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Abstract

Accurate estimation of systemic tumor load from the blood of cancer patients has enormous potential. One avenue is to
measure the presence of cell-free circulating tumor DNA in plasma. Various approaches have been investigated,
predominantly covering hotspot mutations or customized, patient-specific assays. Therefore, we investigated the utility of
using exome sequencing to monitor circulating tumor DNA levels through the detection of single nucleotide variants in
plasma. Two technologies, claiming to offer efficient library preparation from nanogram levels of DNA, were evaluated. This
allowed us to estimate the proportion of starting molecules measurable by sequence capture (,5%). As cell-free DNA is
highly fragmented, we designed and provide software for efficient identification of PCR duplicates in single-end libraries
with a varying size distribution. On average, this improved sequence coverage by 38% in comparison to standard tools. By
exploiting the redundant information in PCR-duplicates the background noise was reduced to ,1/35000. By applying our
optimized analysis pipeline to a simulation analysis, we determined the current sensitivity limit to ,1/2400, starting with
30 ng of cell-free DNA. Subsequently, circulating tumor DNA levels were assessed in seven breast- and one prostate cancer
patient. One patient carried detectable levels of circulating tumor DNA, as verified by break-point specific PCR. These results
demonstrate exome sequencing on cell-free DNA to be a powerful tool for disease monitoring of metastatic cancers. To
enable a broad implementation in the diagnostic settings, the efficiency limitations of sequence capture and the inherent
noise levels of the Illumina sequencing technology must be further improved.
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Introduction

All human individuals harbor cell-free DNA (cfDNA) in the

circulation [1,2]. In cancer patients, as tumor cells die, DNA is

shed into bloodstream. Circulating tumor DNA (ctDNA) consti-

tute a fingerprint, which can be used for disease monitoring.

Circulating tumor DNA has been correlated to both early

detection and prognosis [3,4]. Since the half-life of cfDNA is less

than one hour, it has been successfully used to monitor treatment

progression [5,6]. Although ctDNA is an extremely promising

biomarker, clinical implementation has been impeded, not only by

inherent challenges in the characteristics of cfDNA, but also in

tumor biology as well as technology. Cell-free DNA is present in

low concentration, and the majority of fragments are short which

limits the efficiency of PCR based methodologies. Circulating

tumor DNA fractions are low, except in metastatic and high-grade

disease. Levels of ctDNA was demonstrated to be ,1% on average

for non-metastatic colorectal tumors [4] which marks the upper

bound for a desired sensitivity. Furthermore, as revealed by the

large ongoing cancer sequencing efforts, any two individuals

harboring the same cancer diagnosis share few, if any, somatic

events [7], which require a high degree of flexibility. Various

methods have been used for the detection of tumor-specific

somatic lesions in the circulation. Monitoring genomic break-

points through digital PCR is highly specific, allowing for the

detection of single copy cancer genomes in milliliters of plasma

[5,6]. Sequencing of a selected subset of genes has demonstrated

potential to detect ctDNA down to 0.14% [8] and excellent

correlation to orthogonal technologies such as digital PCR [9].

Chan and colleagues demonstrated the feasibility of using whole

genome sequencing of plasma DNA in cancer patients to detect

somatic copy number alterations according to the same rationale

as previously shown for trisomy 21 [1,10]. Although promising,

the approach requires unfeasible deep coverage for a sensitivity

level of 1% [11]. Recently, Murtaza and colleagues displayed the

advent of exome sequencing to monitor multiple mutations in
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concert. Targeted sequencing still has the economical advantage

over whole-genome sequencing, while capturing the majority of

known driver mutations [7]. Nevertheless, these individuals

suffered from metastatic late stage disease and whether the

sensitivity is good enough for detection of low levels of ctDNA

remains unknown [12]. Additionally, unlike other assays [13],

whole-exome sequencing does not require individual assays to be

tailored for the vast majority of patients [14], a requirement for a

broader clinical utility. Here we investigate the utility of using

exome sequencing for monitoring of ctDNA levels through

detection of single nucleotide variants in plasma. Since the

number of variants is commonly ,100 for most solid tumors [14]

and in order to retain maximal sensitivity we 1) evaluated the

capability of two promising approaches to generate sequencing

libraries with high complexity from small amounts of fragmented

DNA without pre-amplification; 2) optimized data analysis

pipelines for read depth and accuracy; 3) applied exome

sequencing on plasma obtained from prostate cancer and breast

cancer patients to demonstrate its utility. In conclusion, the main

limiting factor was the low efficiency of library preparation and

subsequent targeted capture. Less than five percent of starting

molecules were observable, limiting the sensitivity to 1/2433 using

10 ml of plasma, thereby restricting the applicability to locally

advanced cancers reported to emit fragments into the circulation.

Materials and Methods

Samples and clinical data
Prostate tumor tissue and clinical data were collected from men

who underwent radical prostatectomy at the Karolinska University

Hospital in Stockholm as described previously [15]. Blood was

collected at patient registration in the eve of surgery, directly after

surgery, at discharge and at return visit. Breast tumor tissue was

collected from women who underwent surgery for breast cancer at

the South General Hospital in Stockholm. Blood was collected at

the patient registration, approximately one week prior to surgery.

Signed informed consent was obtained for all study participants.

The ethical approval was give by the Regional Ethical Vetting

Board in Stockholm (located at the Karolinska Institutet) with

registration numbers 2009/1357-32 (prostate cancer samples) and

2010/958-31/3 (breast cancer samples).

Extraction of nucleotides
DNA was extracted from whole blood using QIAmp spin

miniprep kit (Qiagen, Hilden, Germany). DNA/RNA and

proteins were simultaneously extracted from prostate and breast

cancer tissues, as described previously [15]. Cell-free circulating

DNA was isolated from plasma using QIAamp Circulating

Nucleic Acid Kit (Qiagen). All extractions were done according

to the manufacturers recommendations. High molecular weight

fragments were removed from the cell-free circulating DNA

samples by polyethylene glycol (PEG) mediated precipitation on

carboxylic acid coated magnetic beads (MyOne, Invitrogen) as

described previously [16] using 8% and 25% PEG 6000 (Merck) in

the first and second solution respectively in a MagnatrixTM 1200

(NorDiag ASA, Oslo, Norway) liquid handling robot. DNA

concentrations were measured using a Qubit fluorometer (Invitro-

gen, CA, USA) dsDNA HS kit and the size distributions of the cell-

free DNA were assessed using Agilent 2100 BioAnalyzer (Agilent

Technologies, Santa Clara, CA, USA) and the DNA HS kit.

Simulated ctDNA
DNA samples derived from tumor tissue was sheared by

suspension in 120 ml nuclease free water and sonication using the

Covaris (Covaris Inc., MA, USA) sonication system using the

settings for a 150 bp peak according to the manufacturers

instructions. 1 ml of each sample was analyzed using an Agilent

2100 Bionalyzer and the DNA 1000 kit. Automated size-selection

was done as described previously [16] using 10% and 11% PEG

6000 (Merck) in the first and second solution respectively in a

MagnatrixTM 1200 (NorDiag) liquid handling robot and the

resulting size distributions were assessed using Bionalyzer and the

DNA 1000 kit (figure S1).

Exome capture
For the evaluation of performing exome sequencing on minute

amounts of sample, sequencing library preparation was done from

1 and 10 ng DNA derived from prostate cancer tissue using

Mondrian SP+ System (NuGEN Technologies Inc., CA, USA) or

ThruPLEX-FD Prep Kit (Rubicon Genomics, MI, USA) accord-

ing to the manufacture’s recommendations. Exome capture was

performed as described previously [15]. Custom blocking adapters

were used for respective technology. For primary tumor material,

whole blood of plasma, libraries were prepared ThruPLEX-FD

Prep Kit (Rubicon Genomics). Exome capture was carried out

using the SeqCap EZ Exome Library Version 1 (Roche

Nimblegen Inc, Madison, WI, USA) according to the manufac-

turers instructions.

Sequencing
Sequencing was carried using Illumina 26100 bp paired-end

sequencing on a HiSeq 2500 instrument according to the

manufacturers recommendations using TruSeq PE Cluster Gen-

eration Kit v3 and the TruSeq SBS Kit v3. All lanes were spiked

with 1% phiX as a quality control.

Processing of sequence data
Three analysis pipelines were implemented to compare the

performance of using 1) standard sequencing processing 2)

standard sequencing processing but with merging overlapping

paired-end reads to improve base qualities and reduce noise rates

3) standard sequencing processing but with merging overlapping

paired-end reads with subsequent optimized PCR duplicate

processing to improve base qualities and to reduce noise rates.

Standard sequencing processing was defined as 1) removal of

adapter sequences only, using SeqPrep (v. 1.1) [17] 2) alignment to

the reference genome (hg19) using BWA (v. 0.6.2) [18] 3)

realignment using GATK [19] 4) removal of technical duplicates

using Picard [20]. All QC metrics were obtained using Picard.

Sequence data from tumor tissues and normal blood DNA was

processed using standard sequencing processing. Realignment and

base quality recalibration was carried out using GATK v2.8-1

before the identification of somatic point mutations using Mutect v

1.1.5 [21]. Merging of overlapping reads was performed using the

SeqPrep software. SeqPrep was modified to set discordant

overlapping base pairs to N with quality 2. Concordant base

pairs were used to boost base qualities by addition to a maximum

of 45. The modified version of the SeqPrep is available at https://

github.com/dakl/SeqPrep. For optimal utilization of data and to

further improve noise rates MergeDuplicates was designed. Unlike

MarkDuplicates, provided in the Picard software suite, MergeDu-

plicates takes amplicon length of single-end data into account for

the identification of PCR duplicates and also merges duplicates, to

provide a consensus call, for increasing base qualities (figure S2).

For each set of duplicate molecules, each base is traversed and if at

least 75% of bases in each position are identical, this base is kept

and the phred-scaled qualities are boosted by addition, otherwise

the base is set to N with quality 2. Maximum base quality was set

Exome Sequencing to Estimate Tumor Burden in Plasma
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to 50. MergeDuplicates is available at https://bitbucket.org/dakl/

mergeduplicates. Note, the boosted base qualities from SeqPrep or

MergeDuplicates were not used for variant identification but as a

means of separating data with support from multiple independent

sources at the level of overlapping sequencing (modified version of

SeqPrep) and PCR duplicates (MergeDuplicates). Mutational data

for each position was obtained using Samtools [22]. Samtools

associates each base with a Base Alignment Quality (BAQ). The

BAQ gives the phred-scaled probability of each base being

misaligned and is the minimum between base quality and the

BAQ [23]. To reduce background noise, variants were filtered to

remove positions residing in regions of the human genome with

low uniqueness (mappability) [24] or known to harbor germline

variants (fig. S3). To further restrict to regions with excellent

mapping characteristics, variants were not allowed if within 50 bp

from a region with mappability ,1. Data management and

statistical analysis were done in R [25].

Simulation
To investigate the sensitivity of using exome sequencing in

plasma, the following variables were varied; proportion ctDNA

(range 0.00001–0.05), amount of starting material (range 3–

60 ng). As the quality of the background variant reads were lower

relative to reference bases, a quality filter was set where the

maximum fraction of reference reads was kept relative the noise.

For simplicity an exome was assumed to contain 50 variants,

which in concert with the determined assay efficiency set the

collective depth for each iteration. Also, sample bases were drawn

with a probability to draw a variant base equal to the current

fraction of ctDNA. For the background, the whole set of data was

used for each iteration. Subsequently a one-sided fishers exact test

was performed to test if the fraction of ctDNA was significantly

higher relative to the background data. This process was repeated

1000 times for each fraction of ctDNA and each amount of

starting material.

Identification and validation of somatic rearrangements
To identify somatic chromosomal rearrangements, we per-

formed whole-genome sequencing using of long-insert (approxi-

mately 700 bps) libraries for the breast tumors and paired normal

DNA from blood. DNA was fragmented using a Covaris S1 system

with the following settings: Duty Cycle 5%, Intensity 3, Cycles per

burst 200, and Time 50 s. Fragmented DNA was prepared as

described previously [26] and sequenced to an average of 36base

coverage on an Illumina HiSeq 2000 system. From the WGS data,

we used BreakDancer 1.3.5.1 to identify candidate somatic break-

points and BICseq to identify copy number variants. We manually

filtered these data to keep regions with good support from

breakdancer as well as CNV support from BicSeq. To generate

primer pairs for validation, reads spanning the breakpoints were

extracted from the original fastq files. Each read pair was

concatenated (read 2 reverse complemented) with a 30N spaces

between them and fed into primer3 for design. In order to

minimize the risk that sequencing errors were used in the primer

design step, primer3 was instructed not to allow any bases with a

quality ,20 in the primers. For each breakpoint, the highest

scoring primer pair was used. In total across 5 patients (BC_B,

BC_C, BC_D, BC_F, BC_G), 19 primer pairs were design, out of

which 18 validated giving a band specific to the tumor. For the

primer pairs that gave unspecific product, the shortest band was

specific to the tumor. Sanger sequencing confirmed the 18

rearrangements. We selected 8 of the rearrangements for analysis

in the plasma samples (B3, C1, D1, D3, F4, F5, G1, G2). All

rearrangements except two gave good signals in the tumors, with

estimated allele frequencies between 5% and 78%.

Results

Evaluation of library preparation methodologies
A key aspect of performing exome sequencing of cfDNA is

efficient library preparation as 1 ml of plasma from prostate

cancer (PC) or breast cancer (BC) patients yields commonly yields

3 ng of cfDNA (data not shown). To avoid amplification biases

[27] we set out to evaluate candidate technologies claiming to

enable sequence analysis of nano-gram levels of DNA. As cfDNA

is heavily fragmented (,180 bp peak), the tagmentation-based kit

from Illumina (Nextera) was excluded as it causes further shearing

of the template DNA. To obtain enough DNA for repeated

comparisons and to create a source of simulated cfDNA (figure

S1), DNA from a tumor, previously profiled using whole-exome

sequencing (SWE-54) [15] was carefully prepared to mimic the

true size distribution of cfDNA. The simulated cfDNA was

prepared for capture and sequencing using the ThruPLEX kit

(Rubicon Genomics) and the Mondrian system (NuGEN Tech-

nologies). To optimize procedure efficiency, we evaluated: 1)

amount of starting material (1 and 10 ng); 2) number of cycles of

PCR performed after capture (9 and 18 cycles); 3) the capture

plexity (1, 4 and 8 plex capture, figure S4). Capture was performed

using a 5 Mb kit (,1300 genes associated to cancer) to facilitate

sequencing to saturation, and thereby, to better assess the

limitations of respective technology. Assay performance was

investigated using tools in the Picard software suit [20]. To ensure

a successful capture using both technologies, the fold enrichment

of target regions was assessed using only 10.000 reads, a level of

sequence depth where complexity is not limiting (Mondrian range

390–440 fold enrichment, ThruPLEX range 370–400 fold

enrichment). Library complexity was estimated as the average

sequence coverage obtained after removing PCR duplicates. To

enable a comparison of complexity throughout the whole range of

sequence depths, the data was subsampled, starting with 10.000

reads, incrementing with 1.256 until all available data was used

for each sample (figure 1). Furthermore, analysis of variance was

performed (table S1) to estimate the significance of each factor,

which revealed only the starting amount of DNA and the library

preparation approach to be relevant for library complexity. The

average coverage using 1 ng and 10 ng of starting DNA was 2x

and 3x for the Mondrian system and 16x and 85x using

ThruPLEX, respectively. Therefore, we used the ThruPLEX

technology for further processing of plasma samples.

Optimized procedures for exome sequencing of cell-free
DNA

To evaluate the possibility of tracking point mutations in plasma

we performed whole-exome sequencing on tumor tissue and blood

from seven BC and one PC patient (table 1). This identified

somatic variants for each individual, with the potential to act as

personalized biomarkers in the circulation. Subsequently, we

performed exome sequencing on plasma samples obtained before

(all patients) and 1 month after surgery (the PC patient only). The

level of uniqueness varies throughout genomes as do alignment-

related errors, even in the presence of stringent filtering [28].

Therefore, to test if the fraction of variant reads found in cfDNA is

significant relative to noise, the same positions must be used in the

background distribution of samples. As background for each

position we used data from all plasma samples profiled here,

excluding samples where identical mutations were found in the

primary tumor material. To obtain a high-quality call set, all
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variants identified in the primary tumor tissue were restricted to

unique regions, not previously reported to harbor SNPs (figure

S3). This removed 24% of all positions, retaining on average 81

variants per individual.

A potentially limiting factor of sensitivity is the overall error rate

of the Illumina sequencing technology, which was recently

reported to be as high as 0.38% in cell-free DNA [10], here

found to be 0.29%. Previously, and as Illumina offers paired-end

sequencing, overlapping sequencing have been used to reduce

errors made during sequencing by synthesis [29]. As cfDNA is

fragmented (,180 bp) we explored this option, although this does

not allow for the correction of PCR errors occurring before

sequencing. Commonly, during low-level processing of sequence

data, PCR duplicates are identified through the mapped starting

positions of individual reads. As these duplicates originate from the

same molecule, they offer means to identify PCR errors and to

decrease the error rate. Therefore, we explored the variation in

noise rates, going from standard sequencing processing to merging

of overlapping reads and lastly, using PCR duplicates to reduce

noise (analysis pipelines 1–3, methods). Additionally, for paired-

end data, the mapped position of both ends is used for efficient

identification of PCR duplicates. In contrast, only the starting

position is used for single-end data, as all fragments commonly

have the same read-length. For cfDNA, and for other merged

libraries with short insert-sizes, the distribution of fragment sizes

obtained after merging offers means to distinguish reads originat-

ing from different starting molecules harboring the same mapped

starting position (figure S2). On average, not merging reads caused

an average inflated coverage of 58% relative merging and using

standard MarkDuplicates provided in Picard [20]. Taking

fragment size into account substantially improved coverage. There

was only a 15% difference between not merging and merging in

combination with MergeDuplicates (custom software, figure S5).

To minimize the background noise, an increasing BAQ (base

alignment quality) filter was applied which demonstrated a

significant decrease with increasing stringency (figure 2A). Pro-

portionally, the highest fraction of reference reads relative the

noise was retained at the minimum noise rate (figure 2B, table 2).

Noise rate was defined as the number of reads supporting the

presence of a mutation in the background samples divided by the

total number of reference reads in the same positions. Merging

reads in combination with optimal PCR duplicate processing

yielded the lowest noise rate (1/35419) at a BAQ cutoff of 46

(table 2). Therefore, we processed all plasma samples according to

pipeline 3) using a BAQ cutoff of 46.

Finally, a one-sided Fisher’s Exact Test was performed to assess

if ctDNA could be detected in the patients’ paired plasma samples

(table 1, table S2). The prostate patient carried lymph-node

metastases at surgery. The metastases were, in conjunction with

the primary tumor, exome sequenced previously (SWE-54 A-C)

[15] and variants from the metastases were used for ctDNA

estimation. For this individual, the pre-surgical sample was positive

for ctDNA, albeit non-significant, whereas the post-surgical

sample was negative. For the breast cancer samples, only one of

the six patients was positive (BC_D). The breast tumors sequenced

here comes from a prospective collection of patients, consisting of

newly diagnosed invasive breast cancers at least 1 cm in size.

Interestingly, the only positive sample was also the one with

highest proliferation (as determined by percent cells staining with

Ki67, table 1). For validation purposes we performed whole-

genome long-insert sequencing (700 bps inserts) of five BC tumors

and paired normal samples to <3x base coverage, corresponding

to approximately 10x physical coverage of the genome. This data

was used to identify candidate breakpoints of somatic chromo-

somal rearrangements. In total, 18 of 19 candidates were validated

using Sanger sequencing. A digital PCR assay was set up to for

Figure 1. Duplication rates using the ThruPLEX kit and the Mondrian system. The proportion PCR duplicates in relation to sequencing
depth demonstrated by subsampling of deeply sequenced libraries. A) The lower range and B) the higher range of sequencing depth. At any given
number of reads sequenced, libraries with an input amount of 10 ng shows a lower fraction of duplicated reads compared to 1 ng. Furthermore,
ThruPLEX-prepared libraries consistently show lower fraction of duplicated reads compared to Mondrian-prepared libraries.
doi:10.1371/journal.pone.0104417.g001
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each break-point, using 3–15 ng of cfDNA. This verified BC_D to

harbor detectable levels of ctDNA, whereas all others were

negative.

Sensitivity of whole-exome sequencing of cell-free DNA
Several factors affect the sensitivity, the background noise rate,

the amount of cfDNA obtained from plasma, the fraction of

Figure 2. Base alignment quality filtering to reduce noise. A) The noise rate in background samples for analysis pipelines 1)–3) as the base
alignment quality (BAQ) cutoff is increased. Rate is defined here as total number of mutant reads/(total number of mutant reads+the total number of
reference reads) in the background samples at mutated positions. B) The log2 ratio of (proportion of mutant reads)/(proportion of reference reads)
left by increasing BAQ cutoffs in the background samples at mutated positions. Colors scale according to analysis pipelines. Pipeline 1) BAQ limited to
40, as qualities were not altered. Pipeline 2) BAQ limited to 45 through merging of overlapping reads. Pipeline 3) BAQ limited to 50 by merging reads
and also accounting for concordance between PCR duplicates originating form the same starting molecule.
doi:10.1371/journal.pone.0104417.g002

Table 2. Comparison of analysis pipelines 1–3.

Pipeline1 Proportion of N-bases2 Optimal BAQ cutoff3 Proportion of data left4 Noise rate5 Sensitivity6

1 0.00018 No cutoff 1.00 1/2176 1/852

1 0.00018 38 0.40 1/11451 1/1372

2 0.00067 43 0.17 1/8673 1/775

3 0.00330 46 0.61 1/35419 1/2433

1)Analysis pipelines as described in Material and Methods.
2)Proportion of bases set to ‘‘N’’ during processing.
3)Optimal base alignment quality cutoff (BAQ).
4)Proportion of data left using the BAQ cutoff set in3.
5)Noise rate defined as the number of mutant bases in the background divided by the number of reference bases.
6)Sensitivity of exome sequencing to detect ctDNA based on in silico evaluation.
doi:10.1371/journal.pone.0104417.t002
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ctDNA but also the efficiency of the sequence capture procedure,

including library preparation and enrichment. Six of the

independent library preparations performed, using the simulated

cfDNA, were sequenced to such depth that the proportion of new

unique molecules outside target regions was in majority (average

duplicate rate, 81%). As we started with 1 or 10 ng DNA and

based on the coverage retrieved, the fraction of starting molecules

accountable for was 4.7%. Averaging over the whole set of samples

sequenced here, also including lower duplicate levels, the average

fraction was 3.8%.

To investigate how efficiency, preprocessing and other factors

impact the sensitivity we performed an in silico evaluation. Since

the simulated cfDNA libraries, used for technical evaluation,

originated from a previously exome sequenced prostate tumor,

variants were recalled (18 point mutations passing filters). Positions

harboring mutations were used to sample variant- and reference

reads in various fractions and depths representing the sample

signal (9.4% mutation-supporting reads among all 4733 reads

from 18 positions). The background/noise level was estimated

from all plasma samples assayed here, collectively investigating all

known variant positions in all tumor samples (678 positions),

excluding each samples’ own mutations, which accumulated

517973 reads for the simulation. Due to the low efficiency and

to enable sensitive detection of ctDNA, all variant position were

pooled and collectively tested vs. the background distribution of

reads using a frequency test. Importantly, there was no difference

in error rate (Wilcoxon rank sum test, p-value = 0.917) or size

distribution (figure S1) between the simulated cfDNA and the real

plasma DNA, a prerequisite to avoid inflation of BAQ:s. Several

lessons could be drawn from this exercise (Figure 3); Due to the

small proportion of data left after BAQ filtering (table 2) and in

relation to ctDNA levels, boosting qualities through merging reads

did not improve sensitivity. Improved processing of duplicates in

combination with BAQ filtering gave the most sensitive approach,

although limited to 1/2433 at 95% sensitivity. To reach such

detection levels, 30 ng of cell-free DNA, commonly retrieved from

10 ml of plasma, is required. Further increasing input amounts by

a factor of two, only lowered the sensitivity marginally due to the

efficiency limitations of sequence capture (figure S6). As sequenc-

ing costs continue to drop, we investigated the sensitivity increase

by whole genome sequencing (WGS) assuming 3000 variants per

tumor genome and 306 average coverage. Although sensitivity

was improved (1/5747) it is still not at the levels required to

estimate the tumor burden in patients with locally confined, early

stage tumors [13]

Discussion

The presence of tumor fragments in the circulation holds

promise to revolutionize care by offering efficient means to

monitor systemic disease. This has spurred an active field of

research, where many different approaches have been taken to

assess ctDNA levels. Nevertheless, in order to become clinical

routine, several requirements have to be fulfilled, including no only

high sensitivity, but also practical applicability. Therefore we set

out to investigate the utility of applying exome sequencing to

monitor ctDNA levels. We evaluated two technologies that claim

to enable sequencing of nano-gram levels of starting material

without prior amplification. In brief, the data obtained through

use of the ThruPLEX kit was superior, and therefore chosen for

further evaluation. As we endeavored in this project to investigate

the utility of ctDNA estimation through exome sequencing, we did

not foresee the low level of ctDNA to be present in these samples.

Only one sample contained detectable levels of ctDNA. Also, the

levels of ctDNA was estimated to be one order of magnitude

greater utilizing a break-point specific digital assay. It is probable

that different mutations are found at varying fractions in the

circulation as different clones in the heterogeneous primary tumor

mass have different characteristics, a phenomenon noted previ-

ously [12,30]. Still, our effort reveled several aspects not previously

reported. First, the efficiency of sequence capture is low (,5%),

impairing the use of exome sequencing to track specific mutations.

The most probable reason is the library preparation in itself, as

performing capture on eight samples simultaneously did not have

a significant effect on coverage. Therefore, unless massive amounts

of plasma is available, clinicians must resort to other methodol-

ogies to implement liquid biopsies as companion diagnostics, e.g.

to search for KRAS mutations in colorectal patients treated with

EGFR targeted therapy [31]. Nevertheless, to optimize the signal,

we designed a new algorithm for the identification of PCR

duplicates in merged read libraries. We envision this software to be

broadly used, not only for cfDNA libraries, but also for formalin-

fixed, paraffin embedded tumor material. Furthermore, by

utilizing information in PCR duplicates to boost the quality of

bases observed multiple times, the noise rate was significantly

reduced to 1/35419, albeit at the cost of filtering out 39% of all

data. Still, the sensitivity was limited to 1/2433, assuming the

availability of 30 ng of cfDNA. Therefore, we investigated the

sensitivity of performing ‘‘in silico’’ whole genome sequencing to

306 coverage, tracking 3000 mutations. As no enrichment is

required for whole genome sequencing, data was only lost while

reducing the noise rate. This lowered the sensitivity to 1/5747 and

demarks the limitation to the optimized background noise rate in

relation to the low fraction of ctDNA being present in clinical

samples. Early-stage colorectal tumors was reported to harbored

levels down to 1/10.000 [4]. At this fraction, 306coverage would

expect to give (30 fold coverage63000 variants60.61 percent kept

after quality filtering60.0001 fraction of ctDNA) 5.5 mutant reads

by average. This must be put in the context of break-point specific

PCR [5,6], enabling the detection of single molecules. Assuming

10 ng of cfDNA and an unlikely 100% PCR efficiency, 3108

genome copies (10.000 pg6100%/3.218 pg per haploid human

genome copy) would be available for interrogation, making it

unlikely to detect such fractions without access to &10 ml of

plasma, commonly not utilized in the literature. This also

underlines the potential power to use multiple markers to track

ctDNA. Nevertheless, to reach broader clinical implementation

the challenges of using exome sequencing must be addressed. The

low efficiency of sequence capture is likely to be improved with

new library preparation approaches and in a system allowing for

agitation during enrichment, an approach popular while in-house

spotted arrays were utilized for gene expression experiments. The

low fraction of ctDNA likely requires sampling of larger volumes of

plasma, also for other technologies. Commonly 1–5 ml of plasma

is used in ctDNA experiments, although 10 times as much could

be obtained from patients without any obvious ethical dilemmas.

For exome sequencing to be effective, using such input amounts,

the inherent noise levels of short read data must be significantly

reduced. A previously demonstrated approach to obliterate the

background noise, was suggested by Loeb and colleagues is the

addition of a random barcode to the Illumina adapter construct

[29]. This enables the removal of basically all PCR related errors,

but the introduction of a random barcode is likely to complicate

adapter blocking during capture, with the risk of decreasing the

already low efficiency of capture. Although we used plasma

samples from cancer patients to estimate background noise, it is

highly unlikely to have had an effect on our sensitivity estimates as

the background noise rate was 16 times lower relatively unfiltered
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data, processed according to standard tools used by the academic

community. Collectively, we demonstrate the use of exome

sequencing as a tool to detect ctDNA but as explained, unless

current inherent limitations of the approach are addressed,

researchers and clinicians are going to have to resort to other

options in order to do estimation of ctDNA in patients suffering

from most organ-confined, low-grade primary cancers.

Supporting Information

Figure S1 An electropherogram from a BioAnalyzer
instrument (Agilent) comparing the size-distribution of
the simulated cell-free DNA (top) and a real plasma
sample (bottom). Y-axis, fluorescence units (FU). X-axis,

fragment size in base pairs (bp).

(TIF)

Figure S2 Definition of PCR duplicates. The scheme

describes how PCR duplicates are defined using analysis pipelines

1–3) in corresponding order. Left; Adapters are trimmed using

SeqPrep. Subsequently, PCR duplicates are removed using

MarkDuplicates (Picard), which takes the leftmost and the

rightmost base into account for the identification of PCR

duplicates. Middle; Reads not merged are processed as Left.

PRC duplicates of merged reads are identified by leftmost starting

position. Right; Reads not merged are processed as Left. PCR

duplicates of merged reads are identified by starting positions and

template length.

(EPS)

Figure S3 Filtering somatic variants to obtain a set with
minimum background noise. Y-axis, number of variants

from each sample. Variants were filtered vs. simple repeat regions,

regions with low mappability, germline variants from the 1000

genomes project, de novo germline variants identified in these

individuals. This set was used for detection of ctDNA. For clarity,

PROT_EFF represents the number of variants with potential to

affect protein function (non_synonymous, truncating etc.). Iden-

tification of regions harboring simple repeats and low mappability

(50 mer) were downloaded from USCS genome browser. The

1000 genomes variant set was available in the GATK resource

bundle.

(EPS)

Figure S4 The evaluation was performed on a 5 Mb
capture kit to facilitate sequencing the samples to
saturation. The variables evaluated are shown from left to

right; 1) The number of samples captured simultaneously 2) The

number of PCR cycles after capture but before sequencing. The

Nimblegen SeqCap EZ standard protocol contains 18 rounds of

PCR, yielding unnecessary high amounts of material. As

amplification is performed on beads, it is not possible to use a

qPCR instrument for the post-capture PCR 3) The Mondrian

system and the ThruPLEX kit were evaluated for its capability to

Figure 3. Sensitivity of exome sequencing to track ctDNA. Analysis pipelines 1)–3) are displayed here with optimal base quality alignment
cutoffs (BAQ) and without for pipeline 1 to display the effects of BAQ filtering. As exome sequencing is limited by the efficiency of the capture
procedure, 30X whole genome sequencing was also simulated assuming 3000 variants in the genome. 1000 iterations were performed for each
ctDNA fraction assuming 50 variants in the exome, starting with 10 ml of plasma (30 ng of cfDNA). The sensitivity is defined as the number of
proportion of tests passing the significance threshold for each set of 1000 iterations (p,0.05, fishers’ exact test, comparing the number of variant and
reference reads from sample and background).
doi:10.1371/journal.pone.0104417.g003
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provide sequence libraries with high complexity for capture. 4)

Input amounts of 1 ng and 10 ng representing cell-free DNA

starting amounts commonly available from plasma samples. For

both Mondrian and ThruPLEX, three independent library

preparations were performed for both 1 ng and 10 ng of DNA

all represented in the chart using 18 cycles of post-capture PCR.

As 18 cycle post-capture PCR yielded micrograms of material, the

impact was evaluated by taking the remaining material from the

six ThruPLEX libraries and performing another round of capture.

As the ThruPLEX data as superior we choose only to evaluate this

variable using ThruPLEX libraries.

(EPS)

Figure S5 Mean coverage obtained for the same sample
using analysis pipelines 1)–3). Identical samples are con-

nected with lines. Left; 5 Mb target region used for technological

evaluation. Right; Whole-exome data (26 Mb target region)

obtained from plasma samples.

(EPS)

Figure S6 The effect of varying input amounts of cell-
free DNA for exome sequencing to tract ctDNA. 1000

iterations were performed for each ctDNA fraction and input

amount assessed here assuming 50 variants for each exome. The

sensitivity is defined as the number of proportion of tests passing

the significance threshold for each set of 1000 iteration (p,0.05,

fishers’ exact test, comparing the number of variant and reference

reads from sample and background). Assuming 3 ng/ml the

colored lines represent 1, 3, 10, 15 and 20 ml of plasma.

(EPS)

Table S1 An analysis of variance table showing the influence

from different parameters on the library quality (measured as

percent duplicated reads) when performing exome sequencing

from small amounts of starting material. Listed parameters; cycles

– 9 or 18 PCR cycles after capture but before sequencing; plex –

indicates the number of samples captured simultaneously, here 1,

4 or 8; input – the starting amounts of DNA before library

preparation, here 1 and 10 ng; prep – the technology used for

library preparation, here Mondrian and ThruPLEX.

(PDF)

Table S2 The number of reads supporting either the mutations

or reference bases in foreground- and background samples.

(PDF)
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