
Computational and experimental
methods for classifying variants
of unknown clinical significance
Malte Spielmann1,2,3,4 and Martin Kircher1,5,6

1Institute of Human Genetics, University of Lübeck, 23562 Lübeck, Germany; 2Institute of Human Genetics,
Christian-Albrechts-Universität, 24105 Kiel, Germany; 3Human Molecular Genomics Group, Max Planck
Institute for Molecular Genetics, 14195 Berlin, Germany; 4DZHK (GermanCentre for Cardiovascular Research),
partner site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany; 5Berlin Institute of Health at Charité—
Universitätsmedizin Berlin, 10117 Berlin, Germany; 6DZHK (German Centre for Cardiovascular Research),
partner site Berlin, 10115 Berlin, Germany

Abstract The increase in sequencing capacity, reduction in costs, and national and interna-
tional coordinated efforts have led to the widespread introduction of next-generation se-
quencing (NGS) technologies in patient care. More generally, human genetics and
genomic medicine are gaining importance for more and more patients. Some communities
are already discussing the prospect of sequencing each individual’s genome at time of
birth. Together with digital health records, this shall enable individualized treatments and
preventivemeasures, so-called precisionmedicine. A central step in this process is the iden-
tification of disease causal mutations or variant combinations thatmake usmore susceptible
for diseases. Although various technological advances have improved the identification of
genetic alterations, the interpretation and ranking of the identified variants remains a major
challenge. Based on our knowledge of molecular processes or previously identified disease
variants, we can identify potentially functional genetic variants and, using different lines of
evidence, we are sometimes able to demonstrate their pathogenicity directly. However, the
vast majority of variants are classified as variants of uncertain clinical significance (VUSs) with
not enough experimental evidence to determine their pathogenicity. In these cases, com-
putational methods may be used to improve the prioritization and an increasing toolbox of
experimental methods is emerging that can be used to assay the molecular effects of VUSs.
Here, we discuss how computational and experimental methods can be used to create cat-
alogs of variant effects for a variety of molecular and cellular phenotypes. We discuss the
prospects of integrating large-scale functional data with machine learning and clinical
knowledge for the development of accurate pathogenicity predictions for clinical
applications.

FROM THE FIRST DRAFT GENOME TO FUNCTIONAL ANNOTATIONS

One central question in human genetics is the understanding of how genomic variation af-
fects genome function and influences phenotypes. The Human Genome Project was the
foundation for many breakthroughs in our understanding of human genomic variation and
the role it plays in health and disease (Gibbs 2020). Joint efforts of a broad community of bio-
medical researchers and two decades of large-scale projects including ENCODE (ENCODE
Project Consortium et al. 2007; The ENCODE Project Consortium 2012; Moore et al. 2020),
IHEC (Stunnenberg et al. 2016), NIH RoadMap Epigenomics (Satterlee et al. 2019), or
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FANTOM (Carninci et al. 2005; Abugessaisa et al. 2021) achieved tremendous progress in
mapping the “functional” genome as various annotations layers to the reference genome.
Other efforts like the International HapMap Project (International HapMap Consortium
2005), 1000 Genomes Project (1000 Genomes Project Consortium et al. 2015), UK10K
(Walter et al. 2015), The Simons Genome Diversity Project (Mallick et al. 2016), and the
Genome Aggregation Database (gnomAD) (Karczewski et al. 2020), as well as studies of
structural variants (Sudmant et al. 2015; Collins et al. 2020; Ebert et al. 2021), helped
cataloging human genetic variation. Efforts of large-scale cohorts and detailed phenotypic
characterization are the basis for better functional mapping and gene association
studies (Manolio and Collins 2009; Li et al. 2017; Bycroft et al. 2018). Most recently, the
Telomere-to-Telomere (T2T) consortium is releasing full-length chromosomal sequences
(Logsdon et al. 2021), enabling complete catalogs of human genetic sequence (Aganezov
et al. 2021).

Although all this resulted in an immense knowledge gain, it also shows that in addition to
the static mapping of genomic function and variation, over the next decade, we need to ap-
ply an efficient toolbox to engineer genomic alterations and to read out their functional ef-
fects in biological systems. In a recent effort, for example, the National Human Genome
Research Institute (NHGRI) Impact of Genomic Variation on Function (IGVF) Consortium
was established to utilize available and develop improved approaches to evaluate the func-
tion and phenotypic outcomes of genomic variation (National Human Genome Research
Institute (NHGRI) 2021).

Meanwhile, genomic analyses of populations or individuals to identify disease-associat-
ed genomic variants are becoming routine, and clinicians, genetic counselors, and research-
ers are in need to classify an ever-increasing number of variants of uncertain significance
(VUSs) between benign and pathogenic. Diagnostic assays such as newborn screening,
exome and panel sequencing to diagnose Mendelian disorders or cancer, and noninvasive
prenatal diagnosis (NIPT) tests are among the first high-throughput technology applications
to have entered the clinic. With further decreasing costs, whole-genome sequencing will be
the default genetic assay within the next years. Three to four million short sequence variants
(i.e., single-nucleotide variants [SNVs], multibase substitutions, and insertion/deletion [indel]
changes below 50 bp) as well as about 15,000 structural variants (SVs) are identified from an
individual’s genome (Acuna-Hidalgo et al. 2016; Ebert et al. 2021). Because of sheer num-
bers, the consideration of variant combinations on a genome-wide scale is intractable and
variants need to be efficiently filtered (e.g., by using related individuals and their affected/
unaffected status).

Already available variant catalogs and allele frequency thresholds provide a powerful
tool for reducing the number of considered variants (Eilbeck et al. 2017; Shah et al. 2018).
However, establishing causal relationships between variants and disease risk is still ham-
pered by a lack of mechanistic understanding for interpreting filtered variants. Similarly,
understanding the clinical relevance of variants is hindered by the overwhelming and
ever-growing number of VUSs. Here, we discuss the various strategies including computa-
tional variant effect prediction, experimental assays, data sharing, and data integration de-
veloped for addressing the challenges posed by VUSs.

PUBLIC RESOURCES AND THEIR APPLICATION IN THE IDENTIFICATION
OF DISEASE CAUSAL VARIANTS

Largely driven by the availability of a reference genome and the development of cheaper
sequencing methods (Kircher and Kelso 2010; Goodwin et al. 2016; Shendure et al. 2017;
Gibbs 2020), the identification of disease causal variants and disease genes has seen a rapid
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advance over the last 15 years (Bamshad et al. 2019). The development of targeted se-
quencing using sequence capture and targeted amplification approaches (Hodges et al.
2007; Ng et al. 2009; Turner et al. 2009; Briggs 2011) has led to widely used, optimized,
and commercialized laboratory kits to obtain high-quality sequence data of the exonic
part of the genome (i.e., exome sequencing [ES]) or other clinically relevant sequences
(e.g., panel sequencing). Reductions in sequencing costs have enabled a wider inclusion
of sequencing of unaffected relatives (e.g., parent–child trios, quads including unaffected
siblings, up to larger pedigrees), allowing for more effective identification of disease
causal variants. The large number of studies and a broader inclusion of relatives revealed
de novo variants and genetic mosaicism as a major source of Mendelian-type rare diseases
(Campbell et al. 2015; Acuna-Hidalgo et al. 2016) and stimulated a transition from “pheno-
type-driven” to “genotype-driven” syndrome delineation in Mendelian disorders (Bamshad
et al. 2019).

With observations like that, the field learned to appreciate that a dogmatic use of termi-
nology has its limitations. Specifically, the identification of damaging variants and variants
that alter molecular function is only a first of several steps toward the reporting of pathogenic
variants—that is, the presence of a variant that is (potentially) causing disease (Eilbeck et al.
2017).We learned to appreciate that dosage effects (i.e., levels of gene expression) and hap-
loinsufficiency, which we previously simplified in concepts like recessive and dominant dis-
ease, are measured on a continuous scale of gene expression and can be dependent on
certain cell types as well as developmental programs. Rather than trying to maintain a
black-and-white distinction between pathogenic and benign by introducing concepts of
penetrance and variable expressivity, we need to incorporate the concept of health burden
and the contribution of many genetic and environmental factors in the study of disease
(Shendure and Akey 2015; Wang et al. 2021).

Public databases play a central role to strengthen our understanding of genomic varia-
tion in the context of disease, they help to facilitate the exchange of genetic variation and
phenotype information. The database Online Mendelian Inheritance in Man (OMIM) aims
to be a comprehensive and authoritative compendium of human genes and genetic pheno-
types (Amberger et al. 2019). The database was initiated by Dr. Victor A. McKusick as a cat-
alog ofMendelian traits and disorders and first published in 1966. The online version,OMIM,
was created in 1985. At the beginning of 2006, OMIM cataloged approximately 15,800 en-
tries. By the end of 2021, this number had increased tomore than 26,000. In other words, the
database grew by 66% in just the last quarter of its existence. Although this is already impres-
sive, a recent study suggests that the number of delineated syndromes will continue to in-
crease at high rates (Bamshad et al. 2019). Between phenotype ontologies (Köhler et al.
2019) and “genotype-driven” syndrome delineation, new concepts seem required to cata-
log genetic variant effects.

Another major step toward understanding normal genetic variation was the establish-
ment of large variant databases. Even though the 1000 Genomes Project (1000 Genomes
Project Consortium et al. 2015) and a number of other studies were instrumental in catalog-
ing human genetic diversity, their allele frequency resolution was still insufficient for rare dis-
ease analyses. When the first large-scale exome studies came about, the NHLBI GO Exome
Sequencing Project (ESP) set out to discover novel genes and mechanisms contributing to
heart, lung, and blood disorders. The release of allele frequency information from the
more than 6500 unrelated ESP individuals of African–American or European–American
descent gave a first glimpse of the power of such data in the summer of 2012 (Tennessen
et al. 2012; Fu et al. 2013). This idea motivated the Exome Aggregation Consortium (Lek
et al. 2016) and later gnomAD (Karczewski et al. 2020), with the goal of aggregating and har-
monizing both exome and genome sequencing data from a wide variety of large-scale se-
quencing projects and making summary data available for the wider scientific community.
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Especially the gnomAD database, with its intuitive web interface and additional variant and
gene annotations, is currently being used in clinical laboratories around the world to filter for
rare disease causing variants as the cause of Mendelian disorders.

In 2013, the American College of Medical Genetics and Genomics (ACMG) developed
guidelines for the interpretation of sequence variants for clinical laboratories (Rehm et al.
2013; Richards et al. 2015). These recommendations currently represent the gold standard
for tests used in clinical laboratories, including genotyping, single genes, panels, exomes,
and genomes. The guidelines recommend the use of specific standard terminology—“path-
ogenic,” “likely pathogenic,” “uncertain significance,” “likely benign,” and “benign”—to
describe variants identified in genes that causeMendelian disorders. Overall, these diagnos-
tic guidelines are quite “strict” because misidentifying a variant as pathogenic could have
very severe consequences—for example, termination of a healthy fetus or an unnecessary
surgical or invasive procedure.

Also in 2013 and out of clinical need, ClinVar was established as a public database for
clinical laboratories, researchers, expert panels, and others to share their interpretations of
variants with their evidence. The National Center for Biotechnology Information (NCBI) da-
tabase aggregates information about genomic variation and its relationship to human
health, specifically their clinical assertions (Landrum and Kattman 2018). Looking at this da-
tabase, the recent progress in identifying disease causal variants is even more impressive
with the number of “Pathogenic” variants tripling within the last 7 years. As of its January
2022 release, the database reports on more than 1.1 million variants, with more than
400,000 being annotated as VUS or “Uncertain significance.” For several years now, these
clinically uncertain and not actionable variants represent a majority of annotated variants
(Fig. 1A). Although this is already clear evidence that we are considerably lacking behind
in variant characterization, gnomAD reports on more than 759 million short-sequence vari-
ants observed across more than 76,000 genomes in its v3.1 release.

Despite the overall progress in identifying disease causal variants and continued reports
of new pathogenic variants and disease genes, over the last years, the highest reported di-
agnostic yields from exome and genome sequencing do not exceed 40%–60% depending
on disease cohort (Lionel et al. 2018; Fung et al. 2020; 100,000 Genomes Project Pilot
Investigators et al. 2021; Stranneheim et al. 2021). One widely discussed potential reason
might be the persisting focus on coding sequence, short sequence variants, and our limited
understanding of noncoding molecular processes to assess the potential effects of the vast
majority of genomic variants.

CODING AND NONCODING SEQUENCES

In the past, amajor focus in identifying disease causal variants has been on coding sequence,
which represents the up to 2%–3% of the human genome in which variants frequently have
large phenotypic effects (Adzhubei et al. 2010; Sim et al. 2012; Ritchie et al. 2014; Hecht
et al. 2015; Rentzsch et al. 2019). In fact, the current ACMG guidelines only allow the clinical
classification of coding sequences, which represent only ∼1% of the genome (i.e., transcript
exon portions translated to amino acids; Fig. 1B). However, generally exonic sequences in-
cluding noncoding exons like 3′ and 5′ untranslated regions (UTRs) or sometimes also re-
tained introns have been studied long before the availability of a human reference
genome from so-called complementary DNA (cDNA) libraries and expressed sequence
tags (ESTs). With a transition to genome capture approaches and ES, we can see exon prox-
imal sequences in our analyses, like a few intronic bases or (parts of) the transcript promoter.
Although we see a clear enrichment of coding variants in databases like ClinVar (Fig. 1B), the
majority of variants associated with common diseases, as well as an unknown proportion of
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Figure 1. Rising numbers of variants of uncertain significance (VUSs) and the functional composition of ClinVar
variants. (A) The number of variants with clinical assertions in NCBI ClinVar (Landrum and Kattman 2018) in-
creased considerably in the last decade, but VUSs represent the largest class. As of its January 2022 release,
ClinVar reports on more than 1.1 million variants. Shown is the number of GRCh38 single-nucleotide variants
(SNVs) reported by their last date of variant evaluation (as a proxy for how long the variant has been known as
the database was only established in 2013) and the assigned clinical significance (ClinSig) from 1990 to 2020
(left, logarithmic scale) and the last 10 years (right, linear scale). Entries without a date were excluded and only
the nine most frequently used ClinSig values retained. In the remaining 961,829 entries, the nine levels were
further simplified to five categories by assigning “Pathogenic/Likely pathogenic” (n=7821) with “Likely path-
ogenic” (n=32,421), “Benign/Likely benign” (n=24,476) with “Likely benign” (n=258,515) as well as
“Conflicting interpretations of pathogenicity” (n=51,298) and “not provided” (n=8721) together with
“Uncertain significance” (n=392,706). By 2015, the number of VUSs exceeded the number of reported
“Pathogenic” variants. (B) Annotated variant consequences for variants in ClinVar versus potential genomic
SNVs highlight clear ascertainment effects. Using SNVs from panelA, we retrieved variant consequence anno-
tation as reported feature by the Combined Annotation Dependent Depletion (CADD) v1.6 tool (Rentzsch
et al. 2021) and 250,000 potential SNVs from the whole-genome CADD annotation file as representation of
the genomic background. The top panel shows ClinVar variants by their clinical assertion, highlighting coding
variants as dominant variant classes and upstream, downstream, and intergenic variants being generally un-
derrepresented. Between clinical assertions, functional class representation follows classical observations of
most severe effects for nonsense (stop gain) and missense (nonsynonymous amino acid exchanges) variants.
The bottom panel highlights that also in recent years pathogenic variants do not show a substantial increase in
the representation of noncoding variants.



causal variants for rare diseases, fall into the remaining “noncoding” regions of the genome
(Chatterjee and Ahituv 2017).

This includes a wide set of potential molecular processes like a diverse group of short and
long RNA species, untranslated sequences of all transcripts (e.g., 3′ UTRs, 5′ UTRs, introns
including proximal, and distal splice recognition sites or circular RNAs) as well as repeats
and satellite sequences. Further, various regulatory sequences are a subset of the noncoding
space. This jointly refers to sequence changes in promoter and distal regulatory elements
like enhancers, repressors, or insulators including so-called topologically associated domain
(TAD) boundaries (Gasperini et al. 2020). One important aspect of gene regulation by these
regulatory elements appears to be related to the 3D architecture of the genome in the nu-
cleus and had been largely ignored as a disease mechanism in the past (Spielmann et al.
2018). With the discovery of TADs and our increased knowledge about regulatory elements
and DNA folding, we are now able to consider the positional effects and regulatory-element
adoption for their role in human disease (Lupiáñez et al. 2015; Franke et al. 2016; Flöttmann
et al. 2018; Elsner et al. 2021; Socha et al. 2021). Regulatory sequences cover 5%–20% of the
genome (e.g., ∼18% in the annotation used in Fig. 1B) and are supposedly highly enriched
for the remainder of the undiscovered disease-causing and functional variants. Although
known phenotypic effects of regulatory variants aremore subtle than those of coding chang-
es, they are thought to, for example, underlie most of the known primate species differences
(King and Wilson 1975) and large proportions of the phenotypic variation among humans
(Stranger et al. 2007; Albert and Kruglyak 2015; Blake et al. 2020).

As mentioned above, a starting transition from panels or exomes to “whole” genomes
(genome sequencing, GS) enabled by a reduction in sequencing costs has not substantially
increased diagnostic rates. GS has rather been used to improve data quality and the ability to
call structural and copy-number variation due to a more even sequence coverage
(Kingsmore et al. 2019; Lowther et al. 2020; Brockman et al. 2021). Further, likewith the initial
transition from panels to exomes, the GS data is frequently computationally restricted to an
exome or even a panel equivalent. Reasons for that are manifold and range from computa-
tional reasons (i.e., reducing processing times), to legal and reporting considerations (e.g.,
preventing incidental findings), over to a perception that the number of variants and their
diverse potential molecular effects is not manageable. The result is a hierarchical approach
in which tiers of analysis are performed depending on whether a plausible variant was iden-
tified from the earlier tier. This inherently creates a confirmation bias and reduces the chanc-
es of finding noncoding or polygenic causes of disease. In line with these considerations, we
have not seen a substantial increase of noncoding pathogenic variants in ClinVar over the last
years (Fig. 1B).

COMPUTATIONAL PREDICTORS OF VARIANT EFFECTS

Variant function ormolecular effect may be obtained fromexperimental studies or can be the
result of computational predictions. Variant catalogs, as discussed below, may serve as look-
up tables for variant function, but typically our knowledge of individual variants is still far from
comprehensive, especially considering the vast universe of potential sequence alterations
that can be created. Therefore, computational models and algorithms that predict functional
consequences of variants are often the basis of an informed clinical assessment. However,
according to the current ACMG guidelines, computational evidence is set to be only “sup-
porting evidence.” Various approaches and tools are used to screen and prioritize large
numbers of variants (McLaren et al. 2010, 2016; Wang et al. 2010; Paila et al. 2013;
Flygare et al. 2018), providing a relative ranking of potentially causal variants for further fol-
low-up. Some of the resulting computational scores have been used in the field for more than
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a decade (Ng and Henikoff 2003; Adzhubei et al. 2013), and scores like the Grantham score
of missense variants date even further back (Grantham 1974). Generally, there is a large num-
ber of scores developed to prioritize missense variants (Hecht et al. 2015; Ioannidis et al.
2016; Sundaram et al. 2018; Livesey and Marsh 2020; Pejaver et al. 2020; Reeb et al.
2020), but other specialized scores (e.g., for synonymous [Buske et al. 2013; Zeng and
Bromberg 2019] or splicing variants [Jian et al. 2014; Rosenberg et al. 2015; Cheng et al.
2019; Riepe et al. 2021]) are also available.

The Power of Specialized Scores
It seems useful to distinguish scores that are used for a specific (molecular) function (like
those for missense, synonymous, and splice effects, but also specialized predictions of pro-
tein phosphorylation sites, transcription factor, or miRNA binding) from those that are broad-
ly applicable (like conservation or variant density derived metrics). Currently, the vast
majority of available computational predictors or scores are “specific.” Especially when pre-
dictors are trained from experimental or otherwise curated data, the resulting predictor is
typically limited to the domain that its training data was derived from and performing very
well in this specific domain. However, related to the training data, any kinds of ascertainment
issues have severe consequences for the resulting model that are frequently not considered
by users applying these tools. For example, in curated databases, genes with higher evolu-
tionary conservationmight be overrepresented because of a historically earlier description in
the scientific literature. This will propagate into models as an increased weight of sequence
conservation. Similarly, biases occur because an experiment is unable to measure some
kinds of variant effects; for example, in splicing when only a limited sequence context around
the splice donor or acceptor is measured, the model will have no power for intronic splicing
factors (Rosenberg et al. 2015). In this context, it is also important to point out that a variant
can have effects on multiple molecular functions like changing an amino acid as well as splic-
ing and that specialized models are not correctly capturing these effects (Rentzsch et al.
2021).

There are different areas (e.g., various RNA species like long noncoding or RNAs or
miRNAs and their genomic targets, transcript stability, repeat elements, genomic architec-
ture) where computational effect predictions still need substantial improvement. These areas
typically correspond to molecular functions that are mechanistically not yet completely un-
derstood or for which only experiments with limited throughput exist. The largest class with
limited computational effect prediction by genomic sequence are regulatory sequences.
When correlating regulatory effects in experimental data with multiple integrative scores
combining sequence conservation, functional element annotations, in silico transcription
factor (TF) binding site predictions, or biochemical readouts (e.g., TF immunoprecipitation,
histone mark immunoprecipitation, or open chromatin signals), we previously found that no
score or annotation consistently predicts the results (Inoue et al. 2017; Kircher et al. 2019).
Existing gene regulatory scores excessively rely on conservation and are mostly unable to
predict gains of TF binding. Sequence-based models (e.g., using gapped-string kernels
[Ghandi et al. 2014; Lee et al. 2015] or convolutional neural networks [Avsec et al. 2021a,
b; Ching et al. 2018]) overcome some of these limitations and show the overall best perfor-
mance (Shigaki et al. 2019). However, the development of improved predictors of regulatory
sequence effects will remain a very active field of research for the next years.

Another field that has seen advances from the application of deep-learning models are
protein structures. A recent publication on unsupervised models of missense effects based
on protein structure highlighted the potential of neural networks (Frazer et al. 2021), but also
the high variance across proteins and the challenges of covering all proteins. In regards to a
comprehensive coverage, the Alphafold2model (Jumper et al. 2021) has recently received a
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lot of attention for the inference of protein structures from only sequence. Inferring protein
folding can be instrumental for understanding amino acid impact (e.g., due to identification
of interacting residues) and may therefore provide important information in missense classi-
fication. We will likely see a number of tools that use this data over the next year. However,
many molecular functions are not directly inferred from structure (Li et al. 2010; Vacic and
Iakoucheva 2012; Reimand et al. 2015; Sahni et al. 2015; Lugo-Martinez et al. 2016). For ex-
ample, a protein might lose or gain phosphorylation sites critical for its function and we
would not necessarily see a change in folding. Similarly, changes in a potential binding pock-
et might not affect the major ligand binding or even enable binding of additional ligands.
Therefore, it remains unclear whether these advances in predicting protein structure will
also translate in significantly better prediction of pathogenic amino acid exchanges
(Diwan et al. 2021), especially given the very good existing performance.

In this context, it should also be mentioned that existing missense scores, especially
those that highly correlate with evolutionary conservation, do not always correlate well
with the results of deep mutational scanning (DMS) screens as discussed below (Gray
et al. 2018; Livesey and Marsh 2020; Reeb et al. 2020). To this point, it is unclear whether
this is related to the limitation of these screens testing specific protein characteristics (e.g.,
stability and folding) or functions (e.g., survival, abundance, binding, metabolic products)
or whether available missense scores were inherently biased in their development by using
conservation or the representation of certain protein classes (e.g., globular, highly
structured).

Combined and Universally Applicable Scores
Given a broad and unbiased data set, it is possible to use machine learning to integrate var-
ious annotations and specific scores to a broadly applicable metric. Tools like Eigen (Ionita-
Laza et al. 2016), LINSIGHT (Huang et al. 2017), or CADD (Kircher et al. 2014) are applying
such strategies. The combined metrics are very convenient for users as they make use of
many different annotations that are all partially correlated (and could not be considered in-
dependent evidence) and also allow to assess variants of potentially different molecular
function (e.g., coding vs. splicing vs. regulatory) on the same numerical scale. The limitations
of such approaches are again with the ascertainment of the training data set as well as the
coverage of the measures that are being integrated. For example, if there are no features
that cover regulatory effects, the model will not be predictive for that. Similar limitations ap-
ply if certain functional classes are not well-represented in the training examples.

Even though widely adopted (Adzhubei et al. 2013; Carter et al. 2013; Dong et al. 2015;
Ioannidis et al. 2016; Jagadeesh et al. 2016; Pejaver et al. 2020), the general approach of
using available clinical variant data sets to train models or integrate data for the prediction
of pathogenicity needs to be strongly cautioned. Although many of the published methods
implement theoretical and practical measures to assess their ability to generalize, if data lim-
itations are not appropriately corrected, the resulting models still suffer from ascertainment
bias and circularities in the variant interpretation process. For example, variants in clinical da-
tabases cluster around well-described disease genes—that is, the number of years that a
gene has been associated with a disease will affect the number of reported variants. This
number also correlates with the gene’s species conservation and when its cDNA was de-
scribed for the first time. Further, certain diseases (and biological functions) have been get-
ting more attention over the years (e.g., brain, heart, limbs), causing a representation bias. In
addition, certain genes or proteins allow easier experimental follow-ups (e.g., metabolic en-
zymes vs. membrane proteins). There is also an enrichment for high impact effects on the
variant level (see also Fig. 1B) and for variant location within the genes—for example, vari-
ants in binding pockets are enriched over variants positioned in less-constrained protein-

Assessment of variant effects in the clinic

C O L D S P R I N G H A R B O R

Molecular Case Studies

Spielmann and Kircher 2022 Cold Spring Harb Mol Case Stud 8: a006196 8 of 24



interaction domains. As a result, variants reported to clinical databases tend to have high
conservation scores, low population frequency or are absent from data sets, are located
away from repeat rich sequence, are discovered for “more common” rare diseases (because
it is easier to recruit patients), or are identified in inbred populations. These are just a few cri-
teria and they are to some extent directly manifested in the guidelines of the ACMG and oth-
ers (Richards et al. 2015). This applies not just for pathogenic variants, but a considerable
proportion of the reported benign variants may have been considered a plausible candidate
for a pathogenic variant and have subsequently been excluded (partially based on ACMG
criteria and not necessarily experimental results).

The development of various computational tools, pipelines, and predictive models re-
quires a transparent and rigorous benchmarking and validation process. In this context, sev-
eral editions of the Critical Assessment of Genome Interpretation (CAGI) challenges have
contributed by bringing various computational developers and real-world data producers to-
gether (Andreoletti et al. 2019). Challenges typically include two parts: a data set on which
the developers can directly evaluate and maybe even adjust their methods and a second
data set for which the correct answers are only revealed after the conclusion of the challenge.
In contrast to performance evaluations commonly presented for tools at time of publication,
overfitting to the limited amount of validation data is prevented. CAGI challenges are diverse
and, for example, ask submitters to either score specific molecular functions (e.g., amino acid
exchanges, splice sites, regulatory sequences) or benchmark whole pipelines, like nominat-
ing disease causal variants from whole-genome sequencing (with or without knowledge of
the disease phenotype). The continued effort of developing highly sensitive specialized
scores for different molecular functions and their subsequent integration in a broadly appli-
cable metric will be the foundation for a better prioritization of all genomic variants and will
make sure that the interaction of several molecular function at a certain genomic site is con-
sidered (Rentzsch et al. 2021).

Another important distinction between different computational methods is the range of
variants that can be scored. For example, many tools are limited to SNVs and cannot handle
multinucleotide variants, indels, or SVs (defined as insertions, deletions, inversions, or trans-
locations of >50 bp). Although still not widely implemented, scoring of indel changes has
gained attention over the last years (Kircher et al. 2014; Folkman et al. 2015; Douville
et al. 2016; Pagel et al. 2019). During recent years, structural variants have seen technolog-
ical and algorithmic advances, improving the quality and number of events that are being
identified (Sudmant et al. 2015; Ebert et al. 2021). Despite SVs being the smallest class in
absolute numbers (typically fewer than 20,000 identified per individual), the number of nu-
cleotides affected typically exceeds those of the other variant classes combined. SVs are
therefore a prominent variant class when it comes to increasing the diagnostic yield. From
a computational perspective, they are challenging as annotations need to be aggregated
across large genomic regions and the potential molecular effects at play may be diverse
(Ganel et al. 2017; Geoffroy et al. 2018; Kumar et al. 2020; Kleinert and Kircher 2022;
Sharo et al. 2022). Specifically, effects might be due to dosage effects or due to regulatory
changes in the local 3D architecture of the genome (Huynh and Hormozdiari 2019).

EXPERIMENTAL ASSESSMENT OF VARIANT EFFECTS

As outlined above, the widespread introduction of next-generation sequencing (NGS) tech-
nologies and GS in the clinical routine has led to a massive increase in the number of VUSs.
Except for obviously pathogenic nonsense and canonical splice site variants, one of the most
common wetlab-based methods for testing the pathogenicity of a variant is family segrega-
tion analysis. Additionally, the detection of a de novo mutation is clinically considered a
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good indication of the pathogenicity of a variant (Veltman and Brunner 2012). The
Deciphering Developmental Disorders study and the U.K. 100,000-genomes project
showed that ∼40% of all patients with developmental delay carry a pathogenic de novo mu-
tation in their coding sequence (Short et al. 2018; 100,000 Genomes Project Pilot
Investigators et al. 2021). Functional follow-up assays are then applied to each VUS as
they are encountered in patients. Although this de novo approach might be feasible for pan-
els and ES, the introduction of GS increases the number of de novo variants to 70–100 per
trio and makes it experimentally impossible to assess which variant is pathogenic (Turner
et al. 2017).

Multiplex Assays of Variant Effects (MAVEs)
Therefore, there is an urgent need to develop “next-generation functional tests” for the
comprehensive and systematic evaluation of thousands of variants from GS data.
Multiplex assays of variant effects (MAVEs), which encompass strategies for coding and non-
coding sequences, can be used to overcome this shortage (Inoue and Ahituv 2015; Starita
et al. 2017). Several recent articles review the technical aspect of MAVEs (Inoue and
Ahituv 2015; Starita et al. 2017; Findlay 2021) and a comprehensive repository is available
online (https://www.mavedb.org) with MaveDB (Esposito et al. 2019).

TheMAVE strategies developed for different applications all share a common framework
(Fig. 2). First, hundreds or thousands of genetic variants are created (e.g., by synthesis or er-
ror-prone polymerase chain reaction) and cloned into a plasmid system. Second, this mutant
library is introduced into an in vitro system and finally read out by a biological phenotype or
function usingmassively paralleled sequencing (Starita et al. 2017). This high-throughput ap-
proach in principle allows for systematic screening of all possible nucleotide variants within a
gene or region of interest. WhatmakesMAVEs highly scalable is that variants are engineered
and tested in a pooled format, drastically reducing cost and minimizing sample processing
(Findlay 2021). Here we will briefly introduce the different approaches and then discuss how
they could be translated into the clinic.

Coding Variants: Deep Mutational Scanning
Fowler et al. (2010) introduced the concept of deep mutational scanning to study the effect
of amino acid substitutions on protein function by profiling the protein binding properties of
more than 600,000 variants of the human WW domain. The authors presented a high-reso-
lution map of mutational effects across the WW domain and could show that each position
had unique features that would have taken many years to capture by identifying a few rep-
resentativemutations. Since then, this approach has successfully been applied to several dis-
ease loci (Harris et al. 2016; Koenig et al. 2017; Mighell et al. 2018, 2020; Schmiedel and
Lehner 2019; Esposito et al. 2019; Chiasson et al. 2020; Starr et al. 2020; Sun et al. 2020;
McCormick et al. 2021).

The widespread introduction of CRISPR–Cas9 paved the way for the development of in-
genome MAVEs that consider the local genomic context. Findlay et al. (2014) coupled
CRISPR–Cas9 genome editing with multiplex homology-directed repair using a library of
donor templates carrying all possible SNVs in exon 18 of BRCA1. As phenotypic readout
the authors measured variant effects on nonsense-mediated decay, exonic splicing, and cel-
lular growth. This saturation genome editing approach was later expanded to 13 critical ex-
ons of BRCA1 covering 96.5% of all possible SNVs (Findlay et al. 2018). Of the almost 4000
experimentally tested variants, 25% of VUSs and 49% of variants with conflicting previous re-
ports could be flagged as nonfunctional. It was estimated that saturation genome editing has
>95% accuracy in predicting the functional outcome of a genetic variant in BRCA1.
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Noncoding Variants: MPRAs/CRE-seq and STARR-seq
The identification and interpretation of medically relevant noncoding variants represents a
major bottleneck in human genetics. Massively parallel reporter assays (MPRAs, sometimes
also referred to as CRE-seq or STARR-seq) enable thousands of regulatory elements or mu-
tated regulatory elements to be concurrently assayed in a single, quantitative experiment
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Figure 2. Multiplex assays of variant effects (MAVEs): Clustered regularly interspersed short palindromic re-
peat (CRISPR)-based (A) and massively parallel reporter assay (MPRA)-based (B) MAVE strategies share a com-
mon framework. First, hundreds or thousands of genetic variants are created (e.g., by synthesis or error-prone
polymerase chain reaction) and cloned into a plasmid system. Second, this mutant library is introduced into an
in vitro system and finally read out by a biological phenotype or function using massively paralleled sequenc-
ing. (sgRNA) Single-guide RNA, (gRNA) guide RNA, (NGS) next-generation sequencing.
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(Kwasnieski et al. 2012, 2014; Melnikov et al. 2012; Arnold et al. 2013, 2014; Kheradpour
et al. 2013; White et al. 2013; Birnbaum et al. 2014; Shlyueva et al. 2014; Inoue and
Ahituv 2015; Muerdter et al. 2015; Klein et al. 2020). This is achieved by synthesizing libraries
of potential regulatory elements including unique molecular barcodes that can be analyzed
by high-throughput sequencing. In the case of STARR-seq assays (Arnold et al. 2013, 2014;
Muerdter et al. 2017), the insertion of regulatory element in the 3′ UTR serves as the molec-
ular barcode directly. A limitation of the early implementations of theMPRAmethodwas that
the assayed DNA is episomal and does not integrate into the genome. In contrast, lentivirus-
based MPRAs (Inoue et al. 2017; Gordon et al. 2020) enable genomic integration of assayed
sequences, including the ability to infect difficult to transfect cells, such as neurons (Inoue
et al. 2019). To minimize positional effects of random integration, flanking insulators to
the vector (pLS) are also included.

By measuring allelic pairs, or allelic series up to comprehensive saturation mutagenesis
libraries, individual variant effects can be inferred fromMPRAs. Large MPRA data sets, mea-
suring regulatory variant effects, are currently limited to specific loci (Kircher et al. 2019), de-
rived from readouts of only standing variation (e.g., quantitative trait locus [QTL] studies,
common variants, or variants identified across cancer cell types [Tewhey et al. 2016; van
Arensbergen et al. 2019]) or are only available for single cell types (Tewhey et al. 2016;
Kircher et al. 2019). Generally, MPRAs are still mostly used to measure the activity of regions,
not the effect of individual variants.

CRISPR–Cas9 genome editing has also influenced the way that the noncoding genome is
currently being investigated. CRISPR screening experiments in combination with state-of-the-
art single-cell technologies now enable mapping of noncoding elements in thousands of dif-
ferent loci in a single multiplexed experiment (Gasperini et al. 2019). The most common types
of CRISPR screening modalities have recently been reviewed by Przybyla and Gilbert (2021).

Inherent Limitations and Biases of MAVEs
One of the key limitations of all MAVEs in the context of developmental disorders and rare
disease is the lack of appropriate tissues or cells that are needed to perform a high-through-
put functional assay. Although immortalized cell lines can easily be transfected with complex
libraries, they do not resemble the aspects of embryonic development. Further, studies have
shown that the results of, for example, MPRAs are dependent on the cell type that is used
(Maricque et al. 2017; Inoue et al. 2019; Kircher et al. 2019; Griesemer et al. 2021). For
deepmutational scanning, sequence length and complexity restrictions also limit which pro-
teins can be assayed.

The noncoding genome represents yet again a particular challenge: Because of current
restrictions in DNA synthesis, the fragments that are assayed in anMPRA are usually between
150 and 300 bp in size. However, there aremany examples of enhancers and regulatory land-
scapes that are longer than that. These long regulatory elements are thought to drive tissue
specific gene expression through chromatin folding in the 3D architecture of the nucleus.
These are aspects that are currently not considered with MPRAs.

Another bottleneck is the fact that evenwhen applyingMPRAs, the final validation exper-
iment of whether a DNA sequence is an enhancer and whether a variant alters it can currently
only be done by an in vivo (reporter) assay. This is usually performed in zebrafish or in trans-
genic mice (Visel et al. 2009; Franke et al. 2016). The DNA sequences are cloned into a re-
porter construct, which usually consists of a minimal promoter and LacZ or green fluorescent
protein (GFP). This construct is then tested by injection in a model organism. An enhancer
then leads to tissue-specific expression of the reporter gene. For example, an enhancer of
the extremities shows a specific staining in the extremities of the mouse embryo. The entire
procedure can take up to several months and is limited in throughput.
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A final limitation is the fact that MPRAs and CRISPR-based assays are technically very de-
manding. Routine laboratories will probably not performMAVEs in a clinical setting. It seems
more likely that highly specialized academic centers could perform these analyses for a par-
ticular region of the genome or a disease of interest, providing the resulting data to themed-
ical community. National and international funding will be necessary to perform these
experiments at scale and to organize access to the resulting data.

CATALOGS OF VARIANT EFFECTS

In addition to variants identified from population genetics studies, an increasing number of
samples from various clinical studies have been aggregated and used to catalog known ge-
netic variation. Samples collected as controls in disease studies or for population studies are
obtained from healthy individuals. This never excluded the possibility of late onset disease
variants in the resulting databases, but in recent years, individuals with known diseases were
also actively included in variant databases, if their phenotype was not severe or defined as
late onset. As a result, variant frequency always needs to be interpreted for the specific dis-
ease and variant, and no conclusion can be drawn from the mere presence or absence. To
this point, it is also important to note that the majority of currently known variants are single-
tons, that is, variants identified from one individuals’ genome. Despite what seems a shallow
sampling (around 100,000 individuals from a population of billions) of the overall variation
that is compatible with life, combining this information as variant density (i.e., the underrep-
resentation of common variants or the clustering of disease-associated variants in a region)
may be used as evidence for prioritizing functional variants (di Iulio et al. 2018; Havrilla et al.
2019). Databases of known variants like gnomAD (Karczewski et al. 2020) or BRAVO (Taliun
et al. 2021) are therefore an important source.

Similarly, collections of potential disease causing variants are highly relevant. This obvi-
ously includes collections like ClinVar (Landrum and Kattman 2018) or variants curated from
literature like HGMD (Stenson et al. 2020), but also variants implicated by genome-wide as-
sociation studies (GWASs) and QTL studies like the GWAS catalog (Buniello et al. 2019) or
the GTEx expression QTLs (GTEx Consortium 2020). There is also a huge value in making
information about variants that are being considered as candidates for certain diseases or
phenotypes available. In the most basic sense, these are the VUSs that we find in ClinVar,
but should also include unpublished analyses and the options to collaborate directly with
other researchers in establishing the disease link through platforms like MatchMaker
Exchange (Philippakis et al. 2015).

Another rich and underused source of information is the growing amount of molecular
data that is available for human, but also for model organisms (Wangler et al. 2017;
Shefchek et al. 2020). On the one hand, there are the results of assays as we discussed
them here and that are, for example, made available through MaveDB (Esposito et al.
2019). On the other hand, there are tens of thousands of functional genomics data sets avail-
able, for example, through the NBCI Gene Expression Omnibus (Barrett et al. 2013)—
including gene expression, immunoprecipitation of DNA binding (TFs and histones), DNA
accessibility, DNA methylation, 3D organization, and interaction of DNA elements available
for various cell types, whole tissues, or single-cell experiments. To give an example of how
such data can be used for the identification of mutations in enhancers and functional ele-
ments, variant positions can be overlaid with histone marks or the VISTA database (Visel
et al. 2009; Spielmann et al. 2018).

The available functional genomics data is vast and highly valuable. Still, only aminority of
variants in patients with developmental delay lie in known enhancer elements characterized
by histone marks (Short et al. 2018; Moore et al. 2020). Furthermore, regulatory gain of
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function mutations (i.e., variants that generate new transcription factor binding sites) might
not be recognized by this approach. Another general challenge is that these data sets are
created and analyzed by many different laboratories, making it difficult to identify the
most relevant data sets and to compare or jointly analyze different data sets. In this context,
it seems important to mention the ENCODE and NIH Roadmap Epigenomics Mapping
consortia (The ENCODE Project Consortium 2012; Roadmap Epigenomics Consortium
et al. 2015) again, as they have initiated data portals with versioned and uniform data
processing pipelines as well as explored the possibility of imputing the results of certain mo-
lecular assays from other assay data. They are also the data source for several efforts to an-
notate functional elements and regions across available cell types, like the SCREEN
database (Moore et al. 2020) or ChromHMM segmentations (Ernst and Kellis 2017; Vu
and Ernst 2022).

The increasing number of experimental element and variant readouts, a huge library of
functional genomics tracks and annotations, and a “zoo” of computational models (Avsec
et al. 2019) and tools is very challenging to navigate and currently impossible to integrate
into variant analysis for single laboratories or even larger institutions. What is clearly required
is a one-stop solution, a website and database where currently available information about a
genomic alteration is aggregated. One initiative in this space is the above-mentioned IGVF
Consortium, one of the successor efforts of the highly visible ENCODE consortium. In addi-
tion to using state-of-the art experimental as well as modeling approaches to create more
data, the IGVF consortium also aims to build a variant effect catalog as a resource for the
broader research community that catalogs variant impacts including the underlying data,
tools, and models (National Human Genome Research Institute (NHGRI) 2021). For this
goal, the consortium includes two Data and Administrative Coordinating Center awards
that will support this process. We believe it is critical to integrate this into a larger effort of
data coordination centers also in other national initiatives and to allocate resources to
make the available information accessible, as a service to the genetics community and
most importantly also the patients.

CONCLUSIONS AND FUTURE DIRECTIONS

The broad introduction of NGS technologies into patient care has revolutionized human ge-
netics. Although currently the major focus still lies in the in-depth diagnostics of rare diseas-
es, consultation of “critically ill” infants, and complex syndromic cases, the development of a
precision medicine is on our horizon. Over the next years, the focus will expand toward com-
mon disease, precision oncology, and eventually even the treatment of genetic disorders.
However, the foundation of this path toward genomic medicine will be through careful var-
iant interpretation. The number of VUSs will continue to rise. Despite major advances in the
computational and experimental methods that we described here, it will remain unfeasible
to test large numbers of variants with multiple assays or in a large number of biological con-
ditions. Without further knowledge and more experimentally validated noncoding variants,
the medical interpretation of variants in noncoding DNAwill remain one of our biggest chal-
lenges. Other major challenges are polygenic and oligogenic variants. At least for the next
few years, we will struggle with a good balance of what variants to report to the patients and
how to implement effective cycles of variant reinterpretation.

We have outlined the clinical need for improved data integration, summarization, and
presentation. One approach that we start to see, and that might be very promising in reduc-
ing the sheer number of individual data sets, is replacing a large number of functional geno-
mics data by its representation learned in convolutional neural networks. Here, sequence
regions (potentially of several kilobases of sequence) are used as the input for predicting
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molecular readouts like open chromatin regions, histone marks, or DNA methylation (Zhou
and Troyanskaya 2015; Kelley et al. 2016; Zhou et al. 2019; Schwessinger et al. 2020; Avsec
et al. 2021a,b). This potentially removes biases by combiningmany experiments, generalizes
sample-specific information (potentially easing model sharing even if data cannot be
shared), and allows the prediction of the molecular data for new DNA sequences.
Especially the application to new DNA sequences will be key to predicting allele-specific ef-
fects and to performing in silico mutagenesis studies. The growing efforts of establishing cell
atlases and developmental trajectories from single-cell data (Cao et al. 2020; Haniffa et al.
2021) will hopefully help in connecting what are currently separate cell-type or tissue read-
outs to a continuous trajectory of the specific molecular function.

Variant prioritization profits from the specialized models of certain molecular processes
(including sequence- and deep-learning-derived models) and their subsequent integration
across various potential molecular effects to genome-wide scores. The next generation of
these integrated scores needs to be able to score all kinds of variant types from SNVs
over multinucleotide changes to chromosomal alterations. They also should be developed
in a way that makes use of cell-type-specific effects while weighting such contributions in
an organismal score. Consequently, our ability to predict and experimentally assess the ef-
fects of genetic variants will undoubtedly continue to improve, but it will be imperfect as long
as it is based on several layers of approximations of molecular processes.

The goal should be a comprehensive computational support for clinical genetics. Ideally,
this would be possible with a single tool that clinicians could use when diagnosing their pa-
tients. Although this seems not possible right now, we start by data integration in high-level
frameworks for variant interpretation that use as much available information as possible. This
includes various types of information like segregation, allele frequency, affected cell types
and tissues, gene expression, molecular pathways, computational effect predictions, pheno-
typic effect, and (deep) phenotyping data. This information would be considered in an inte-
grated likelihood or multiple-hypothesis-testing framework. Such framework could be seen
as extension or generalization of what is currently done when considering multiple disease
models (e.g., recessive, compound heterozygote, dominant, de novo, or mosaicism) in anal-
ysis. As pointed out earlier, the number of variants identified in an individual genome is too
large for considering any unconstrained combination of potentially causal variant alleles.
Instead, information on the phenotype might nominate relevant cell types and pathways,
thereby prioritizing potential gene sets and regulatory regions for which polygenic variant
sets could be considered. The complexity of the considered hypotheses might be scaled
by omnigenic genetic burden estimates (i.e., risk scores) used as proxies of how much buf-
fering or compensation might bemasking the severity of the phenotype in the genetic back-
ground of the patient. We might, for example, expect high impact and monogenic cause, if
the patient does not have a high genetic burden, whereas in the case of a high genetic bur-
den, complex interactions of subtle effects might be disease causal. Most importantly, such
an analysis should not be performed in tiers, but as a ranked list in which hypotheses are in-
validated by additional evidence like functional or genotypic data. To this end, systematic
and objective clinical guidelines will need to evolve with active involvement from computa-
tional method developers, and clinicians, counselors, and eventually patients will have to
embrace a more quantitative integration of evidence rather than the strict classification
(Tavtigian et al. 2018, 2020).

Our goal is the universal and fully integrated software for variant interpretation. However,
we know that this is currently unreasonable. This would require high levels of standardization
and FAIR (findability, accessibility, interoperability, and reusability) data principles that the
field just starts to address. Another challenge is the “n+1” problem—that is, what to do
when additional data of one more sample or one more experiment needs to be integrated
in themodels. This creates version cycles and requires revisiting all previous results after such

Assessment of variant effects in the clinic

C O L D S P R I N G H A R B O R

Molecular Case Studies

Spielmann and Kircher 2022 Cold Spring Harb Mol Case Stud 8: a006196 15 of 24



updates. To justify the computationally expensive process of retraining and reanalysis, this is
only reasonable when adding a substantial amount of new data. Further, it seems important
to stress that results of any ranking of potentially causal variants will need to be transparent.
We should aim for a common reporting standard that makes it possible to understand why a
certain variant set is suggested as causal and what the major underlying processes are. This
information needs to be at such a level and of such clarity that it can be validated and also
be provided back to the patient for informing future medical treatments.
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Socha M, Sowińska-Seidler A, Melo US, Kragesteen BK, Franke M, Heinrich V, Schöpflin R, Nagel I, Gruchy N,
Mundlos S, et al. 2021. Position effects at the FGF8 locus are associated with femoral hypoplasia. Am J
Hum Genet 108: 1725–1734. doi:10.1016/j.ajhg.2021.08.001

SpielmannM, Lupiáñez DG, Mundlos S. 2018. Structural variation in the 3D genome.Nat Rev Genet 19: 453–
467. doi:10.1038/s41576-018-0007-0

Starita LM, Ahituv N, Dunham MJ, Kitzman JO, Roth FP, Seelig G, Shendure J, Fowler DM. 2017. Variant in-
terpretation: functional assays to the rescue. Am J Hum Genet 101: 315–325. doi:10.1016/j.ajhg.2017.07
.014

Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, Navarro MJ, Bowen JE, Tortorici MA,
Walls AC, et al. 2020. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals con-
straints on folding and ACE2 binding. Cell 182: 1295–1310.e20. doi:10.1016/j.cell.2020.08.012

Stenson PD, Mort M, Ball EV, ChapmanM, Evans K, Azevedo L, HaydenM, Heywood S, Millar DS, Phillips AD,
et al. 2020. The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or
research setting. Hum Genet 139: 1197–1207. doi:10.1007/s00439-020-02199-3

Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, Lee C,
et al. 2007. Relative impact of nucleotide and copy number variation on gene expression phenotypes.
Science 315: 848–853. doi:10.1126/science.1136678

Stranneheim H, Lagerstedt-Robinson K, Magnusson M, Kvarnung M, Nilsson D, Lesko N, Engvall M, Anderlid
B-M, Arnell H, Johansson CB, et al. 2021. Integration of whole genome sequencing into a healthcare set-
ting: high diagnostic rates across multiple clinical entities in 3219 rare disease patients. Genome Med 13:
40. doi:10.1186/s13073-021-00855-5

Stunnenberg HG, Abrignani S, Adams D, de Almeida M, Altucci L, Amin V, Amit I, Antonarakis SE, Aparicio S,
Arima T, et al. 2016. The International Human Epigenome Consortium: a blueprint for scientific collabora-
tion and discovery. Cell 167: 1145–1149. doi:10.1016/j.cell.2016.11.007

Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y, Ye K, Jun G, Fritz MH-Y,
et al. 2015. An integrated map of structural variation in 2,504 human genomes.Nature 526: 75–81. doi:10
.1038/nature15394

Sun S, Weile J, Verby M, Wu Y, Wang Y, Cote AG, Fotiadou I, Kitaygorodsky J, Vidal M, Rine J, et al. 2020. A
proactive genotype-to-patient-phenotype map for cystathionine beta-synthase. Genome Med 12: 13.
doi:10.1186/s13073-020-0711-1

Sundaram L, Gao H, Padigepati SR, McRae JF, Li Y, Kosmicki JA, Fritzilas N, Hakenberg J, Dutta A, Shon J,
et al. 2018. Predicting the clinical impact of human mutation with deep neural networks. Nat Genet 50:
1161–1170. doi:10.1038/s41588-018-0167-z

Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, Taliun SAG, Corvelo A, Gogarten SM, Kang
HM, et al. 2021. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature 590:
290–299. doi:10.1038/s41586-021-03205-y

Tavtigian SV, Greenblatt MS, Harrison SM, Nussbaum RL, Prabhu SA, Boucher KM, Biesecker LG, ClinGen
Sequence Variant Interpretation Working Group (ClinGen SVI). 2018. Modeling the ACMG/AMP variant
classification guidelines as a Bayesian classification framework. Genet Med 20: 1054–1060. doi:10
.1038/gim.2017.210

Tavtigian SV, Harrison SM, Boucher KM, Biesecker LG. 2020. Fitting a naturally scaled point
system to the ACMG/AMP variant classification guidelines. Hum Mutat 41: 1734–1737. doi:10.1002/
humu.24088

Tennessen JA, BighamAW,O’Connor TD, FuW, Kenny EE, Gravel S, McGee S, Do R, Liu X, Jun G, et al. 2012.
Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science
337: 64–69. doi:10.1126/science.1219240

Tewhey R, Kotliar D, Park DS, Liu B,Winnicki S, Reilly SK, Andersen KG,Mikkelsen TS, Lander ES, Schaffner SF,
et al. 2016. Direct identification of hundreds of expression-modulating variants using a multiplexed report-
er assay. Cell 165: 1519–1529. doi:10.1016/j.cell.2016.04.027

The ENCODEProject Consortium. 2012. An integrated encyclopedia of DNAelements in the human genome.
Nature 489: 57–74. doi:10.1038/nature11247

Turner EH, Ng SB, Nickerson DA, Shendure J. 2009. Methods for genomic partitioning. Annu Rev Genomics
Hum Genet 10: 263–284. doi:10.1146/annurev-genom-082908-150112

Turner TN, Coe BP, Dickel DE, Hoekzema K, Nelson BJ, Zody MC, Kronenberg ZN, Hormozdiari F, Raja A,
Pennacchio LA, et al. 2017. Genomic patterns of de novo mutation in simplex autism. Cell 171: 710–
722.e12. doi:10.1016/j.cell.2017.08.047

Vacic V, Iakoucheva LM. 2012. Disease mutations in disordered regions—exception to the rule?Mol Biosyst 8:
27–32. doi:10.1039/C1MB05251A

van Arensbergen J, Pagie L, FitzPatrick VD, de Haas M, Baltissen MP, Comoglio F, van der Weide RH,
Teunissen H, Võsa U, Franke L, et al. 2019. High-throughput identification of human SNPs affecting regu-
latory element activity. Nat Genet 51: 1160–1169. doi:10.1038/s41588-019-0455-2

Assessment of variant effects in the clinic

C O L D S P R I N G H A R B O R

Molecular Case Studies

Spielmann and Kircher 2022 Cold Spring Harb Mol Case Stud 8: a006196 23 of 24



Veltman JA, Brunner HG. 2012. De novo mutations in human genetic disease. Nat Rev Genet 13: 565–575.
doi:10.1038/nrg3241

Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, et al. 2009.
ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457: 854–858. doi:10.1038/
nature07730

Vu H, Ernst J. 2022. Universal annotation of the human genome through integration of over a thousand epi-
genomic datasets. Genome Biol 23: 9. doi:10.1186/s13059-021-02572-z

Walter K, Min JL, Huang J, Crooks L, Memari Y, McCarthy S, Perry JRB, Xu C, FutemaM, Lawson D, et al. 2015.
The UK10K project identifies rare variants in health and disease. Nature 526: 82–90. doi:10.1038/
nature14962

Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-through-
put sequencing data. Nucl Acids Res 38: e164. doi:10.1093/nar/gkq603

Wang Q, Dhindsa RS, Carss K, Harper AR, Nag A, Tachmazidou I, Vitsios D, Deevi SVV, Mackay A, Muthas D,
et al. 2021. Rare variant contribution to human disease in 281,104 UK Biobank exomes. Nature 597: 527–
532. doi:10.1038/s41586-021-03855-y

Wangler MF, Yamamoto S, Chao H-T, Posey JE, Westerfield M, Postlethwait J, Members of the Undiagnosed
Diseases Network (UDN), Hieter P, Boycott KM, Campeau PM, et al. 2017. Model organisms facilitate rare
disease diagnosis and therapeutic research. Genetics 207: 9–27. doi:10.1534/genetics.117.203067

White MA, Myers CA, Corbo JC, Cohen BA. 2013. Massively parallel in vivo enhancer assay reveals that highly
local features determine the cis-regulatory function of ChIP-seq peaks. Proc Natl Acad Sci 110: 11952–
11957. doi:10.1073/pnas.1307449110

Zeng Z, Bromberg Y. 2019. Predicting functional effects of synonymous variants: a systematic review and per-
spectives. Front Genet 10: 914. doi:10.3389/fgene.2019.00914

Zhou J, Troyanskaya OG. 2015. Predicting effects of noncoding variants with deep learning-based sequence
model. Nat Methods 12: 931–934. doi:10.1038/nmeth.3547

Zhou J, Park CY, Theesfeld CL, Wong AK, Yuan Y, Scheckel C, Fak JJ, Funk J, Yao K, Tajima Y, et al. 2019.
Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk.
Nat Genet 51: 973–980. doi:10.1038/s41588-019-0420-0

Assessment of variant effects in the clinic

C O L D S P R I N G H A R B O R

Molecular Case Studies

Spielmann and Kircher 2022 Cold Spring Harb Mol Case Stud 8: a006196 24 of 24


