferred into the nucleus, then the HY5-
COP1-SPA complex is rearranged to dissociate HY5 protein and to avoid the degradation of HY5
transcription factors. HY5 positively regulates the expression of anthocyanin biosynthetic genes
and lead to pigment accumulation. During light-independent anthocyanin biosynthesis, positive or
negative transcription factors are activated or suppressed to form an MBW complex regulating the
expression of anthocyanin biosynthetic genes.
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5. Conclusions and Perspectives

Although much is now known about the regulatory pathway of anthocyanin biosyn-
thesis, the functions of protein factors involved in anthocyanin accumulation in plants
continue to be explored. In addition to the roles of the MBW complex and anthocyanin
biosynthetic genes that determine spatial and temporal-specific pigmentation, there are
other signal regulatory factors that respond to the environmental and developmental
signals to activate the anthocyanin biosynthetic pathway. The specific mechanism by
which anthocyanin can form in a light-dependent and -independent manner needs to be
elucidated. Similarly, the signal factors related to abiotic stress such as low temperature,
drought, and salinity-induced anthocyanin biosynthesis also remain to be identified. More-
over, epigenetic regulation, especially the methylation of protein-coding genes related to
anthocyanin production in plants is still in its infancy. In addition, an integrated regulatory
network of anthocyanin biosynthesis controlled by transcription factors of development
and abiotic-response factors needs to be further explored. Overall, with the research
progress of genetics and molecular biology, a clearer understanding of the mechanism of
anthocyanin biosynthesis and accumulation will be obtained and provide a theoretical and
practical basis for crop breeding in the future.
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