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Background: A considerable number of gastric cancer (GC) patients cannot receive benefits from current 
treatments. We aimed to identify possible biomarkers of cuproptosis-related genes (CRGs) in GC patients, 
which may help guide precision medicine-based decision-making.
Methods: RNA sequencing data, copy number variations (CNVs) data, and single nucleotide variant (SNV) 
data were obtained from The Cancer Genome Atlas (TCGA) database and Gene Set Cancer Analysis (GSCA) 
database. Chi-squared test was adopted to screen differentially expressed CRGs (DE-CRGs) between 
samples from 14 kinds of carcinoma and adjacent tissue samples. Then, GC samples were divided into high- 
and low-expressed groups based on DE-CRGs for further survival analyses and the selection of biomarkers. 
Methylation sites related with biomarkers were acquired. The correlation between immune cells and 
biomarkers was verified. Finally, miRNA-mRNA, TFs-mRNA, and co-expression networks were established 
to detect factors with regulating effects on biomarkers.
Results: Three CRGs including LIAS, GLS, and CDKN2A were identified as biomarkers in GC patients. 
Three methylation sites with a significant survival effect including cg13601799, 07562918, and 07253264 
were acquired. Then, we found that B cells native was significantly correlated with CDKN2A, four immune 
cells such as T cells regulatory are significantly correlated with GLS, and two immune cells such as T cells 
CD4 memory activated were significantly correlated with LIAS. Moreover, 10 miRNAs in the miRNA-
mRNA network and three transcription factors (TFs) in the TFs-mRNA network had a significant 
correlation with overall survival (OS). Finally, 20 enrichment functions were obtained on the basis of the co-
expression network.
Conclusions: Three biomarkers with a prognosis prediction value of GC were found, and multi-factor 
regulatory networks were constructed to screen out 13 factors with regulating influences of biomarkers.
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Introduction

Gastric cancer (GC) is the fifth most diagnosed malignancy 
worldwide and remains the third leading cause of cancer-
related death due to its frequently advanced stage at 
diagnosis (1). Despite declining incidence rates in most 
countries, it can be expected to see more GC cases in the 
future due to ageing populations. The prognosis of GC 
patients is poor due to factors such as tumor recurrence, 
metastasis, tumor heterogeneity, and chemotherapy 
resistance (2). While the development of immune 
checkpoint inhibitors plus chemotherapy has significantly 
enhanced treatment for GC patients, a considerable number 
of them do not receive benefits from this regimen (3). 
Therefore, to develop reliable molecular biomarkers for GC 
diagnosis, prognosis and therapeutics is of vital importance. 

Copper is an indispensable mineral nutrient involved in 
a wide range of physiological processes (4) and is a required 
cofactor for enzymes that mediate cellular functions (5).  
Numerous observations pointing out that copper 
accumulation may promote malignant transformation 
and serum or tissue levels of copper are elevated in 
various cancers, at the same time, dysregulation of copper 
homeostasis can induce oxidative stress and cytotoxicity (6).  
The underlying mechanisms by which excess copper 
induces cell death was proposed by Tsvetkov et al. (7). They 

demonstrated that this copper-dependent cell death way, 
termed as cuproptosis, was dependent on mitochondrial 
respiration. It occurred by direct binding copper to 
lipoylated components of the tricarboxylic acid cycle, 
resulting in the abnormal lipoylated protein aggregation 
and subsequent iron-sulfur cluster protein loss, which 
ultimately leaded to proteotoxic stress and cell death. 

In recent years, researches have revealed the significant 
role of Copper in GC. Tang et al. conducted the first and 
comprehensive Cu-binding proteins (CBPs) analysis of GC 
patients and established a clinically feasible CBP signature for 
predicting survival and response to treatment (8). Feng et al. 
investigated a novel cuproptosis-related lncRNAs signature 
for its impacts on the prognosis and immunological features 
of GC (9). These studies of Copper involvement in GC 
provide valuable insights for the development of targeted 
therapeutic strategies. However, studies on cuproptosis-
related genes (CRGs) signature in GC patients are limited 
and the role of CRGs in tumorigenesis and tumor prognosis 
is still an under-explored topic. 

Therefore, we perform a comprehensive multi-omics 
study to investigate the prognostic value and biological 
functions of CRGs in GC. The study screens diagnostic, 
prognostic and therapeutic molecular biomarkers of GC 
based on CRGs, which may help guide precision medicine-
based decision-making in GC patients. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://jgo.amegroups.com/article/
view/10.21037/jgo-23-946/rc).

Methods

Data collection

RNA sequencing (RNA-seq) data of 35 normal stomach and 
415 GC samples, copy number variations (CNVs) data of 
441 GC samples, and single nucleotide variant (SNV) data of 
431 GC samples were obtained from The Cancer Genome 
Atlas (TCGA) database (http://portal.gdc.cancer.gov/). We 
removed the samples without survival information such as 
survival states and survival time, and there were 409 GC 
samples remained. Differential expression information 
of CRGs in 14 different cancers was obtained from 
the “Expression” module in Gene Set Cancer Analysis 
(GSCA) database (http://bioinfo.life.hust.edu.cn/GSCA/). 
The cancers included colon adenocarcinoma (COAD), 
esophageal carcinoma (ESCA), kidney renal clear cell 
carcinoma (KIRC), head and neck squamous cell carcinoma 
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(HNSC), prostate adenocarcinoma (PRAD), breast invasive 
carcinoma (BRCA), bladder urothelial carcinoma (BLCA), 
thyroid carcinoma (THCA), GC, kidney renal papillary 
cell carcinoma (KIRP), lung adenocarcinoma (LUAD), 
lung squamous cell carcinoma (LUSC), liver hepatocellular 
carcinoma (LIHC), and kidney chromophobe (KICH). 
CRGs were acquired from reference (10). The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Gene expression profiling of CRGs

Expression level of CRGs between normal and tumor 
samples were acquired from the Pan-Cancer database in 
TCGA and were visualized as box plots by the R package 
“ggpubr” (version 0.4.0). The Chi-squared test was adopted 
to detect the significant differences of CRGs’ expression 
between carcinoma and adjacent tissue samples according 
to P<0.05. The expression level of CRGs between GC and 
normal stomach samples with pairing relationships was 
also visualized alone as box plots. Besides, the Spearman 
correlation analysis was used to detect correlation among 
CRGs via the R package “corrplot” (version 0.91).

Mutation and CNV of CRGs in GC samples

Gene mutation frequencies were obtained by using the R 
package “maftools” (version 2.6.05) on the basis of SNV 
data which were downloaded from TCGA (11). The 
Oncoplot function was adopted to generate a waterfall 
plot of Gene mutation frequencies. After, CNV data were 
downloaded from TCGA for further analysis according 
to the frequencies of chromosomal amplification, 
chromosomal deletion, and normal diploid of genes. The R 
package “ggplot2” (version 3.3.3) was used to generate bar 
diagrams (12).

Survival analyses of CRGs

The expression level of CRGs was merged with the total 
survival time and survival state of related GC patients. And 
the patients were divided into high- and low-expression 
groups according to an optimal threshold that was 
determined via the R package “survminer” (version 0.4.8). 
After, survival analyses of overall survival (OS), disease-
special survival (DSS), disease-free survival (DFS), and 
progression-free survival (PFS) between both two groups 

were performed by using the R package “survminer”.

Clinical analysis of biomarkers

Receiver operating characteristic (ROC) curves of CRGs 
were generated by adopting the R package “pROC” (version 
1.17.0.1) and the area under the curve (AUC) was calculated 
to assess the clinical value of CRGs (13). Then, differentially 
expressed CRGs (DE-CRGs) with survival correlation 
and clinical value were screened out as biomarkers of GC. 
The influences of clinical characteristics on the expression 
level of biomarkers were detected via the Chi-squared 
test according to P<0.05. Next, biomarkers were used to 
generate a nomogram by R package “Rms” (version 6.2-0) 
for the prediction of 1-, 3-, and 5-year survival probability. 
The calibration curves were produced at the same time for 
verifying the performance of the nomogram. The closer the 
slope was to 1, the more accurate the prediction was.

Methylation analysis of biomarkers

Methylation data were downloaded from the University 
of California, Santa Cruz (UCSC) Xena website (http://
xena.ucsc.edu/) for Annotating the methylation site of 
biomarkers by adopting the R package “ChAMP” (version 
2.20.1) (14). Then, the methylation sites were visualized via 
the R package “pheatmap” (version 1.0.12). After, Spearman 
correlation analysis among methylation sites of biomarkers 
were performed according to P<0.05 and |logFC| >0.1. 
Besides, the R package “survival” (version 3.2-3) was used 
to conduct Kaplan-Meier (K-M) survival analysis to detect 
the survival correlation of methylation sites and to generate 
K-M survival curves (15).

Enrichment analysis of biomarkers

Differentially expressed genes (DEGs) between high- and 
low-expressed groups were screened out by the R package 
“limma” (version 3.44.3) with P<0.05 and |logFC| >1 (16). 
Gene set enrichment analysis (GSEA) was performed by 
the R package “ClusturProfiler” (version 3.18.1) and R 
package “org.Hs.eg.db” (version 3.12.0) on the basis of 
Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) (PMID: 34557778). GO included 
biological process (BP), molecular functions (MF), and 
cellular components (CC). The significance criteria were 
P<0.05 and count ≥1.

http://xena.ucsc.edu/
http://xena.ucsc.edu/


Journal of Gastrointestinal Oncology, Vol 15, No 3 June 2024 949

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2024;15(3):946-962 | https://dx.doi.org/10.21037/jgo-23-946

Immune correlation analysis of biomarkers

Immune cell percentages in 409 GC samples were calculated 
via Cell type Identification By Estimating Relative Subsets 
Of RNA Transcripts (CIBERSORT) algorithm (version 1.03)  
and LM22 gene set, and the correlation between biomarkers 
and immune cell percentage was detected by adopting 
Spearman correlation analysis. The rank sum test was 
used to compare the 22 immune cells between high- and 
low-expression groups. Related bubble charts, box plots, 
and lollipop diagrams were generated via the R package 
“ggplot2” and “ggpubr”.

Regulation factors were obtained via multi-factor 
regulatory networks

RNA-seq data of miRNA in normal and GC samples 
were obtained from the UCSC Xena website. Targeting 
correlation of miRNA-mRNA was identified using the 
miRWalk database (http://mirwalk.umm.uni-heidelberg.de/), 
and differentially expressed miRNAs (DE-miRNAs) (P<0.05 
and |logFC| >0) between normal (n=41) and GC samples 
(n=387) were screened out via the R package “limma”. 
Then, miRNAs obtained previously were intersected with 
the DE-miRNAs, and a miRNA-mRNA network was 
generated by R package “Cytoscape” (version 3.8.2) (17). 

Targeting correlation of TFs-mRNA was identified 
adopting the NetworkAnalyst database (https://www.
networkanalyst.ca/), and DEGs (P<0.05 and |logFC| >1) 
between normal (n=35) and GC samples (n=415) were sifted 
out (18). Then, an intersection between DEGs and TFs 
was produced and it was used to construct a TFs-mRNA 
network of biomarkers via the R package “Cytoscape”. The 
interaction among factors in the networks was identified by 
Spearman correlation analysis and visualized as a heatmap 
through R package “ggplot2”. Survival analyses of miRNAs 
in the network between high- and low-expressed groups 
were performed by the R package “survival”. 

Correlation analysis between DEGs and biomarkers 
was performed to conduct further differential analysis 
according to P<0.05 and |logFC| >0.3. The R package 
“Cytoscape” was used to construct a co-expression network 
of biomarkers, and the enrichment analysis of co-expression 
genes and biomarkers in the network was implemented by 
the Metascape tool (https://metascape.org/gp/index.html#/
main/step1) (19). 

Statistical analysis

Categorical variables were presented as numbers and 
percentages and analyzed using the Chi-squared test. 
Continuous variables were expressed as mean ± standard 
deviation (SD) and assessed using the Wilcoxon rank sum 
test. The Spearman correlation analyses were used to 
detect correlation among factors. Survival analyses were 
performed using the K-M method, and differences in 
survival times were evaluated using the log-rank test. All 
statistical analyses were performed using R version 4.3.1, 
with P values <0.05 indicating a significant difference.

Results

Four differential expressed CRGs between GC and adjacent 
tissue samples were identified

In order to identify whether cuproptosis has a high 
correlation with cancers progression, we obtained 
differential expression information of 10 CRGs including 
CDKN2A, DLAT, DLD, FDX1, GLS, LIAS, LIPT1, MTF1, 
PDHA1, and PDHB from GSCA database for differential 
expression analyses. The result showed that CDKN2A and 
LIAS had a significant difference in at least seven cancers 
(Figure 1A). After, the expression level of 10 CRGs between 
the normal and tumor samples was acquired from the 
TCGA database. The box plots demonstrated that the 
expression level of CDKN2A and GLS were significantly 
up-regulated and LIAS and PDHB were significantly down-
regulated in GC samples (Figure 1B). Of note, expression level 
of DLD significantly changed in BLCA, BRCA, and THCA 
(Figure 1C-1E). Besides, the box plots visually revealed 
the normalized expression level of each CRG between 
GC samples and the paired normal samples (Figure 1F).  
The heatmap showed that there was no significant 
correlation among CRGs (Figure 1G). Moreover, tumor-
specific CNVs and SNVs were helpful for exploring the 
molecular mechanisms of GC progression. We analyzed 
the mutation frequencies of CRGs of GC samples, and the 
result showed that the LIPT1 and CDKN2A had the highest 
mutation frequency of 6% and 4% respectively (Figure 1H). 
After analysis of CNV was performed and we found that the 
CDKN2A, LIAS, and PHDB frequently experienced the copy 
number deletion (DEL), and DLD frequently experienced 
the cope number amplification (AMP) (Figure 1I).

https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
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Survival analyses between high- and low-expression groups

A series of survival analyses between high- and low-
expression groups were performed to identify the correlation 
between the expression level of CRGs and GC prognosis. 
The OS curves showed that the expression level of MTF1, 
DLAT, and LIAS were positively correlated, while the 
expression level of GLS was negatively correlated with the 
prognosis of GC (Figure S1). After, the DSS analysis results 
demonstrated that the expression level of MTF1, DLAT, 
PDHA1, DLD, and LIAS were positively correlated, while the 
expression level of CDKN2A was negatively correlated with 
the prognosis of GC (Figure S2). Moreover, DFS analysis 
results illustrated that the expression level of three CRGs 
including MTF1, PDHA1, and DLD was positively correlated 
with the prognosis of GC (Figure S3). Finally, progressive-
free survival curves showed that the expression level of five 
CRGs including MTF1, PDHA1, DLD, LIAS, and DLAT was 
positively correlated with the prognosis of GC (Figure S4). 
As shown in Table 1, there were four differentials expressed 
CRGs had a significant survival relationship.

Three biomarkers of clinical prognosis prediction were 
obtained

We performed a single-gene ROC analysis to evaluate the 
value of CRGs for GC prognosis, and the ROC curves 

demonstrated that PDHB, CDKN2A, LIAS, and GLS have 
great prognosis prediction abilities (Figure 2A-2D). Then, 
considering the differential expression between normal and 
GC samples, and the survival correlation with GC, three 
CRGs including CDKN2A, LIAS, and GLS were chosen as 
biomarkers of GC prognosis. After, the expression level of 
biomarkers between high- and low-risk groups in different 
clinical subgroups including age, gender, vital, state, grade, 
T stage, N stage, and M stage were compared. We found 
that the expression level of CDKN2A between G2 and G3 
were significantly different. The expression level of GLS 
in T3 and T4 were significantly higher than in T1, while 
the expression level of LIAS in T2 and T3 are significantly 
lower than in T1 (Figure 2E-2G). The total information 
is provided in Tables S1-S3. Finally, the expression of 
biomarkers were used to generate a nomogram of GC 
prognosis prediction (Figure 2H). The efficacy of CDKN2A 
was relatively low since there was no significant correlation 
between CDKN2A  and OS. The calibration curve 
demonstrates that the nomogram has a great prediction 
accuracy of 1-year survival (Figure 2I), but slightly less 
effective in predicting long-term survival. 

Three methylation sites of CRGs significantly were 
significantly related to survival

Gene methylation significantly affects gene function. 
In this study, the methylation site of biomarkers was 
detected through the UCSC Xena website, and visualized 
in a heatmap (Figure 3A). The scatter plots show that 
cg07562918 and cg13601799 were significantly related with 
CDKN2A, cg07253264 and cg09390371 were significantly 
associated with LIAS, and cg03962451 and cg19300307 
were significantly correlated with GLS (Figure 3B-3G). 
Total information of the correlation of methylation sites is 
provided in Table S4. Finally, K-M survival analysis between 
high- and low-expressed groups was utilized, and we 
found that cg13601799 and cg07562918 of CDKN2A, and 
cg07253264 of LIAS had a strongly significant correlation 
with GC survival (Figure 3H-3J).

Functional enrichment of CDKN2A, GLS, and LIAS

In order to identify the biological functions of biomarkers, 
differential expression analysis was implemented to screen 
DEGs between high- and low-expressed groups based 
on the expression level of biomarkers, and then DEGs 
were used for enrichment analysis. Enrichment results of 

Table 1 The correlation between survival and CRGs in GC patients

Gene OS DSS DFS PFS

GLS* True False False False

LIAS* True True False True

CDKN2A* False True False False

DLD* False True True True

PDHB* False False False False

DLAT True True False True

MTF1 True True True True

FDX1 False False False False

LIPT1 False False False False

PDHA1 False True True True

*, represents differentially expressed genes in GC. True 
represents survival significance. CRGs, cuproptosis-related 
genes; GC, gastric cancer; OS, overall survival; DSS, disease-
special survival; DFS, disease-free survival; PFS, progression-
free survival.

https://cdn.amegroups.cn/static/public/JGO-23-946-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-946-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-946-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-946-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-946-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-946-Supplementary.pdf
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Figure 2 Clinical application of CRGs in patients with STAD. (A-D) The diagnostic ROC curve of CRGs in STAD. Data are presented 
as 95% CI. (E-G) The expression level of key genes in different clinical stages. (H) The nomogram using prognostic factors identified by 
multivariate Cox analysis to predict the 1-, 3- and 5-year OS. (I) The calibration graph for determining the reliability of the nomogram to 
predict the 1-year OS. The perfect prediction would correspond to the diagonal line. Blue cross symbols represent the cohort and red dots 
are bias corrected by bootstrapping. *, P<0.05; **, P<0.01; NS, not significant. ROC, receiver operating characteristic; AUC, area under the 
curve; OS, overall survival; CRGs, cuproptosis-related genes; STAD, stomach adenocarcinoma.

biomarker CDKN2A show that there were 82 functions (such 
as digestion, antimicrobial humoral response, and thyroid 
hormone generation) in GO-BP, 35 functions (such as apical 
plasma membrane, apical part of cell, and chylomicron) 

in GO-CC, 33 functions (such as endopeptidase activity, 
cholesterol transfer activity, and sterol transfer activity) 
in GO-MF (Figure 4A), and 9 KEGG pathways such as 
Fat digestion and absorption, Cholesterol metabolism, 
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Figure 3 Methylation analysis of CRGs in STAD patients. (A) The methylation heatmap of CRGs. (B-G) The scatter plot of correlation 
between CRGs and methylation sites. (H-J) Kaplan-Meier curves for the OS of STAD patients between high- and low-expressed groups 
from the TCGA cohort. TCGA, The Cancer Genome Atlas; STAD, stomach adenocarcinoma; CRGs, cuproptosis-related genes.
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Figure 4 Functional enrichment analysis of CDKN2A, GLS, and LIAS. (A,C,E) The enriched item in the GO analysis. (B,D,F) The 
enriched item in the KEGG analysis. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

and Proximal tubule bicarbonate reclamation (Figure 4B). 
Enrichment results of biomarker GLS demonstrated that 
there were 90 functions (such as digestion, digestive system 
process, and maintenance of gastrointestinal epithelium) in 
GO-BP, 12 functions (such as digestion, digestive system 
process, and maintenance of gastrointestinal epithelium) in 
GO-CC, 42 functions (such as aspartic-type endopeptidase 
activity, aspartic-type peptidase activity, and carboxylic acid 
transmembrane transporter activity) in GO-MF (Figure 4C),  

and four KEGG pathways included fat digestion and 
absorption and protein digestion, absorption, pancreatic 
secretion, and mineral absorption (Figure 4D). Enrichment 
results of biomarker LIAS illustrated that there were 171 
functions (such as uterus development, skin development, 
and negative regulation of cardiac muscle tissue development) 
in GO-BP, 51 functions (such as serine-type endopeptidase 
inhibitor activity, co-receptor binding, and endopeptidase 
inhibitor activity) in GO-MF (Figure 4E), and three KEGG 
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pathways included cell adhesion molecules, Wnt signaling 
pathway, and fat digestion and absorption (Figure 4F).

Expression of biomarkers was correlated with immune cells

Immune cells are an important part of the tumor 
microenvironment (TME) and profoundly influence 
the progression of GC. We calculated the percentage of 
the immune cells in GC samples, and the results were 
visualized as a stacked bar chart (Figure 5A). The bubble 
charts demonstrated that biomarker GLS had a negative 
correlation with T cells regulatory (Tregs), NK cells resting, 
and neutrophils. The biomarker LIAS had a positive 
correlation with T cells CD4 memory activated, and had a 
negative correlation with macrophages M0 and macrophages 
M1. The biomarker CDKN2A had a negative correlation 
with B cells naive and plasma cells (Figure 5B). The results 
of differential analyses demonstrated that the percentage 
of B cells native in high-expressed group of CDKN2A was 
significant different with low-expression group (Figure 5C). 
The proportion of B cells naive, T cells regulatory (Tregs), 
mast cells resting, mast cells activated, and dendritic cells 
resting in high-expressed group of GLS were significant 
different with the proportion in low-expressed group 
(Figure 5D). The percentage of B cells naive, Tregs, mast 
cells resting, mast cells activated, and dendritic cells resting 
in high-expressed group of LIAS were significant different 
with low-expressed group (Figure 5E). The correlations 
between expression level of biomarkers and immune 
cells were visualized in lollipop charts (Figure 5F-5H).  
Besides, we detected the correlation between biomarkers 
and immune checkpoints, and the result showed that 
CDKN2A had a negative correlation with IDO1, TIGIT, 
CD274, PDCD1LG2, ICOS, and HAVCR2, LIAS was 
negatively related with CD27, and GLS was positively 
related with ICOS (Figure 5I).

MiRNA-mRNA network of biomarkers

Mi-RNAs can affect the function of biomarkers by 
degrading mRNA. The volcano plot indicated that there 
were 724 DE-mRNAs between normal and GC samples 
(Figure 6A). Then, a miRNA-mRNA network of biomarkers 
including 22 miRNAs was generated on the basis of 
correlation of miRNA-mRNA which identified via miRWalk 
database (Figure 6B). The heatmap of correlation biomarkers 
and miRNAs indicated that CDKN2A significantly correlate 
with hsa-miR-330-5P, hsa-miR-181d-5P, hsa-miR-181b-5P, 

and hsa-miR-1301-3P, and GLS significantly correlates with 
hsa-miR-34a-5P, hsa-miR-181d-5P, and hsa-miR-1301-3P, 
and LIAS significantly correlates with 6 miRNAs including 
hsa-miR-942-5P, hsa-miR-432-5P, hsa-miR-181d-5P, hsa-
miR-181b-5P, hsa-miR-125b-5P, and hsa-miR-125a-5P 
(Figure 6C). Besides, there were eight miRNA significantly 
correlated with OS of patients, which included hsa-miR-185-
5P, hsa-miR-320b, hsa-miR-181b-5P, hsa-miR-34b-5P, hsa-
miR-370-3P, hsa-miR-490-3P, hsa-miR-942-5P, and hsa-
miR-432-5P (Figure 6D-6K).

TFs-mRNA network of biomarkers

TFs can affect the function of biomarkers by affecting 
the transcription process of mRNA. DEG analysis was 
implemented to obtain 3,489 DEGs between normal and 
GC samples, and then those DEGs were intersected with 
TFs identified through the NetworkAnalyst database  
(Figure 7A,7B). There were five differentially expressed TFs 
in the intersection and they were used for constructing a TFs-
mRNA network (Figure 7C). The heatmap demonstrated 
that CDKN2A significantly correlated with RCOR2, GLS 
significantly correlated with SOX5, RCOR2, EZH2, and 
ELF3, and LIAS was significantly correlated with SOX5, 
KLF9, EZH2, and ELF3 (Figure 7D). The survival analysis 
of 5 TFs indicated that 3 TFs including EZH2, SOX5, and 
KLF9 had a significant correlation with OS of GC patients 
(Figure 7E-7G).

Co-expression network of biomarkers

We constructed a co-expression network to indicate 
reciprocity between DEGs and biomarkers (Figure 8A), 
and there were 82 genes co-express with GLS, 21 genes co-
express with LIAS, and 19 genes co-express with CDKN2A 
in the network. Then, we performed enrichment analysis 
on the basis of the network, and we found that there are 20 
functions of biomarkers and co-expressed genes, such as 
cardiac septum development, collagen fibril organization, 
and sensory organ morphogenesis (Figure 8B).

Discussion

GC remains to be one of the most common epithelial 
cancers while most patients are diagnosed at an advanced 
stage and still cannot benefit from the developing 
comprehensive therapeutic strategies. Therefore, developing 
new potential therapeutic targets is urgently needed and 
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Figure 5 Immune infiltration analyses. (A) The stacked bar chart of the ratio of the immune cells in STAD samples. (B) Association between 
the CRGs and immune cells by CIBERSORT. (C-E) The different distribution of immune cells in the low- or high-expression subgroups. 
(F-H) Correlation between CRGs and immune cells. (I) Correlation between CRGs and immune checkpoints. *, P<0.05; **, P<0.01; ****, 
P<0.0001; ns, not significant. TCGA, The Cancer Genome Atlas; STAD, stomach adenocarcinoma; NK, natural killer; CRGs, cuproptosis-
related genes; CIBERSORT, Cell type Identification By Estimating Relative Subsets Of RNA Transcripts.
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Figure 6 MiRNA-mRNA network of key CRGs. (A) The volcano plot of DE-mRNAs in normal and STAD samples. (B) The miRNA-
mRNA network of 22 screened miRNAs. (C) The co-expression heatmap between miRNAs and key CRGs. (D-K) Kaplan-Meier curves 
for the OS of eight miRNAs in STAD patients. TCGA, The Cancer Genome Atlas; STAD, stomach adenocarcinoma; CRGs, cuproptosis-
related genes; OS, overall survival.
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Figure 7 TFs-mRNA network of key CRGs. (A) The volcano plot of differentially expressed gene analysis between normal and STAD 
samples. (B) The intersection of DEGs with identified TFs. (C) The TFs-mRNA network of five differentially expressed TFs in the 
intersection. (D) The co-expression heatmap between TFs and key CRGs. (E-G) Kaplan-Meier curves for the OS of three TFs in STAD 
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may contribute to guide personalized medicine for GC 
patients. Cuproptosis is the recently identified pathway 
which may affect tumor development and progression. 
Despite increasing studies are emerging to explore the 
associations between CRGs and typical tumors (20,21). Due 
to heterogeneity of tumors and corresponding interactions, 
CRGs signature varied in different cancers. Specifically, 
there is uncertainty regarding the prognostic accuracy of 
CRGs and their biological functions in GC. Therefore, it is 

necessary to perform a full-scale investigation of CRGs in 
GC patients. 

In this study, we used the large-scale public database 
of GC transcriptome data and clinical data to screen key 
CRGs that may have potential prognostic, diagnostic and 
other guidance implications. Moreover, the underlying 
mechanisms of molecular alterations and clinical relevance 
of CRGs in GC were further explored and elucidated. In 
previous studies, 10 genes related to copper-induced cell 
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death pathways were identified (7). Building on this result, 
the present study aims to further identify copper death 
genes that play a key role in GC. A relatively low mutation 
frequency but high frequency of copy number alterations 
was found in CRGs, consistent with the previous study (22), 
which implicated that CRGs might be a potential treatment 
targets and can serve as a prognosis factor in GC patients. 

We ultimately identified three molecular biomarkers, 
GLS, LIAS and CDKN2A, which play a critical role in the 
copper death pathways of GC patients. Further analysis 
was conducted on these markers using methods such 
as methylation analysis, enrichment analysis, immune 
infiltration analysis, and construction of multi-factor 
regulatory networks to explore their significance in 
guiding prognosis and diagnosis of GC patients. GLS is an 
essential substance for cellular energy metabolism, which is 
responsible for the conversion of glutamine to glutamate. 
The high GLS expression is related with poor prognosis 
in GC patients. LIAS is located in the mitochondrion and 
encodes the protein of the biotin and lipoic acid synthetases 
family (23). Decreased LIAS expression is associated with 
diminished hepatic alpha-lipoic acid and tissue oxidative 
stress. A high LIAS expression is related to the good 
prognosis in patients with various cancers (24), which 
is consistent with the result of our study. CDKN2A is a 
tumor suppressor gene that encodes two distinct proteins 
to inhibit the cell cycle and promote apoptosis. The main 
regulatory pathway for CDKN2A is via the p53 signaling 
pathway, in cancer, mutations or deletions of CDKN2A are 
common, leading to loss of its tumor suppressive functions 
and contributing to tumor growth and progression (25). 
Our study showed that higher expression of CDKN2A was 
associated with lower DSS in GC patients, but there was no 
significant difference in OS or DFS. As shown in the Results 
section, we analyzed hundreds of enriched pathways for the 
three biomarkers mentioned above. Moreover, a nomogram 
of GC prognosis prediction was constructed using clinical 
features and the expression level of biomarkers, which 
showed a great prediction accuracy of 1-year survival.

In addition to the above-mentioned biomarkers, we also 
analyzed other molecules related to prognosis. MTF1 is 
an essential metal-binding transcription factor (TF) that 
binds to conserved DNA sequence motifs in the heavy 
metal response, resulting in the loss of heavy metal response 
gene transcription and cellular protection (26). Our study 
firstly revealed that the high expression of MTF1 resulted 
in better OS in GC patients, which was consistent with 
the previously reported role for MTF1 and Cu in cell 

differentiation and gene expression (27). 
Immune infiltration analysis and the epigenetic 

regulation of immune response have been widely applied 
in clinical research on GC and provide useful guidance for 
patient treatment selection and prognostic evaluation (28). 
Considering the important position of immunotherapy in 
GC, immune infiltration analysis studies were also used to 
assess the distinct roles of the subclusters and to investigate 
immune cell dysregulation in GC. GLS has a negative 
correlation with Tregs, NK cells resting, and neutrophils, 
LIAS has a positive correlation with T cells CD4 memory 
activated, and has a negative correlation with macrophages 
M0 and macrophages M1. CDKN2A has a negative 
correlation with B cells naive and plasma cells. The results 
of immune infiltration are largely consistent with some 
other studies. For example, recent research indicated that 
GLS was involved in immune-related signaling pathways, 
such as T-cell receptor signaling pathway, chemokine 
signaling pathway and hypoxia-related pathways (29). 
However, further research is needed to determine the 
optimal immune infiltration analysis method and ways to 
apply it to personalized treatment decision-making.

Besides, a multifactorial regulatory network was 
constructed for key genes, and prognostic analysis of 
miRNAs and TFs was performed. In our study, multiple 
survival-related miRNAs and TFs were screened out. Eight 
miRNAs were significantly correlated with OS of patients. 
And the survival analysis of five TFs indicated that three 
TFs including EZH2, SOX5, and KLF9 had a significant 
correlation with OS of GC patients. Accumulating evidence 
indicates that copper are involved in the regulation 
of miRNAs and TFs in GC, thereby promoting the 
proliferation, invasion, and metastasis of cancer cells (30). 
They contribute to GC as oncogenes or tumour suppressors 
by inhibiting either directly or indirectly the expression of 
target genes. In addition to miRNAs, copper ions can also 
affect the expression and function of some TFs, thereby 
affecting the development of various cancers (31), while 
the role remains unclear in GC. Our research provided 
important reference information for the future development 
of targeted therapeutic strategies for GC patients.

Our study has some limitations. First, the database of 
GC samples needs to be expanded for more comprehensive 
investigation. Second, our study is based on bioinformatics 
analysis, further in vitro and in vivo research is still warranted 
to explore the specific mechanism of CRGs affecting tumor 
development. Even so, our results provide new insights into 
the diagnosis, prognosis, and treatment of GC patients. 
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Conclusions

Our study identified possible biomarkers through 
bioinformatics analysis and systematically investigated the 
interactive gene landscape, prognosis role and molecular 
changes of CRGs in GC patients. Multi-factor regulatory 
networks were constructed to screen out factors with 
regulating influences of biomarkers. The results indicated 
that these CRGs may play a key role in the tumor 
development and progression of GC and highlighted its 
potential for clinical applications to guide clinical care and 
improve treatment selection in patients. 
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