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Abstract: Chemical profiling of the Streptomyces sp. strain SUD119, which was isolated from a
marine sediment sample collected from a volcanic island in Korea, led to the discovery of three
new metabolites: donghaecyclinones A–C (1–3). The structures of 1–3 were found to be rearranged,
multicyclic, angucyclinone-class compounds according to nuclear magnetic resonance (NMR) and
mass spectrometry (MS) analyses. The configurations of their stereogenic centers were successfully
assigned using a combination of quantum mechanics–based computational methods for calculating
the NMR shielding tensor (DP4 and CP3) as well as electronic circular dichroism (ECD) along with a
modified version of Mosher’s method. Donghaecyclinones A–C (1–3) displayed cytotoxicity against
diverse human cancer cell lines (IC50: 6.7–9.6 µM for 3).

Keywords: molecular modeling; electronic circular dichroism; quantum mechanics-based computation;
angucyclinone; Streptomyces; cytotoxicity

1. Introduction

Quantum mechanics–based computation is emerging as a useful tool for elucidating the structure
of natural products and complements the analysis of experimental spectroscopic data [1–3]. Modern
computational techniques, when coupled with a nuclear magnetic resonance (NMR) shielding tensor,
allow us to clarify the assignment of individual nuclei when considering experimental NMR data and
establish relative configurations [3,4]. In particular, the recent development of advanced statistical
analyses (for example, CP3 and DP4) has enabled us to assign the relative configurations of natural
products possessing remote stereogenic centers that are located multiple bonds away from the other
chiral centers with assigned configurations. These analyses utilize computed 1H and 13C NMR
chemical shift values based solely on computational methods and statistically compare them with
experimental NMR chemical shifts using web-based applets provided by the Smith and Goodman
groups [3,5,6]. Despite the usefulness of the computational methods that utilize an NMR shielding
tensor for the assignment of relative configurations, these techniques are not applicable to absolute
configurations because NMR spectroscopy cannot inherently distinguish enantiomers. However, over
the past few decades, electronic circular dichroism (ECD) spectra have been used to determine the
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absolute configurations of natural products [7,8]. Advanced ECD calculations, when coupled with
time-dependent density functional theory (TD-DFT), have resulted in higher accuracy and lower
computational costs and enable the assignment of absolute configurations of molecules through
comparisons between experimental and calculated ECD spectra [8,9].

Besides the application of computational methods for elucidating the structures of natural products,
chemical investigations into understudied natural resources are also crucial in natural product research
that aims to discover structurally and biologically novel compounds [10]. In this regard, we have
been examining the chemical profiles of actinobacterial strains that inhabit the marine environments
of volcanic islands, which may provide unique microbial habitats with volcanic minerals and salts
from the surrounding seawater [11]. This has led to the successful discovery of various classes of
new natural products [12–18] from volcanic island-derived marine actinomycetes. These include new
cyclic peptides with anticancer and antituberculosis activities, ohmyungsamycins A and B [12], new
anti-inflammatory linear polyketides, succinilenes A–D [17], and donghaesulfins A and B, which are
dimeric benz[a]anthracenes linked through a sulfide bond [18]. By changing the culture conditions
of the donghaesulfin-producing strain Streptomyces sp. SUD119, which was isolated from a marine
sediment sample from a volcanic island (Ulleung Island) located in the middle of Donghae Sea of the
Republic of Korea, we produced the new arranged angucyclinone metabolites donghaecyclinones
A–C (1–3) (Figure 1). Large-scale fermentation of the SUD119 strain and further chromatographic
purification resulted in the yield of 1–3 for subsequent spectroscopic analyses of these compounds.
Here, we report the isolation, structural elucidation (in particular, the application of computational
techniques for the establishment of configuration, including ECD calculations), and biological activities
of donghaecyclinones A–C (1–3).
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Figure 1. The structures of donghaecyclinones A–C (1–3). 

2. Results and Discussion 

2.1. Structure Elucidation 

Donghaecyclinone A (1) was obtained as a white powder of molecular formula C20H18O5 on the 
basis of high resolution-fast atom bombardment mass spectrometry (HR-FABMS) (obsd [M + H]+ at 
m/z 339.1227, calcd [M + H]+ at m/z 339.1231). The combination of 1H, 13C, and heteronuclear single 
quantum coherence (HSQC) NMR data (Table 1) of 1 in DMSO-d6 revealed that donghaecyclinone A 
(1) contains a carbonyl carbon (δC 198.9), five double-bond methine signals (δC/δH: 127.6/7.49, 
131.5/7.27, 111.7/7.10, 122.2/7.00, and 111.5/6.94), and seven non-protonated double-bond carbons (δC: 
153.6, 148.5, 148.3, 140.4, 126.3, 125.9, and 122.9). Through further interpretation of the NMR data, we 
identified three sp3 oxymethines (δC/δH: 98.7/6.86, 77.3/6.68, and 71.4/4.22), a methoxy group (δC/δH: 
55.6/3.85), one aliphatic methylene (δC/δH: 44.3/2.81 and 2.32), one aliphatic methine (δC/δH: 37.0/2.08), 
and one methyl group (δC/δH: 17.6/1.04). The molecular formula of 1 suggests that donghaecyclinone 
A (1) should possess 12 degrees of unsaturation. Because one carbonyl group and 12 double-bond 
carbons constituting six double bonds accounted for seven of the 12 degrees of unsaturation, 
donghaecyclinone A (1) must be a pentacyclic compound. 

After establishing all of the 1H-13C one-bond correlations that were assigned by the analysis of 
the HSQC NMR spectrum, structural fragments of 1 were assembled by the interpretation of ¹H-¹H 

Figure 1. The structures of donghaecyclinones A–C (1–3).

2. Results and Discussion

2.1. Structure Elucidation

Donghaecyclinone A (1) was obtained as a white powder of molecular formula C20H18O5 on the
basis of high resolution-fast atom bombardment mass spectrometry (HR-FABMS) (obsd [M + H]+ at
m/z 339.1227, calcd [M + H]+ at m/z 339.1231). The combination of 1H, 13C, and heteronuclear single
quantum coherence (HSQC) NMR data (Table 1) of 1 in DMSO-d6 revealed that donghaecyclinone A (1)
contains a carbonyl carbon (δC 198.9), five double-bond methine signals (δC/δH: 127.6/7.49, 131.5/7.27,
111.7/7.10, 122.2/7.00, and 111.5/6.94), and seven non-protonated double-bond carbons (δC: 153.6, 148.5,
148.3, 140.4, 126.3, 125.9, and 122.9). Through further interpretation of the NMR data, we identified
three sp3 oxymethines (δC/δH: 98.7/6.86, 77.3/6.68, and 71.4/4.22), a methoxy group (δC/δH: 55.6/3.85),
one aliphatic methylene (δC/δH: 44.3/2.81 and 2.32), one aliphatic methine (δC/δH: 37.0/2.08), and one
methyl group (δC/δH: 17.6/1.04). The molecular formula of 1 suggests that donghaecyclinone A (1)
should possess 12 degrees of unsaturation. Because one carbonyl group and 12 double-bond carbons
constituting six double bonds accounted for seven of the 12 degrees of unsaturation, donghaecyclinone
A (1) must be a pentacyclic compound.
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After establishing all of the 1H-13C one-bond correlations that were assigned by the analysis of
the HSQC NMR spectrum, structural fragments of 1 were assembled by the interpretation of 1H-1H
correlated spectroscopy (COSY) and heteronuclear multiple bond correlation (HMBC) NMR spectra.
The COSY correlations from H2-2 (δH 2.81 and 2.32) to H-3 established the connection between C-2
(δC 44.3) and C-3 (δC 37.0). H-3 was found to be correlated with H3-3-Me (δH 1.04) and H-4 (δH 4.22),
establishing that 3-Me (δC 17.6) and C-4 (δC 71.4) were bound to C-3. An additional COSY analysis
verified the connection between H-4 and 4-OH (δH 5.61). The HMBC correlations from H2-2/H-3 to C-1
(δC 198.9), from H-3/H-4 to C-4a (δC 140.4), and from H-4 to C-12b (δC 126.3) established the first partial
structure as a 4-hydroxy-3-methylcyclohexenone moiety (A ring). The characteristic vicinal coupling
(J = 8.5 Hz) of H-5 and H-6 indicated that they were in a three-bond relationship in a six-membered
aromatic ring, thus directly connecting C-5 and C-6. The three-bond 1H–13C couplings from H-5 to
C-8a and C-12b, and from H-6 to C-4a and C-6a were assigned as a six-membered aromatic ring (B
ring) composed of C-4a, C-5, C-6, C-6a, C-12a, and C-12b, which was then connected to the A ring as
revealed by H-4/C-5, H-5/C-4, and H-4/C-12b HMBC correlations.

An array of COSY correlations (H-9 (δH 6.94), H-10 (δH 7.27), and H-11 (δH 7.49)) and their
coupling constants (J = 8.5 Hz each) clearly showed that C-9 (δC 111.5), C-10 (δC 131.5), and C-11 (δC

111.7) were connected in another six-membered aromatic spin system. The HMBC correlations from
H-9 to C-7a (δC 122.8) and C-11, from H-10 to C-8 (δC 153.6) and C-11a (δC 148.3), and from H-11 to
C-7a and C-9 constructed the D ring. The 8-OMe (δH 3.85) was shown to have an HMBC correlation
with C-8, suggesting that the A ring is an anisole. Once the A, B, and D rings were constructed
with 18 out of the 20 carbons in the molecular formula of donghaecyclinone A (1), these three rings
were assembled based on HMBC correlations between the unused oxymethine protons (H-12 and
H-7). H-12 exhibited 2,3JCH couplings to C-11, C-11a, C-12a, and C-12b, establishing connectivity
between the B and D rings through the C-12 oxymethine, which forms a seven-membered ring. The
HMBC correlations from H-7 to C-6a, C-7a, C-8, and C-11a also connected the B and D rings through
C-7. Due to the deshielded chemical shift (δC 98.7) of C-7, it was suggested that this carbon was
dioxygenated. In addition, donghaecyclinone A, being a pentacyclic compound, requires one more ring.
The last ring (Cb ring) was determined to be a tetrahydrofuran based on the H-7/C-12 and H-12/C-7
HMBC correlations, which also meets the requirement of two oxygen atoms for C-7, and constructed
the dioxabicyclo[3.2.1]octadiene moiety. Therefore, the planar structure of donghaecyclinone A (1) was
determined to be that of a 6/6/6/5/6 pentacyclic natural product (Figure 2).
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Figure 2. Determination of the planar structures of donghaecyclinones A–C (1–3) based on the analysis
of key COSY and HMBC correlations.

Donghaecyclinone B (2) was isolated as a white powder. Its molecular formula was determined
to be C20H18O6 based on the HR-FABMS (obsd [M − H]− at m/z 353.1033, calcd [M − H]− at m/z
353.1031). The 1-D and 2-D NMR spectroscopic data (Table 1) of 2 showed similar features to those
of 1, indicating that donghaecyclinone B is also a polyunsaturated aromatic natural product. Analysis
of the 1H, 13C, and HSQC NMR data revealed the presence of two carbonyl carbons (δC 201.2 and
169.3), five aromatic methines (δC/δH: 136.2/7.54, 130.5/7.59, 122.0/7.03, 115.1/6.92, and 113.3/7.04), seven
non-protonated aromatic carbons (δC 158.9, 157.5, 153.9, 139.9, 133.9, 122.9, and 116.0), two oxymethines
(δC/δH: 76.4/ 7.43 and 74.4/4.55), one methoxy group (δC/δH: 56.1/3.93), one aliphatic methylene (δC/δH:
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46.8/2.81 and 2.64), one aliphatic methine (δC/δH: 39.6/2.29), one methyl group (δC/δH: 18.9/1.20),
and two hydroxy group protons (δH 8.83 and 4.69). Detailed comparison of the NMR data with
those of 1 revealed that donghaecyclinone B contains an additional carbonyl carbon (δC 169.3) and
hydroxy proton (δH 8.83) while it lacks the C-7 acetal methine carbon (δC/δH: 98.7/6.86) found in 1.
Based on its molecular formula, we determined that donghaecyclinone B bears 11 unsaturation
equivalents. Two carbonyl functional groups and 12 double-bond signals comprising six double bonds
correspond to seven degrees of unsaturation, indicating that donghaecyclinone B (2) is a tetracyclic
compound. Further interpretation of the COSY and HMBC NMR spectral data of 2 established a
4-hydroxy-3-methylcyclohexenone moiety (A ring), a hydroxy benezene (B ring), and an anisole (D
ring) composed of 18 carbons; the remaining two unassigned carbons were a carbonyl carbon (δC 169.3)
and a oxymethine (δC/δH 76.4/7.43). To accommodate these, the HMBC correlations from H-3′ (δH 7.43)
to C-1′ (δC 169.3), C-3′a (δC 153.9), C-7′a (δC 116.0), C-7a (δC 122.9), and C-7b (δC 133.9) established
γ-lactone as the last ring (C ring) and thus completed the tetracyclic planar structure of 2 (Figure 2).

Donghaecyclinone C (3) was obtained as a white powder along with 1 and 2. The molecular
formula was determined to be C20H18O6 on the basis of HR-FABMS (obsd [M −H]− at m/z 353.1033,
calcd [M−H]− at m/z 353.1031). The molecular formula and the UV spectrum of 3 were identical to those
of 2, indicating that the structure of donghaecyclinone C (3) is similar to that of 2. A comprehensive
analysis of the 1D and 2D NMR data (Table 1) revealed that the planar structure of donghaecyclinone
C (3) is identical to that of 2 (Figure 2). However, the optical rotations of 2 and 3 were found to have
opposite signs with different absolute values (+125.6 and −156.7, respectively). This observation
indicated that these two compounds were diastereomers, and not enantiomers, requiring rigorous
stereochemical determination.

Table 1. 1H and 13C NMR data for 1–3.

1 a 2 b 3 b

C/H δH
c mult (J in Hz) δC

c C/H δH
c mult (J in Hz) δC

c δH
c mult (J in Hz) δC

c

1 198.9, s 1 201.2, s 200.4, s
2α 2.81 dd (16.0, 4.5), 1H 44.3, t 2α 2.81 dd (15.0, 4.5), 1H 46.8, t 2.99 dd (15.0, 4.5), 1H 45.6, t

2β 2.32 dd (16.0, 12.0),
1H 2β 2.64 dd (15.0, 10.0),

1H 2.38 dd (15.0, 10.0),
1H

3 2.08 m, 1H 37.0, d 3 2.29 m, 1H 39.6, d 2.24 m, 1H 38.2, d
3- 1.04 d (6.5), 3H 17.6, q 3- 1.20 d (6.5), 3H 18.9, q 1.18 d (6.5), 3H 18.0, q
Me Me
4 4.22 dd (7.5, 6.0), 1H 71.4, d 4 4.55 d (6.5), 1H 74.4, d 4.43 d (6.5), 1H 73.4, d
4- 5.61 d (6.0), 1H 4- 4.69 brs, 1H 4.74 brs, 1H
OH OH
4a 140.4, s 4a 139.9, s 140.1, s
5 7.49 d (8.5), 1H 127.6, d 5 7.59 d (8.5), 1H 130.5, d 7.63 d (8.5), 1H 129.4, d
6 7.00 d (8.5), 1H 122.2, d 6 7.03 d (8.5), 1H 122.0, d 7.05 d (8.5), 1H 121.9, d
6a 148.5, s 7 157.5, s 157.3, s
7 6.86 s, 1H 98.7, d 7- 8.83 brs, 1H 8.80 brs, 1H
7a 122.8, s OH
8 153.6, s 7a 122.9, s 122.8, s

7b 133.9, s 132.7, s
8- 3.85 s, 3H 55.6, q 1′ 169.3, s 169.3, s
OMe 3′ 7.43 s, 1H 76.4, d 7.41 s, 1H 76.5, d
9 6.94 t (8.5), 1H 111.5, d 3′a 153.9, s 153.8, s
10 7.27 t (8.5), 1H 131.5, d 4′ 6.92 d (8.5), 1H 115.1, d 6.93 d (8.5), 1H 115.0, d
11 7.10 d (8.5), 1H 111.7, d 5′ 7.54 t (8.5), 1H 136.2, d 7.54 t (8.5), 1H 136.1, d
11a 148.3, s 6′ 7.04 d (8.5), 1H 111.3, d 7.04 d (8.5), 1H 111.2, d
12 6.68 s, 1H 77.3, d 7′ 158.9, s 158.8, s
12a 125.9, s 7′a 116.0, s 115.8, s
12b 126.3, s 7′- 3.93 s, 3H 56.1, q 3.94 s, 3H 56.0, q

OMe
a DMSO-d6, b acetone-d6, c 1H, and 13C NMR spectra were recorded at 600 and 150 MHz, respectively.
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2.2. Determination of the Configurations of Donghaecyclinones A–C

Even though a number of angucycline/angucyclinone-class natural products were discovered
to be representative polyketide type II metabolites from actinobacteria, mainly from the genus
Streptomyces [19–22], they are often reported with undetermined configurations [23]. This is partly
because the benzene ring in the middle of their structures makes it impossible to relate their
relative configurations across all of the molecules. In addition, the absolute configurations of
the rearranged angucyclinones (LS1924A and emycin D), such as donghaecyclinone A, that bear a
dioxabicyclo[3.2.1]octadiene structure by rearrangement from ordinary angucyclinones have not
been determined or have only been assigned by X-ray crystallography [23,24]. Furthermore,
the stereochemistry of the rearranged angucyclinones that incorporate isobenzofuran, such as
donghaecyclinones B and C, has not been rigorously studied [25]. Application of the DP4 or CP3 method
would enable to relate the relative configurations, and utilization of electronic circular dichroism (ECD)
calculations facilitates determination of the absolute configurations of angucyclinone-class compounds.

The relative configuration of 1 in ring A was established based on its 3JHH values and
rotating-frame Overhauser spectroscopy (ROESY) NMR spectroscopic data (Figure 3). The large 1H-1H
coupling constant (7.5 Hz) between H-3 and H-4 strongly implied an anti-relationship between
H-3 and H-4 and their axial orientation. The observed H-2β/H3-3-Me and H-2β/H-4 ROESY
correlations assigned these protons on the same face in the A ring. The absolute configuration
of the stereogenic center at C-4 was determined by a modified version of Mosher’s method by
utilizing α-methoxy-α-trifluoromethylphenylacetic acid (MTPA) esterification and 1H NMR analysis
(Figure 4a) [26]. Due to steric hindrance, additional R-MTPA-Cl was required to establish the S-MTPA
ester (1a) in longer reaction time. Analysis of the 1H and 2D NMR spectroscopic data for the S- and
R-MTPA esters (1a and 1b) enabled us to calculate the ∆δS-R values; on this basis, we determined its
absolute configuration to be 4S. Based on the relative relationship between C-3 and C-4, the absolute
configuration of C-3 was also determined to be R.
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However, the relative configuration of C-7 and C-12 at the junction of rings Ca and Cb could
not be established because we did not observe any ROESY correlations between the A and Ca/Cb
rings. To overcome this challenge, a quantum mechanics-based computational analysis using a DP4
statistical calculation was applied [6]. The two possible diastereomers 1c (3R, 4S, 7S, and 12S) and
1d (3R, 4S, 7R, and 12R) were proposed, and the 1H and 13C chemical shifts of the 12 conformers of
1c and 1d were calculated with their Boltzmann averaged populations. Based on a comparison of
the experimental and calculated chemical shift values, our computational shielding tensor predicted
diastereomer 1c (3R, 4S, 7S, and 12S configurations) with 98.3% probability (Figure 4b). Finally, the
absolute configuration of donghaecyclinone A (1) was proposed to be 3R, 4S, 7S, and 12S.

The relative configurations of the C-3 and C-4 positions in 2 and 3 were determined to be 3R*
and 4S* based on analyses of the three-bond 1H-1H homonuclear coupling constants and ROESY
correlations (Figures S23 and S24). In the analysis of NMR data, donghaecyclinones B and C (2 and 3)
were expected to be diastereomers. Because both donghaecyclinones B and C possess the same 3R*
and 4S* configurations and C-3′ in 2 and 3 is the only remaining chiral center with an undetermined
relative configuration, these compounds must have opposite configurations at C-3′.

For assignment of the relative configuration at C-3′, the two sets of possible diastereomers
2a/3a and 2b/3b were considered with 3R* and 4S* configurations (Figure 5a). In this case, the CP3
calculation—which was specially devised for the assignment of relative configuration to two plausible
diastereomers from two sets of experimental NMR data—was applied instead of DP4 [5]. Our CP3
probability analysis of 2 and 3 along with the experimental and the calculated chemical shift values
showed that the relative configurations of 2 and 3 were 3R*, 4S*, and 3′S* and 3R*, 4S*, and 3′R*,
respectively, with 100% probability.

To determine the absolute configuration of 2 and 3, we initially applied the modified version of
Mosher’s method. However, during the MTPA derivatization, donghaecyclinones B and C (2 and 3)
underwent isomerization at C-3′ at the furanone moiety, which prevented us from obtaining pure
MTPA ester products. This problem was circumvented by the application of ECD calculation [27].
First, the energy-minimized conformers of 2c (3R, 4S, and 3′S) and its enantiomer 2d (3S, 4R, and 3′R)
were calculated (Tables S6–S9). The ECD calculations of the two enantiomers (2c and 2d) of 2 were
performed using TD-DFT at the B3LYP/def-SVP//B3LYP/def-SVP level for all atoms. A comparison
of the experimental ECD spectrum of 2 and the calculated ECD spectra of 2c and 2d showed that
the experimental ECD spectrum of 2 is consistent with the calculated ECD spectrum of 2c. Thus, we
assigned 2 as having an absolute configuration of 3R, 4S, and 3′S (Figure 5b). The absolute configuration
of 3 was determined to be 3R, 4S, and 3′R through a comparison of its experimental ECD spectrum
with the calculated ECD spectra of two enantiomers (3c and 3d) using the same procedure (Figure 5c).
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Figure 5. Determination of the relative and absolute configurations of donghaecyclinones B and C (2
and 3). (a) The simulated CP3 models of two possible diastereomer sets 2a/3a (3R*, 4S*, and 3′S*/3R*,
4S*, and 3′R*) and 2b/3b (3R*, 4S*, and 3′R*/3R*, 4S*, and 3′S*) on 2 and 3. (b) Experimental and
calculated ECD spectra of 2, 2c, and 2d. (c) Experimental and calculated ECD spectra of 3, 3c, and 3d.

2.3. Proposed Biosynthesis of Donghaecyclinones A–C

The typical benz[a]anthracene structure of the angucycline/angucyclinone class metabolites is
biosynthesized from acetyl CoA and nine malonyl CoA extender units through a type II polyketide
synthase (PKS II) pathway [19–22]. From the common benz[a]anthracene precursor, the biosynthesis of
the rearranged angucyclinones, donghaecyclinones A–C (1–3), was proposed (Figure 6). The C ring of
benz[a]anthracene can be cleaved through Bayer-Villiger oxidation and hydrolysis of the ester linkage.
Then the deprotonated carboxylate anion in the D ring attacks the carbonyl carbon at C-3′ position
of donghaecyclinones B and C (2 and 3) followed by dehydration to furnish 2 and 3. During the C
ring formation, both Si and Re face attacks may occur, resulting in the production of the 3′-epimeric
structures of donghaecyclinones B and C (Figure 6). These compounds were obviously observed as
natural products in the bacterial culture of before fractionation (Figure S29). Donghaecyclinone A (1)
could be derived from 3 to form the dioxabicylo[3.2.1]octadiene structure by the nucleophilic attack to
the ester carbonyl group in the C ring by the phenolic oxygen in the B ring and dehydration (Figure 6).
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2.4. Biological Activities of Donghaecyclinones A–C

The biological activities of the angucycline/angucyclinone-class natural products are known
to include cytotoxicity against various cancer cell lines and antibacterial activity [15–17].
Donghaecyclinones A–C (1–3) were evaluated for antibacterial activity against Gram-positive
Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 19433, Enterococcus faecium ATCC
19434, Gram-negative Klebsiella pneumoniae ATCC 10031, Salmonella enterica ATCC 14028, and Escherichia
coli ATCC 25922 using ampicillin as a positive control. In this assay, none of the donghaecyclinones
displayed significant inhibitory activity [MIC > 100 µg/mL]. The antifungal activity of 1–3 against
Aspergillus fumigatus HIC 6094, Trichophyton rubrum NBRC 9185, Trichophyton mentagrophytes IFM
40996, and Candida albicans ATCC 10231 was measured, and the donghaecyclinones were not found
to inhibit the growth of these pathogenic fungi [MIC > 100 µg/mL]. In the cytotoxicity assay against
five cancer cell lines—HCT116 (a colon cancer cell line), MDA-MB231 (a breast cancer cell line),
SNU638 (a gastric carcinoma cell line), A549 (a lung cancer cell line), and SK-HEP1 (a liver cancer
cell line)—donghaecyclinone C displayed significant inhibitory activity (IC50 = 6.0–9.6 µM) while
donghaecyclinones A and B exhibited lower cytotoxicity (IC50 = 9.6–28.9 µM) (Table 2, Figure S30).
Donghaesulfins A and B, the dimeric-angucyclinones reported by our previous work with the
donghaecyclinone-producing bacterial strain (Streptomyces sp. SUD119), did not show remarkable
cytotoxicity [14], possibly indicating that dimerization provides negative effects on the angucyclinone
class compounds. Based on the difference of the cytotoxicity between donghaecyclinones B and C and
their structures, the C-3′ stereogenic center apparently plays a significant role in the cytotoxicity of
isobenzofuran-bearing rearranged angucyclinone metabolites. However, the mechanism causing the
difference in cytotoxicity is unknown and requires further studies.
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Table 2. The cytotoxicity assay for donghaecyclinones A–C (1–3).

Cytotoxicity (IC50 µM)

HCT116 MDA-MB231 SNU638 A549 SK-HEP1

1 28.9 20.0 16.1 22.9 14.2
2 27.3 19.3 19.6 19.0 9.6
3 8.0 6.7 9.5 9.6 6.0

Etoposide 0.4 0.5 0.4 0.5 0.6

3. Experimental

3.1. General Experimental Procedures

Optical rotations were obtained using a JASCO P-200 polarimeter (JASCO, Easton, PA, USA)
with a sodium light source and a 1 cm cell. UV spectra were acquired on a Perkin Elmer Lambda
35 UV/Vis spectrophotometer (Perkin Elmer, Waltham, MA, USA). IR spectra were acquired using a
Thermo Nicolet iS10 detector (Thermo, Madison, CT, USA). ECD spectra were recorded on an Applied
Photophysics Chirascan-plus circular dichroism spectrometer. 1H, 13C, and 2D NMR spectra were
acquired on Bruker Avance 600 MHz and 850 MHz spectrometers (Bruker, Billerica, MA, USA) at
the National Center for Inter-University Research Facilities (NCIRF) at Seoul National University.
High-resolution fast atom bombardment (HR-FAB) mass spectra were recorded using a Jeol JMS-600W
high-resolution mass spectrometer (Jeol, München, Germany) at the NCIRF. LC/MS data were obtained
on an Agilent Technologies 6130 quadrupole mass spectrometer (Agilent Technologies, Santa Clara,
CA, USA) coupled with an Agilent Technologies 1200 series HPLC.

3.2. Cultivation and Extraction

The isolation and phylogenetic analysis of the Streptomyces sp. bacterial strain SUD119 were
previously reported [18]. Strain SUD119 was inoculated in 50 mL of YEME medium (4 g of yeast
extract, 10 g of malt extract, and 4 g of glucose in 1 L of artificial seawater) in a 125 mL Erlenmeyer
flask. The bacterial strain was cultivated for 3 days on a rotary shaker at 160 rpm at 30 ◦C. The liquid
culture (10 mL) was inoculated directly into 1 L of A1 liquid medium (4 g of yeast extract, 10 g of starch,
and 4 g of peptone in 1 L of artificial seawater) in 2.8 L Fernbach flasks (1 L in each of 12 flasks for a total
volume of 12 L). After cultivation for eight days, the 12 L culture of the SUD119 strain was extracted
using 18 L of EtOAc. The EtOAc layer was separated from the water layer. To remove residual water,
anhydrous sodium sulfate was added to the EtOAc layer. The cultivation and extraction procedures
were repeated 12 times (total culture volume: 144 L). The EtOAc extract was dried in vacuo, and 12 g
of dry extract material was obtained.

3.3. Isolation of Donghaecyclinones A–C (1–3)

The dried extract of the SUD119 strain was redissolved in MeOH and filtered through a syringe
filter (PVDF). The filtered extract was then injected directly onto a semipreparative reversed-phase
high performance liquid chromatography (HPLC) column (Kromasil C18 (2): 250 mm × 10 mm, 5 µm),
and the material was separated with a gradient solvent system (20% MeOH/H2O to 80% MeOH/H2O
over 40 min and 80% MeOH/H2O for 40 min, UV detection at 280 nm, flow rate: 2 mL/min). Two major
peaks at retention times of 20.4 and 38.6 min were observed. These major fractions were analyzed
by liquid chromatography/mass spectrometry (LC/MS). The fraction collected at 20.4 min contained
donghaecyclinones B and C (2 and 3), and the other major fraction obtained at 38.6 min was composed
of pure donghaecyclinone A (1, 4.2 mg). The mixture of donghaecyclinones B and C (2 and 3) was
further purified using an isocratic HPLC solvent system (48% MeOH/H2O, UV detection at 280 nm,
flow rate: 2 mL/min) using a reversed-phase C18 HPLC column (Kromasil C18 (2): 250 mm × 10 mm,



Mar. Drugs 2020, 18, 121 10 of 13

5 µm). Donghaecyclinones B and C (2 and 3) were acquired at retention times of 28.2 min (3.5 mg) and
31.6 min (4.1 mg), respectively.

Donghaecyclinone A (1): White powder; [α]25
D −6.9 (c 0.5, MeOH); UV (MeOH) λmax (log ε) 210 (4.32),

260 (3.86), 325 (3.58) nm; IR (neat) νmax 3282, 2971, 1682, 1577, 1517 cm−1; 1H and 13C NMR data,
Table 1; HR-FABMS m/z 339.1227 [M + H]+ (calcd for C20H19O5, 339.1231).

Donghaecyclinone B (2): White powder; [α]25
D −125.6 (c 0.5, MeOH); UV (MeOH) λmax (log ε) 210 (4.21),

300 (3.62), 320 (3.46) nm; ECD (c 4.2 × 10−4 M, MeOH) λmax (∆ε) 238 (−56.4) nm, 286 (+0.7) nm, 318
(+8.6) nm, 354 (−9.9) nm; IR (neat) νmax 3338, 2961, 1752, 1672, 1607, 1487 cm−1; 1H and 13C NMR data,
Table 1; HR-FABMS m/z 353.1033 [M − H]− (calcd for C20H17O6, 353.1031).

Donghaecyclinone C (3) White powder; [α]25
D +156.7 (c 0.5, MeOH); UV (MeOH) λmax (log ε) 210 (4.27),

300 (3.65), 320 (3.44) nm; ECD (c 4.2 × 10−4 M, MeOH) λmax (∆ε) 235 (+48.0) nm, 255 (+18.8) nm, 288
(−1.7) nm, 315 (−11.2) nm, 345 (+9.6) nm; IR (neat) νmax 3363, 2964, 1752, 1673, 1607, 1485 cm−1; 1H and
13C NMR data, Table 1; HRFABMS m/z 353.1033 [M − H]− (calcd for C20H17O6, 353.1031).

3.4. MTPA Esterification of Donghaecylinone A (1)

Donghaecyclinone A (1) was placed into two 40 mL vials (1 mg for each) and dried for 18 h
under high vacuum. A catalytic amount of crystalline dimethylaminopyridine (DMAP) was then
added to each of the vials containing 1. Distilled anhydrous pyridine (1 mL) was added to each vial
under Ar. The reaction mixtures were stirred at room temperature for 5 min. Then, 20 µL of S- or
R-α-methoxy trifluoromethylphenylacetic acid (MTPA) chloride was added to each vial. The reaction
with S-MTPA-Cl was maintained with stirring for 3 h at room temperature and then quenched by the
addition of 50 µL of MeOH, furnishing the R-MTPA ester (1b) of 1. To yield the S-MTPA ester (1a),
the reaction mixture was stirred at room temperature for 5 h with an additional amount of R-MTPA-Cl
(20 µL) to facilitate esterification, and then quenched by the addition of 50 µL of MeOH. The reaction
products (1a and 1b) were isolated by HPLC using gradient elution conditions (40% to 100% aqueous
CH3CN over 20 min, a reversed-phase C18 column (Kromasil C18 (2): 250 mm× 10 mm, 5 µm), flow rate:
2 mL/min, UV detection at 280 nm). The S- and R-MTPA esters (1a and 1b) of 1 eluted at 33.4 and
32.6 min, respectively. The ∆δS-R values of the signals around stereogenic centers of the MTPA esters
were assigned based on analysis of the 1H and 1H–1H COSY NMR spectra.

3.4.1. The S-MTPA Ester (1a) of Donghaecyclinone A (1)

1H NMR (800 MHz, DMSO-d6) δ 7.50–7.44 (m, 5H), 7.31 (t, J = 8.0, 1H), 7.30 (d, J = 8.0, 1H), 7.12
(d, J = 8.0, 1H), 7.06 (d, J = 8.0, 1H), 6.96 (d, J = 8.0, 1H), 6.90 (s, 1H), 6.65 (s, 1H), 6.04 (d, J = 5.0, 1H),
3.85 (s, 3H), 3.45 (s, 3H), 2.76 (dd, J = 16.0, 4.5, 1H), 2.58 (m, 1H), 2.44 (dd, J = 16.0, 6.0, 1H), 0.87 (d,
J = 6.5, 3H). The molecular formula of 1a was determined to be C30H25F3O7 ([M + Na]+ at m/z 577).

3.4.2. The R-MTPA Ester (1b) of Donghaecyclinone A (1)

1H NMR (800 MHz, DMSO-d6) δ 7.48–7.43 (m, 5H), 7.29 (t, J = 8.0, 1H), 7.13 (d, J = 8.0, 1H), 7.11c
(d, J = 8.0, 1H), 6.97 (d, J = 8.0, 1H), 6.96 (d, J = 8.0, 1H), 6.89 (s, 1H), 6.63 (s, 1H), 6.04 (d, J = 5.0, 1H),
3.85 (s, 3H), 3.50 (s, 3H), 2.98 (dd, J = 16.0, 4.5, 1H), 2.66 (m, 1H), 2.52 (dd, J = 16.0, 6.0, 1H), 0.94 (d,
J = 6.5, 3H). The molecular formula of 1b was determined to be C30H25F3O7 ([M + Na]+ at m/z 577).

3.5. DP4 and CP3 Analyses

A conformational search was performed using the MacroModel (Version 9.9, Schrödinger
LLC, New York, NY, USA) program in Maestro (Version 9.9, Schrödinger LLC) with a mixed
torsional/low-mode sampling method. Conformers of diastereomers within 10 kJ/mol, as calculated by
the MMFF force field, were selected. The geometries of the conformers were calculated for optimization
at the B3LYP/6-31G++ level in gas phase. The shielding tensor values of the optimized conformers
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were calculated on the basis of the equation below, where δx
calc is the calculated NMR chemical

shift for nucleus x, and σo is the shielding tensor for the proton and carbon nuclei calculated at the
B3LYP/6-31++ level. These values were averaged via the Boltzmann population with the associated
Gibbs free energy and utilized for the DP4 and CP3 analyses, which were facilitated by an Excel sheet
provided by the original authors.

δx
calc =

σo
− σx

1− σo/106 (1)

3.6. ECD Calculation

The ground-state geometries were computed with density functional theory (DFT) calculations
using Turbomole 6.5, the basis set def-SVP for all atoms, and the B3LYP/DFT functional level. The ground
states were further confirmed using a harmonic frequency calculation. The calculated ECD data
corresponding to the optimized structures were acquired with TD-DFT at the B3LYP/DFT functional
level using the basis set def-SVP for all atoms. The CD spectra were simulated by overlapping for each
transition according to the equation below, where σ is the width of the band at the height of 1/e and
∆Ei and Ri are the excitation energies and rotatory strengths for transition i, respectively. In the present
work, the value of σ was taken to be 0.10 eV.

∆ε(E) =
1

2.297× 10−39
1
√

2πσ

A∑
i

∆EiRie[−(E−∆Ei)
2/ (2σ)2] (2)

3.7. Antibacterial Activity Bioassay

The inhibitory activities of donghaecyclinones A–C (1–3) were evaluated against Gram-positive
bacteria (Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Streptococcus pyogenes
ATCC 19615, and Kocuria rhizophila NBRC 12708) and Gram-negative bacteria (Klebsiella pneumoniae
ATCC 10031, Salmonella enterica ATCC 14028, Escherichia coli ATCC 25922, and Proteus hauseri NBRC)
using the previously reported method [18].

3.8. Antifungal Activity Bioassay

Trichophyton mentagrophytes IFM 40996, Trichophyton rubrum NBRC 9185, Aspergillus fumigatus
HIC 6094, and Candida albicans ATCC 10231 strains were used to measure the antifungal activities of
donghaecyclinones A–C (1–3) by following the previously reported procedure [18].

3.9. Cytotoxicity Assay

The cytotoxicity of donghaecyclinones A–C (1–3) were evaluated using a sulforhodamine B (SRB)
assay as previously reported [14]. The five human cancer cell lines A549, MDA-MB231, HCT116,
SNU638, and SK-HEP1 were tested with etoposide as a positive control.

4. Conclusions

We discovered donghaecyclinones A–C (1–3) in Streptomyces sp. strain SUD119, which was isolated
from a sample of marine sediment collected from the volcanic island (Ulleung Island) in the Republic
of Korea. Donghaecyclinone A possesses a pentacyclic skeleton with a dioxabicyclo[3.2.1]octadiene
structure derived from benz[a]anthracene, the typical structure of angucyclinone-class natural products.
Donghaecyclinones B and C possess an isobenzofuran moiety that is also a rearrangement of
benz[a]anthracene. The absolute configurations of 1–3 were fully established by computational
methods utilizing NMR shielding tensor and ECD along with a modified version of Mosher’s
method. To date, the configurations of angucyclinones with a dioxabicyclo[3.2.1]octadiene moiety
have remained undetermined or have been established occasionally by X-ray crystallography.
The stereochemistry of rearranged angucyclinones that bear isobenzofuran has not been rigorously
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examined. This configurational analysis of these rearranged angucyclinone-class compounds by
quantum mechanics-based computational tools constitutes a general method for the structural
characterization of rearranged angucyclinones and related natural products.
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