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Abstract

The docking of synaptic vesicles at active zones on the presynaptic plasma membrane of axon terminals is essential for their
fusion with the membrane and exocytosis of their neurotransmitter to mediate synaptic impulse transmission. Dense
networks of macromolecules, called active zone material, (AZM) are attached to the presynaptic membrane next to docked
vesicles. Electron tomography has shown that some AZM macromolecules are connected to docked vesicles, leading to the
suggestion that AZM is somehow involved in the docking process. We used electron tomography on the simply arranged
active zones at frog neuromuscular junctions to characterize the connections of AZM to docked synaptic vesicles and to
search for the establishment of such connections during vesicle docking. We show that each docked vesicle is connected to
10–15 AZM macromolecules, which fall into four classes based on several criteria including their position relative to the
presynaptic membrane. In activated axon terminals fixed during replacement of docked vesicles by previously undocked
vesicles, undocked vesicles near vacated docking sites on the presynaptic membrane have connections to the same classes
of AZM macromolecules that are connected to docked vesicles in resting terminals. The number of classes and the total
number of macromolecules to which the undocked vesicles are connected are inversely proportional to the vesicles’
distance from the presynaptic membrane. We conclude that vesicle movement toward and maintenance at docking sites on
the presynaptic membrane are directed by an orderly succession of stable interactions between the vesicles and distinct
classes of AZM macromolecules positioned at different distances from the membrane. Establishing the number,
arrangement and sequence of association of AZM macromolecules involved in vesicle docking provides an anatomical basis
for testing and extending concepts of docking mechanisms provided by biochemistry.
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Introduction

The cytoplasm of axon terminals at the nervous system’s

chemical synapses includes membrane-bound synaptic vesicles,

which contain neurotransmitter molecules. Some vesicles are

docked on (held in close association with) the presynaptic plasma

membrane in specialized regions called active zones [1,2]. When

an impulse arrives at an axon terminal, some of the docked vesicles

fuse with the presynaptic membrane to form a pore through which

the vesicles’ neurotransmitter is secreted into the synaptic cleft to

generate a response in the terminal’s target cell [3,4]. Vesicles that

have fused with the presynaptic membrane are replaced at the

docking sites in active zones by previously undocked vesicles [5].

Both the docking of vesicles on the presynaptic membrane and

their fusion with it are mediated by the interaction of proteins,

some of which are linked directly to the vesicle and presynaptic

membrane. Such proteins have been characterized biochemically,

and much is known about the nature of the interactions that lead

to docking and fusion [6].

Other major components of active zones are aggregates of

macromolecules in the presynaptic membrane and dense aggre-

gates of macromolecules called active zone material (AZM), which

are attached to the membrane and extend several tens of

nanometers into the cytoplasm [1,7]. The aggregates of macro-

molecules in the presynaptic membrane include voltage-gated

calcium channels [8–10]. It is well-established that an impulse in

the axon terminal causes the calcium channels to open, and the

influx of calcium into the cytoplasm triggers the protein mediated

fusion of docked vesicles with the presynaptic membrane [3,6].

The prominence of AZM at active zones and its close proximity to

docked vesicles and calcium channels make it seem likely that

AZM plays a role in the docking of synaptic vesicles on the

presynaptic membrane and/or the fusion of the vesicles with the

membrane [11]. However, the small size, high density and

complex arrangement of macromolecules in the AZM have made

it difficult to correlate AZM structure with active zone function.

One way of exposing the architecture of the AZM for studying

its association with other components of the active zone is by
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applying electron tomography to tissue sections from synapses.

Electron tomography uses a series of two-dimensional (2-D)

transmission electron microscope images from a specimen taken at

different tilt angles to generate a three-dimensional (3-D)

reconstruction of the specimen [12]. The AZM macromolecules

are much narrower than the thinnest tissue sections that can be cut

(,30 nm), and they overlap each other in a section’s depth axis.

However, they can be seen distinctly in serial virtual slices made

through the reconstructed volume that are thinner than the

macromolecules. The macromolecules can, then, be studied in 3-

D either alone or together with other structures by using the serial

slices for segmenting them from the volume and generating surface

models of them (e.g. [11,13,14]).

The AZM at active zones of neuromuscular junctions (NMJ’s) of

the frog is particularly convenient for electron tomography studies.

Its overall shape is relatively simple, as are the arrangement of its

associated docked vesicles and calcium channels [1,8–10]. It is also

well established that, at the frog’s NMJ, the membrane of former

docked vesicles that have fused with the presynaptic membrane

moves laterally within the presynaptic membrane to reform

vesicles at sites away from the active zone [15–17]. Previous

electron tomography studies on the active zones at resting frog

NMJ’s fixed with glutaraldehyde and stained with heavy metals

have shown that the AZM is composed of a network of elongate

macromolecules, and that individual docked vesicles are connected

to one end of many of them. The connection sites of the

macromolecules on each vesicle are broadly distributed over the

vesicle hemisphere that faces the AZM. A detailed analysis of the

AZM network within 15 nm from the presynaptic membrane

showed that it is composed of three logically distinct classes of

macromolecules called beams, ribs and pegs [11,13]. Beams are

connected to beams and ribs, ribs are also connected to docked

vesicles and pegs, and pegs, based on the frequency and

distribution of their connections to the presynaptic membrane,

are thought to be connected to the macromolecules in the

membrane that include calcium channels [11]. Beams, ribs and

pegs, similarly linked to docked vesicles and calcium channels,

have also been identified in the AZM of mouse NMJ’s [14]. Such

findings have led to the conclusion that the AZM is a

multifunctional organelle that helps dock synaptic vesicles on the

presynaptic membrane and anchor calcium channels in the

membrane. It may also play a role in the fusion of docked vesicles

with the membrane. By extension, many, if not all, of the proteins

thought from biochemical experiments to mediate the vesicles’

docking on and fusion with the presynaptic membrane may well

contribute to the composition of AZM macromolecules.

The AZM at the frog’s NMJ projects several 10’s of nm from

the presynaptic membrane into the cytoplasm. Thus, the beams,

ribs and pegs account for only a small fraction of the AZM’s

macromolecules. Moreover, the ribs comprise only a small fraction

of the AZM macromolecules connected to each docked vesicle

[11]. Here, we defined the arrangement and associations of

macromolecules throughout the AZM in heavy metal stained

terminals fixed at rest, with a view to characterizing all AZM

macromolecules connected to docked vesicles. We, then, deter-

mined in stained terminals, fixed during evoked synaptic activity,

whether the same macromolecules connected to docked vesicles in

resting terminals are connected to undocked vesicles near docking

sites on the presynaptic membrane vacated by those docked

vesicles that had fused with the membrane during synaptic

transmission. The results provide evidence that several classes of

AZM macromolecules direct undocked vesicles to docking sites on

presynaptic membrane by an orderly series of interactions, and

that the same classes of macromolecules help maintain the vesicles

at the docking sites until the vesicles fuse with the membrane

during synaptic transmission.

Results

Active Zone Overview
Active zones at frog NMJ’s are arranged in narrow bands on the

presynaptic membrane (Figure 1; see also [1,7,11]). The bands can

be more than a micrometer long, and they run orthogonal to the

long axis of the axon terminal, with occasional, slight angular

changes along their length. The main body of AZM extends

throughout the length of each active zone. Its depth varies at

regular intervals along its length. Its deepest points extend

,75 nm from the presynaptic membrane into the cytoplasm. Its

width is ,50 nm. A row of docked vesicles (50–60 nm in diameter

[14]) lines each side of the main body of AZM. Numerous

undocked vesicles of similar size are situated lateral and deep to

the active zone. At the 2–3 nm spatial resolution provided by our

tomography methods, the membrane of docked vesicles directly

contacts the presynaptic membrane; no gap is seen between the

membranes, and the average distance from the luminal surface of

the vesicle membrane to the extracellular surface of the

presynaptic membrane in the region of contact is twice the

average distance across each of the two membranes beyond the

region of contact (Jung and McMahan, unpublished results). The

portion of the presynaptic membrane next to the AZM curves into

the synaptic cleft (Figure 1A and C) to form the active zone ridge.

The ridge is situated just opposite an infolding (junctional fold) in

the surface of the muscle fiber. Along each slope of the ridge, the

membrane contains a linear array of macromolecules paralleling

the long axis of the AZM and the rows of docked vesicles (see

below). The membrane macromolecules are thought to include

voltage gated calcium channels and calcium activated potassium

channels [8–10].

We distinguished by electron tomography three contiguous

layers of logically distinct classes of macromolecules in the main

body of AZM (Figure 2). Each layer is situated at a different depth

from the presynaptic membrane. The superficial layer lies adjacent

to the presynaptic membrane, is ,15 nm thick and contains the

previously described beams, ribs and pegs [11]. The intermediate

layer is ,15 nm thick and contains two classes of macromolecules

termed steps and spars. The deepest layer varies in thickness up to

,45 nm and includes three classes of macromolecules named

masts, booms and topmasts. Here we characterize the classes of

macromolecules in the intermediate and deep layers and relate

them to the macromolecules in the superficial layer and to the

connections of AZM macromolecules on docked and nearby

undocked vesicles. We also describe a class of AZM macromol-

ecules, called pins, which are separate from the main body of

AZM. Pins directly link docked vesicles to the presynaptic

membrane.

As a result of electron tomography studies demonstrating the

simply arranged beams and ribs in the superficial layer, these

macromolecules can now be recognized in favorable tissue sections

imaged by conventional 2-D electron microscopy (see inset in

Figure 1B). The same images show that the AZM deep to the

superficial layer has a varied appearance along the length of the

AZM band, but, thus far, we have been able to identify distinct

macromolecules in these layers only by tomographic analysis.

In the following account, the horizontal plane (Figure 1C) of an

active zone is parallel to the presynaptic membrane beyond the

active zone ridge. A median plane is orthogonal to the horizontal

plane and parallel to the long axis of the AZM. A transverse plane

is orthogonal to both the horizontal plane and the median plane.

Regulation of Synaptic Vesicle Docking by AZM
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Figure 1. Layout of the active zone. A) Viewed in the active zone’s transverse plane by conventional 2-D electron microscopy of a tissue section,
the AZM is a small electron dense patch between a pair of synaptic vesicles (asterisks) docked on the presynaptic membrane (arrow). The AZM’s
superficial surface is attached to the presynaptic membrane where the membrane curves into the synaptic cleft forming the active zone ridge just
opposite the mouth of a junctional fold (JF) in the muscle fiber’s surface. The AZM’s irregular deep surface extends about 75 nm into the cytoplasm. A
cloud of undocked vesicles lies lateral and deep to the docked vesicles. B) Viewed in the active zone’s horizontal plane by conventional 2-D electron
microscopy of a tissue section, the AZM is a narrow, irregularly dense band. This band of AZM has a slight angular change midway along its length
(dashed box). The section includes a row of docked synaptic vesicles on each side of the AZM band in the lower half of the image. It passed superficial
to the rows of docked vesicles along much of the band in the upper half of the image, where it includes only that portion of the band in the active
zone ridge. At the tip of the AZM band in the upper half of the image, the section includes only the superficial layer of the AZM, exposing a series of
ribs extending from each side of a beam, which are outlined in gold in the inset. Scale bar in A and B = 50 nm. C) 3-D schematic of the active zone,
showing the active zone ridge in the presynaptic membrane (pale blue), rows of docked synaptic vesicles (dark blue), the AZM’s ribs (yellow gold),
beams (brown gold) (from electron tomography on tissue sections; [11,13]), and indicators of the active zone’s horizontal, transverse and median
planes.
doi:10.1371/journal.pone.0033333.g001
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For convenience, much of our analysis was done on sections from

muscles fixed and stained by bathing them in glutaraldehyde and,

subsequently, in osmium tetroxide. However, as indicated in

Figure 3, all structures and relationships observed in aldehyde

fixed tissue were also seen in tissue fixed by rapid freezing and

initially stained by freeze-substituting osmium tetroxide, which can

be superior for the preservation of certain structures [18].

Regardless of the method of preparation, we observed by electron

tomography no significant difference in the presence and

relationships of AZM macromolecules, in the diameter of synaptic

vesicles and in the relationship of docked vesicles to the

presynaptic membrane. The resting active zones used for data in

this study were derived from 5 muscles. In no case did we observe

vesicles fused with the presynaptic membrane at active zones in

these preparations.

Main Body of the AZM at Resting Axon Terminals
Steps were connected to beams (Figures 2,3,4). Their long axis

ran parallel to the median plane of the AZM, as did the long axis

of beams. However, they were ,28 nm long compared to the

average length of beams, which was ,75 nm (Table 1). In cross

section, the diameter of the steps in the horizontal plane was

,22 nm, which was greater than the ,11 nm average diameter of

the beams. The diameter of the steps vertical to the presynaptic

membrane was ,14 nm (Table 1).

While beams were distributed continuously along the length of

an active zone, the steps were positioned at intervals. For the active

zone shown in Figure 4, the center-to-center spacing of the steps

was ,50 nm (48.8614.9 nm SD). Along straight regions of the

active zone, the steps were roughly centered between a tetrad of

docked vesicles: two adjacent vesicles in one row and two adjacent

vesicles in the opposite row (see solid white box in Figure 4B). The

alignment of vesicles with steps was less regular, however, where

there was an angular change along the course of the AZM (see

dashed boxes in Figure 4B).

Spars were filamentous and extended from the steps to the

membrane of docked vesicles (Figures 2,3,4). Where steps were

positioned between a tetrad of vesicles along straight stretches of

the active zone, typically four spars radiated from each step

(4.261.1 SD; n = 13 steps), and each of the spars connected to one

of the vesicles of the tetrad. Accordingly, each vesicle in a tetrad

was usually connected to two spars (2.260.5 SD; n = 20 vesicles),

which originated from two different steps (Figure 4B). Where the

active zone curved, the steps were sometimes larger than along

straight stretches. The number of spars radiating from such steps

was greater than the number for smaller steps (see the dashed

boxes in Figure 4B). Nevertheless, all of the spars arising from the

steps in curved regions of the active zone contacted nearby docked

vesicles, as did all those arising from steps in the straight region.

Spars ran nearly parallel to the presynaptic membrane just deep

to the ribs (Figures 2,3,4). They were ,18 nm long, and their

average diameter was ,7 nm. These dimensions were less than

the average dimensions of ribs (p,0.0001, t-test), which were

,28 nm long and ,9 nm in diameter (Table 1). The spars were

separated from the ribs by a gap up to 5 nm wide. The spars also

typically approached the docked vesicles to which they were

connected at a different angle than the ribs (Figure 5A,B). For

spars, the average angle of approach was ,23u (23.3u613.1u SD;

n = 44 spars), which is significantly different from the ,11u
(10.6u66.2u SD; n = 32 ribs) angle that ribs approached the

vesicles (p,0.0001, t-test). While each docked vesicle was

connected to 2 spars, it was in most cases connected to 4 ribs

(3.960.6 SD, n = 20 from 3 data sets). Thus, all ribs were not

apposed by spars (Figure 4B,6A).

Masts were connected to the deep surface of each step

(Figures 2,3,4). They extended ,32 nm from the step, vertical

to the presynaptic membrane. Their horizontal profile near the

mast-step boundary was nearly circular (,22 nm diameter;

Table 1), which was characteristically different from the elongate

horizontal profile of steps. While steps stained nearly uniformly,

the staining of masts was distinctively discontinuous. In cases

where the staining and slice plane were favorable, masts were seen

to be composed of 4–9 serpentine strands that extended along the

mast’s long axis (Figure 3I). The average diameter of particularly

well-stained strands was 962 nm SD (n = 5 masts from 4 data

sets).

The filamentous booms arose from the masts ,39 nm

(39.067.7 nm SD; n = 26 booms from 5 data sets) from the

presynaptic membrane and ,12 nm (11.6610.3 nm SD; n = 22

booms from 4 data sets) from the deep end of the masts

(Figures 2,3,4). They were ,16 nm long and had an average

diameter of ,7 nm (Table 1). They extended from the masts to

terminate on docked vesicles. Along straight stretches of the active

zone, where the masts and their steps were positioned between

tetrads of docked vesicles, 8–14 booms (10.661.8 SD; n = 8)

radiated from a mast to terminate on each of the vesicles of a

tetrad in nearly equal numbers. Thus, each docked vesicle was, on

average, connected to 5.062.0 SD booms from two masts

(Figures 4C,6A). Each boom approached the vesicle at an average

angle of ,30u (30.0u614.7u SD; n = 40 booms) (Figure 5C), which

was significantly greater than the angles that spars and ribs

approached the vesicle membrane, as described above (p,0.01;

determined by ‘Analysis of Variance’-ANOVA).

Topmasts were elongate macromolecules that linked the deep

end of the masts to the membrane of undocked vesicles next and

deep to the docked vesicles (Figures 2,3). On average 1–2 topmasts

Figure 2. Composite diagram of layers of AZM macromolecules
at resting active zones exposed by electron tomography.
Shown in the transverse plane of the active zone, the superficial layer of
macromolecules in the main body of the AZM includes beams, ribs and
pegs; the intermediate layer includes steps and spars; and the deep
layer includes masts, booms and topmasts. Ribs, spars and booms
connect to docked synaptic vesicles (SV), topmasts connect to nearby
undocked vesicles, and pegs connect to macromolecules in the
presynaptic membrane (PM). Pins are positioned away from the main
body of the AZM and link docked vesicles to the presynaptic
membrane. All AZM components are shown in virtual slices and surface
models from reconstructed tissue sections in subsequent Figures
except for pegs, which were not included in this study (but see [11,13]).
The color code is the same for all Figures.
doi:10.1371/journal.pone.0033333.g002
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arose from a mast, and at least one undocked vesicle was

connected to masts through a topmast with an 88% occurrence (15

of 17 masts from 7 data sets). Topmasts were oriented at various

angles relative to the long axis of the masts. For 6 topmasts in 3

data sets the average length was ,25 nm and average diameter

was ,7 nm (Table 1). We did not seek to determine the

relationship of topmasts and booms to the strands that compose

the masts, all of which had a similar diameter.

Pins at Resting Axon Terminals
Pins arose from the presynaptic membrane lateral to the main

body of the AZM and the active zone ridge to terminate on

docked vesicles (Figures 2,7). On average, ,4 pins (4.160.7 SD; a

range 3 to 5) were connected to each docked vesicle. The average

length of the pins was ,9 nm (Table 1). Typically, a pin

terminated on only one vesicle, but some pins between docked

vesicles bifurcated to terminate on each (Figure 7C).

Distribution of the Connection Sites of AZM
Macromolecules on Docked Vesicles in Resting Axon
Terminals

The arrangement of ribs, spars and booms in distinct layers of

the AZM, each situated at a different distance from the

presynaptic membrane, raised the possibility that each class

terminated on the membrane of docked vesicles at a different

distance from the presynaptic membrane. To test for this

possibility, we segmented from three data sets 20 docked vesicles.

The segmentations included a ,3 nm-long stretch of their

associated AZM macromolecules to mark the sites of connection.

As shown in Figure 6A, the connection sites of each class of AZM

Figure 3. Transverse distribution of macromolecules in the main body of the AZM at resting active zones. A,D) Two regions 10 nm
apart along the depth axis of the reconstructed volume of an active zone sectioned near its transverse plane. Each of the images was formed by the
summation of three 1.2 nm thick serial virtual slices made through the volume in the same plane as the section. B,E) The same regions shown in A
and D with the summed outlines of the AZM macromolecules in each of the virtual slices overlaid. C,F) Surface models, 10 nm thick, of the AZM
macromolecules shown in A and D derived from segmentation of eight adjacent virtual slices and rotated to the transverse plane. G,H,I) Surface
models generated as for those in C and F. Tissue used for each of the surface models was from a different frog. The tissue was chemically fixed except
for that used for the surface model in I, which was fixed by rapid freezing. Ribs (yellow gold) extend from beams (brown gold) in the superficial layer
of AZM, spars (red) extend from steps (gray) in the intermediate layer, and booms (purple) extend from masts (dark green) in the deep layer, while the
ribs, spars and booms connect to synaptic vesicles (dark blue) docked on the presynaptic membrane (pale blue). Topmasts (light green) in C,F,G and
I link masts to undocked vesicles near the active zone’s midline. The linkage of some topmasts to masts is incomplete in C,F, and H because
discontinuous staining made segmentation uncertain or the topmast extended beyond the edge of the tissue section (arrowheads). Scale bars
= 50 nm.
doi:10.1371/journal.pone.0033333.g003
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macromolecule were localized to different domains on the vesicle

surface according to distance from the presynaptic membrane.

Nearest to the presynaptic membrane was a band of rib

connection sites parallel to the membrane. Deep to the ribs were

the connection sites of spars, and deep to the spars were the

connection sites of booms (Figure 6B). Moreover, there was little

overlap of the domains.

To aid in analyzing the associations of undocked vesicles with

AZM macromolecules in activated axon terminals, as describe

below, we determined for the 20 docked vesicles the average

Figure 4. Longitudinal distribution of the AZM’s main body macromolecules at resting active zones. Surface models were generated
from 1.0 nm thick serial virtual slices through a reconstructed active zone sectioned near its horizontal plane. The slice series was in the same plane.
A) The ribs (yellow gold) and beams (brown gold) of the superficial layer of the AZM extend throughout the length of the active zone except at the
gap, where the superficial layer was not included in the tissue section. Multiple ribs connect to each docked vesicle except at the upper right, where
the vesicle(s) was too close to the edge of the section to be clearly discerned in the reconstruction. Ribs in some regions are not distinguishable from
their neighbors because of the model’s angle of rotation. B) The intermediate layer shown together with the superficial layer. Steps (gray) are
centered between opposing pairs of docked vesicles (as in solid box) along straight stretches of the active zone. The positioning of the steps is less
regular where there is an angular change in the active zone’s long axis (dashed boxes). Typically, each docked vesicle is connected to spars (red)
arising from two steps. C) The deep layer is shown together with the superficial and intermediate layers. Masts (dark green) overlay steps (compare
with B). Multiple booms (purple) extend from each mast to connect to docked vesicles. D,E,F) Near transverse views of the surface models shown in
A,B, and C from the regions in those panels marked d, e and f respectively. Arrows in A indicate the vesicles and associated AZM macromolecules
used in Figure 5 to demonstrate our method for measuring the angle of approach of different classes of AZM macromolecules to docked vesicles.
Topmasts were not included in the tissue section.
doi:10.1371/journal.pone.0033333.g004
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position of each class of connection sites relative to the presynaptic

membrane and to the other classes. The average distance from the

centroid of rib connections to the presynaptic membrane was

,8 nm (7.763.3 nm SD), as shown previously [13]. The average

distance from the centroid of the spar connections to the rib

connections was ,10 nm (10.364.4 nm SD). The average

distance from the centroid of the boom connections to the rib

connections was ,24 nm (24.266.6 nm SD). The average

distances between the three different classes of connection sites

were distinct at a significance level of p,0.0001, as determined by

ANOVA.

The connection sites of the 3–5 pins linking the presynaptic

membrane to each docked vesicle were primarily on the

hemisphere facing away from the main body of the AZM

(Figure 7). On average, the connection sites were ,9 nm

(8.663.5 nm SD; n = 32 pins from 4 data sets) from the

presynaptic membrane. Together with the connection sites of

the ribs they formed a ring of AZM connections surrounding the

vesicle membranes’ fusion domain, i.e. the area of the vesicles’

membrane that contacts the presynaptic membrane and fuses with

it to release neurotransmitter.

Associations of AZM Macromolecules with Undocked
Vesicles near Vacated Docking Sites in Activated Axon
Terminals

We examined by electron tomography more than 50 active

zones in tissue sections from resting axon terminals for this and

other studies (Jung and McMahan, unpublished results). In every

case there was at least one vesicle docked on the presynaptic

membrane, and each of these were linked to the AZM’s ribs, pins,

spars and booms, although we did not determine for most the

number and distribution of such connections as described above.

At two of the active zones there was also an undocked vesicle

,15 nm from the presynaptic membrane connected to the same

assortment of AZM macromolecules. From electrophysiological

experiments, it is evident that at neuromuscular junctions there is a

relatively low frequency of vesicle fusion with the presynaptic

membrane when the axon terminals are at rest as compared to

when they are active [3]. Thus, the few undocked vesicles

associated with ribs, spars and booms we observed at resting

terminals may have been in the process of replacing former docked

vesicles that had fused with the presynaptic membrane just prior to

fixation.

In order to observe any associations undocked vesicles might

have with AZM as they replace former docked vesicles at docking

sites on the presynaptic membrane, we fixed axon terminals for

electron tomography while evoking synaptic activity by electrically

stimulating the axons. As observed by Heuser and Reese [7], who

fixed axon terminals at frog NMJ’s during such activity, the

presynaptic membrane at active zones had not only sites occupied

by docked synaptic vesicles but also sites where the membrane of

former docked vesicles had fused with it. At some of the latter sites,

the membrane of former docked vesicles had a near V shape. At

others the vesicle membrane had flattened into the presynaptic

membrane to an extent that it could not be distinguished from

irregularities elsewhere in the presynaptic membrane (Figure 8).

The membrane of former docked vesicles having a near V
shape was still connected to the same complement of booms, spars

and ribs in the main body of the AZM as docked vesicles in resting

terminals (Figure 8A-D). Unevenness in the presynaptic mem-

brane near the fusion pore made it difficult to discern pins with

certainty. We did not undertake to determine stages in the

dissociation of the flattening vesicle membrane from AZM

macromolecules as it moved laterally for retrieval because of

difficulty in distinguishing flattening vesicle membrane from the

general irregularities in the presynaptic membrane.

At vacated docking sites, i.e. sites where the fused vesicle

membrane had flattened into the presynaptic membrane to the

extent that the vesicle membrane could not be readily discerned,

there were nearby undocked vesicles connected to the same

assortment of AZM macromolecules that connected to docked

vesicles in both resting and activated terminals: ribs, spars, booms

and pins (Figures 8,9). For the 16 such undocked vesicles in our

samples, the shortest distance between the vesicle membrane and

the presynaptic membrane ranged from 42 nm to 4 nm. The

total number of connections from the main body of AZM (ribs,

spars and booms) on each of the vesicles was inversely

proportional to the vesicle’s distance from the presynaptic

membrane (Figure 9A and 9B). The vesicles that were 42–

29 nm from the presynaptic membrane had, on average, ,5

(5.261.2 SD) connections; those 24–17 nm from the presynaptic

membrane had, on average, ,9 (8.761.5 SD) connections; and

those 16–4 nm from the presynaptic membrane had, on average,

,11 (11.061.2 SD) connections, which was the same average

number of connections found on docked vesicles in resting

terminals (see above).

The number of connections formed by each of the three

different classes of AZM macromolecules in the main body of the

AZM with undocked vesicles was also correlated with the shortest

distance of the vesicle membrane from the presynaptic membrane

(Figure 9B). Undocked vesicles 42–29 nm from the presynaptic

Table 1. Averaged Dimensions of AZM Macromolecules in Resting Active Zones.

AZM Macromolecule Length6SD (nm) N Diameter6SD (nm) N # of Data Sets

Beams 75.1613.1 6 10.760.7 12 3

Steps 28.467.6 14 21.865.8 (Horiz.) 16 4

13.962.7 (Vert.) 14

Masts 31.564.5 6 2263 6 5

Ribs 27.967.7 53 9.461.4 88 6

Pins 8.663.5 32 5.061.0 17 4

Spars 17.666.5 56 7.161.2 58 5

Booms 16.064.8 60 6.561.3 67 6

Topmasts 24.669.4 6 6.962.1 6 3

doi:10.1371/journal.pone.0033333.t001
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membrane had connections with, on average, ,5 (4.860.8 SD)

booms, which was not significantly different from the number of

connections formed by booms on docked vesicles in resting

terminals (5.062.0 SD, see above) or from the average number of

boom connections on undocked vesicles closer to the docking sites

on the presynaptic membrane in active terminals (5.661.0 SD).

However, while some undocked vesicles 42–29 nm from the

presynaptic membrane had connections with spars, such

connections were, on average, much less frequent than those on

docked vesicles at rest (0.360.5 SD compared to 2.260.5 SD;

p,0.0001, t-test), and there were no connections with ribs.

Undocked vesicles 24–17 nm from the presynaptic membrane

had connections with, on average, ,2 (1.760.6 SD) spars, which

was not significantly different from the number of connections

formed by spars on docked synaptic vesicles at rest (2.260.5 SD,

see above) or from the average number of spar connections on

undocked vesicles closer to the docking sites on the presynaptic

membrane in active terminals (1.960.4 SD). However, while

some undocked vesicles 24–17 nm from the presynaptic mem-

brane had connections to ribs, such connections were at a much

lower frequency per vesicle than for docked vesicles at rest

(1.360.6 SD compared to 3.960.6 SD; p,0.001, t-test).

Undocked vesicles 16–4 nm from the presynaptic membrane

were connected to an average of ,4 (3.660.5 SD) ribs, which

was not significantly different from the number of connections

formed by ribs on docked synaptic vesicles at rest (3.960.6 SD,

see above). The distribution of the connection sites of the booms,

spars and ribs on the surface of vesicles 16–4 nm from the

presynaptic membrane was distinct for each class, as it is for

docked vesicles. Using the same method for determining the

average distances between ribs, spars and booms on docked

vesicles (see above), for such undocked vesicles the average

distance between spar and rib connections was ,9 nm

(9.363.6 nm SD), and the average distance between boom and

rib connections was ,26 nm (26.3611.4 nm SD). These average

distances on the undocked vesicles were not significantly different

from the average distances between the connection sites of the

different classes on docked vesicles (see above). Thus, within

16 nm of docking sites on the presynaptic membrane, undocked

vesicles were connected to the same number and classes of

macromolecules in the main body of the AZM as docked vesicles,

and the relative position of the connection sites for each class was

the same for both undocked and docked vesicles.

Undocked vesicles within 15 nm of docking sites on the

presynaptic membrane were also connected to pins attached to

the presynaptic membrane (Figure 9C). The average number of

pin connections on the undocked vesicles was 3.8 6 0.5 SD, which

was not significantly different from the average of 4.1 6 0.7 SD

pin connections on docked synaptic vesicles at rest. The length of

the pins varied according to the distance of the vesicles from the

membrane (Figure 9C), but on average it was significantly greater

(16.5 6 6.5 nm SD; n = 21 from 6 data sets) than the length of pins

connected to docked vesicles at rest (,9 nm; Table 1) where

p,0.0001 as determined by t-test.

Filamentous non-AZM macromolecules
In addition to its connections to AZM macromolecules, each

docked vesicle in resting terminals had connections to ,10

filamentous non-AZM macromolecules. These macromolecules

were up to several 10’s of nm long. They had diameters similar to

those of AZM macromolecules connected to vesicles. Their

connections were distributed primarily over the portion of the

vesicle surface that faced away from the AZM. They linked the

docked vesicles to nearby undocked vesicles, including those

connected to topmasts (Figures 8D,10), or to other organelles, or

they terminated blindly. We also observed such macromolecules at

active zones in activated axon terminals. They were not only

Figure 5. Angle of approach of main body AZM macromole-
cules to docked vesicles. The docked vesicles shown at the arrows in
Figure 4 together with selected members of their associated AZM
macromolecules were projected and traced onto a two dimensional
plane. Lines drawn parallel to the ribs (yellow gold; A), spars (red; B)
and booms (purple; C) approach a vesicle at different angles relative to
perpendicular lines drawn to the plane of the beam (brown gold).
Measurements of such angles from many docked vesicles reveal that
the average angle of approach is significantly different for each class of
AZM macromolecule, as detailed in the text and as shown here for
single macromolecules from each class: A, 5u; B, 17u; and C, 27u.
doi:10.1371/journal.pone.0033333.g005
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connected to docked vesicles but also, in similar numbers, to

former docked vesicles that shared a fusion pore with the

presynaptic membrane (Figure 8) and to undocked vesicles

connected to AZM near vacated docking sites on the presynaptic

membrane (not shown). Using the same methods that exposed the

arrangement and associations of AZM macromolecules to vesicles

in resting and activated terminals, we detected no obvious

organization of the non-AZM macromolecules connected to the

same vesicles. Moreover, we observed no difference in the number

of non-AZM filaments connected to undocked vesicles at active

zones in activated terminals relative to the vesicles’ distance from

the presynaptic membrane.

Discussion

We show that each docked vesicle at active zones in resting axon

terminals of the frog’s NMJ is connected to multiple members of

four classes of filamentous AZM macromolecules (Figure 11). The

Figure 6. Connection sites of main body AZM macromolecules on docked vesicles at resting active zones. A) Median view of 20 docked
vesicles with ,3 nm long stretches of ribs (yellow gold), spars (red) and booms (purple) attached to mark their connection sites on the vesicles. B)
The centroids of AZM connection sites on all vesicles shown in A were normalized for small variations in vesicle diameter. They were, then, aligned to
the relative position of the rib connections using a cross-correlation algorithm, and plotted on an idealized sphere. C) The rib, spar and boom
connection sites on the idealized sphere in B plotted according to their distance from the rib connections. There is little overlap between vesicle
domains connected to ribs and spars and moderate overlap between domains connected to spars and booms, but the domains are distinct from
each other with a significance level of p,0.0001.
doi:10.1371/journal.pone.0033333.g006
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connections formed by two classes, ribs and pins, are adjacent to

the presynaptic membrane and surround the domain of the vesicle

that will fuse with the presynaptic membrane during synaptic

transmission. The connections formed by the third class, spars, are

further from the presynaptic membrane, and the connections

formed by the fourth class, booms, are furthest from the

membrane. At active zones in axon terminals fixed during

synaptic activity, undocked vesicles within ,50 nm vertical to

sites on the presynaptic membrane formerly occupied by docked

vesicles are connected to the same classes of AZM macromolecules

as docked vesicles. The number of classes to which the undocked

vesicles are attached is inversely related to the vesicles’ distance

from the membrane. The furthest vesicles are connected primarily

to the booms, nearer vesicles are connected primarily to both

booms and spars, while the nearest vesicles are connected to the

same assortment of classes as docked vesicles; booms, spars, ribs

and pins (Figure 12). The number of connections formed by each

class on undocked vesicles and the mean distance of their

connection sites from each other is the same as for docked vesicles

in resting axon terminals. We conclude that AZM directs

undocked vesicles toward docking sites on the presynaptic

membrane through a succession of specific macromolecular

interactions with the vesicles, and that these same interactions

persist to help hold docked vesicles in position.

Ribs, spars and booms lie in distinct layers in the main body

of AZM (Figure 11). The ribs are adjacent to the presynaptic

membrane, while spars are further from it, and booms are the

furthest. Moreover, each of these classes arises from a different

core macromolecule serially arranged vertical to the presynaptic

membrane near the midline of the AZM. The ribs arise from

beams, which lie next to the presynaptic membrane, while the

spars arise from steps, which are connected to the deep surface

of the beams, and the booms arise from the masts, which are

connected to the deep surface of the steps. The pins, which are

outside the AZM’s main body, arise from the presynaptic

membrane and extend almost vertical to the membrane to

connect to the vesicles. We include the pins as members of the

AZM because their connection sites on the vesicles, together

with those of ribs, are distributed around the vesicles’ fusion

domain and their linkage of the vesicles to the presynaptic

membrane implies that they are involved with docking of

vesicles on the membrane, as are components of the main body

of AZM. Thus, the identity of the different classes of AZM

macromolecules to which docked vesicles are attached is based

not only on the localization of their connection sites to specific

domains on the vesicle surface but also on their position within

the AZM and the active zone components from which they

arise.

The filamentous non-AZM macromolecules we observed

linking docked vesicles to undocked vesicles and to other

organelles in resting terminals are similar to filamentous

macromolecules that link undocked vesicles throughout axon

terminals at frog NMJ’s (Xu and McMahan, unpublished) and at

other synapses, e.g. [19–24]. Docked vesicles, former docked

vesicles sharing a fusion pore with the presynaptic membrane, and

undocked vesicles near vacated docking sites in activated terminals

also had non-AZM macromolecules linking them to other vesicles

and organelles. The disassembly and reassembly of such linkages

must play a role in the regulation of vesicle movement, in general

[25]. However, we did not detect, in activated terminals,

differences in the number and arrangement of the connections

of these macromolecules on undocked vesicles near vacated

docking sites relative to the vesicles’ distance from the presynaptic

membrane that could account for the movement of vesicles

specifically toward the docking sites, as we did for AZM

macromolecules. Because the non-AZM macromolecules were

not the focus of this study, we did not include them in our surface

models and schematics except for Figure 10.

There have been several electron tomography studies on

synapses in the vertebrate CNS and in the nervous system of

invertebrates [26], where the gross arrangement of AZM and its

associated vesicles is generally more complex than at the frog’s

neuromuscular junction [27]. To our knowledge only one [28],

which was done on synapses of the vertebrate CNS, used data

Figure 7. Arrangement of pins at resting active zones. A) A
surface model, 9 nm thick, from an active zone sectioned in the
transverse plane. A pin (copper) links the hemisphere of a docked
vesicle that faces away from the active zone ridge (asterisk) to the
presynaptic membrane. B) A virtual slice, 0.5 nm thick, from the series
of virtual slices segmented to generate the surface model in A. The pin,
docked vesicle and presynaptic membrane are outlined. An asterisk
marks the main body of the AZM in the active zone ridge. C) A surface
model, 20 nm thick, from an active zone sectioned in the median plane.
The docked vesicles are from a row of such vesicles flanking the main
body of AZM. A pin between the vesicles bifurcates to link the vesicles
to the presynaptic membrane. D) The connection sites of pins and ribs
(marked by ,3 nm long segments of each: ribs, yellow gold; pins,
copper) on docked synaptic vesicles viewed in the horizontal plane. The
vesicles are from four active zones that were sectioned in the median or
transverse planes after fixation by glutaraldehyde or rapid freezing. The
connection sites surround the region of contact between the vesicle
membrane and presynaptic membrane (dashed outline).
doi:10.1371/journal.pone.0033333.g007
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collected at a magnification sufficient to reveal structural

organization of AZM at the level presented here. In that case,

vesicles at and near the presynaptic membrane at active zones

were shown to be associated with aggregates of macromolecules on

the presynaptic membrane having a polyhedral arrangement,

similar to the arrangement of macromolecules in clathrin-based

coats involved in retrieval of vesicle membrane after its fusion with

the presynaptic membrane. Although we observed clathrin coats

beyond the active zones in resting and activated axon terminals of

frog NMJ’s, we did not find such macromolecular arrangements

associated with any of the more than 150 docked vesicles

examined by electron tomography in this and other studies (Jung

Figure 8. Connection of main body AZM macromolecules to synaptic vesicles at activated active zones. A) 10 nm thick surface model
from an active zone sectioned in the median plane. It includes a row of vesicles from one side of an active zone ridge and the presynaptic membrane.
Two of the vesicles are docked on the presynaptic membrane, one is fused with the membrane and one is an undocked vesicle 16 nm from a vacated
docking site on the membrane. The color boundary at the interface of the fused vesicle membrane with the presynaptic membrane is arbitrary. B) An
80 nm thick surface model of the same vesicles in A that includes the vesicle surface facing the AZM. Connection sites of ribs (yellow gold), spars
(red) and booms (purple) are indicated by ,3 nm long stretches of each. C) A 25 nm thick surface model from an active zone sectioned in the
transverse plane. A former docked vesicle that has fused with the presynaptic membrane is connected to ribs, a spar and booms. D) A 2.4 nm thick
virtual slice, which was summed from 2 successive 1.2 nm thick virtual slices, of an activated active zone sectioned in the transverse plane. A former
docked vesicle that is fused with the presynaptic membrane is connected not only to main body AZM macromolecules (asterisk), but also to non-
AZM macromolecules (arrows) that link it to undocked vesicles (V1 and V2). One of the vesicles (V2) was linked to a topmast in other virtual slices. E)
The undocked vesicle on the right of the AZM is 10 nm from a vacated docking site on the presynaptic membrane and has rib, spar, and boom
connections as does the docked vesicle on the left. F) Undocked vesicles 10 nm and 15 nm from vacated docking sites on the presynaptic membrane
with connection sites of ribs, spars and booms marked by ,3 nm long stretches of each.
doi:10.1371/journal.pone.0033333.g008
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and McMahan, unpublished). The macromolecular architecture

of AZM and its association with docked vesicles at the frog’s NMJ

does extend to NMJ’s in mouse, even though the gross

arrangement of the docked vesicles and AZM is different between

the species [14]. Unlike active zones at frog NMJ’s, where each

docked vesicle is positioned next to one band of AZM, at active

zones of mouse NMJ’s each docked vesicle is positioned between

two bands of AZM. The superficial layer of each of the two bands

includes beams, ribs and pegs, which are linked to the docked

vesicle and calcium channels, as at the frog’s NMJ. Thus, rib-

vesicle connections have a much different distribution on the

vesicle surface in mouse than in frog. Differences in the

Figure 9. Classes of AZM macromolecules connected to undocked vesicles at various distances from vacated docking sites in
activated terminals. A) Based on 3-D measurements in surface models from activated active zones, undocked synaptic vesicles (SV) .,30 nm
from vacated docking sites on the presynaptic membrane (PM) have relatively few connections to main body AZM macromolecules. The number of
connection sites gradually increases with decreasing distance of the undocked vesicles from the presynaptic membrane to ,,15 nm, where it is
similar to that for docked vesicles at resting active zones (indicated by the open symbol on the Y-axis 6 SD). B) Viewed from the median plane of the
active zone, undocked synaptic vesicles 42–29 nm from the presynaptic membrane have connection sites formed mostly by booms (purple), vesicles
24–17 nm from the presynaptic membrane have connection sites formed mostly by booms and spars (red), while vesicles 16–4 nm from the
presynaptic membrane have connection sites formed by similar numbers of booms, spars and ribs (yellow gold) as on docked vesicles (compare with
Figure 6A). C) Viewed in the horizontal plane, undocked vesicles 15–4 nm from the presynaptic membrane have connection sites formed by pins
(copper) as well as ribs.
doi:10.1371/journal.pone.0033333.g009

Regulation of Synaptic Vesicle Docking by AZM

PLoS ONE | www.plosone.org 12 March 2012 | Volume 7 | Issue 3 | e33333



arrangement of AZM and its associated docked vesicles may

influence the rate of vesicle docking and/or the probability of a

docked vesicle fusing with the presynaptic membrane during

synaptic transmission [14].

Based on the size of AZM macromolecules at the frog’s NMJ, it

is likely that each is composed of several proteins. The apparent

continuity between different classes of AZM macromolecules in

our surface models raises the possibility that certain proteins

contributing to one class of AZM macromolecule extend into

another, while the differences in size, shape and positioning of the

classes within the AZM are consistent with each class having a

unique overall protein composition and function. Many, if not all,

of the proteins shown by biochemistry to be involved in vesicle

docking and fusion may contribute to the composition of AZM

macromolecules. Such proteins include the presynaptic mem-

brane-associated proteins syntaxin and SNAP-25 and the synaptic

vesicle membrane-associated protein synaptobrevin, altogether

known as SNARE proteins [29,30]. Each SNARE protein has a

domain that extends beyond the membrane with which it is

associated into the cytoplasm. The cytoplasmic domains of the

three proteins interact to form a complex that brings the vesicle

membrane into contact with the presynaptic membrane. Synap-

totagmin is another vesicle membrane-associated protein that may

contribute to the AZM. Its cytoplasmic domain associates with the

SNARE complex and the presynaptic membrane during docking.

The binding of calcium to this domain is thought to trigger the

calcium mediated fusion of docked vesicles with the presynaptic

membrane during synaptic transmission [31,32]. The cytoplasmic

proteins complexin, Munc-13 and Munc-18, which are thought to

regulate the interaction of the SNARE proteins [33–37], and Rab-

3A, Rabphilin and RIM, which are thought to be involved with

tethering vesicles to the docking site prior to docking [38–40], may

also contribute to the AZM. Based on the above functional

considerations it is reasonable to suggest that the cytoplasmic

Figure 10. Non-AZM macromolecules connected to a docked
and nearby undocked synaptic vesicles at a resting NMJ. A
surface model 20 nm thick with a docked vesicle linked to AZM
macromolecules colored as in previous Figures. The docked vesicle is
near four undocked vesicles. Non-AZM macromolecules (pewter) link
the undocked vesicles to each other and variously to the presynaptic
membrane and the docked vesicle.
doi:10.1371/journal.pone.0033333.g010

Figure 11. Schematized 3-D arrangement of classes of AZM macromolecules throughout the depth of the resting active zone. A)
View includes the transverse, horizontal and median planes of the active zone (see Figure 1C). Core macromolecules include beams (brown gold),
steps (grey) and masts (dark green). Macromolecules connecting core macromolecules to synaptic vesicles (dark blue) and the presynaptic membrane
(pale blue) along with channels (frosted green) in the membrane, include ribs (yellow gold), pegs (orange gold), pins (copper), spars (red), booms
(purple), and topmasts (light green).The presynaptic membrane and the docked vesicles in the row on the right are transparent to expose the extent
of the AZM connections. B) View from the median plane of the active zone toward the left row of docked vesicles in A. C) View from beyond the
active zone toward the left row of docked vesicles in A.
doi:10.1371/journal.pone.0033333.g011
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domains of the SNARE proteins and synaptotagmin along with

the SNARE regulators, complexin, Munc-13 and Munc-18

contribute to the AZM’s ribs and pins, since these macromolecules

are positioned in a way that could bring the vesicle membrane

directly into contact with the presynaptic membrane during

docking and influence fusion. They may, in addition, contribute to

pegs (Figure 11), which are thought to also contain the cytoplasmic

portion of the calcium channel [11]. Rab3A, Rabphilin and RIM

might well be components of ribs, spars, booms and topmasts,

because all three macromolecules appear to be involved in

tethering undocked vesicles at or near the docking site prior to

docking [39,41,42]. So-called scaffolding proteins, such as bassoon

[43], piccolo [44], RIM [45,46] and spectrin [47], which have

been localized to the vicinity of active zones, may contribute the

core AZM macromolecules, i.e. beams, steps, and masts.

Comprehensive, quantitatively-based maps of AZM, such as the

one presented here for the first time, offer the possibility of testing

such hypotheses by the use of electron tomography together with

immunogold labeling or protein deletion experiments, as they

have been applied to the localization of proteins to structures

requiring less spatial resolution than that provided by electron

tomography for imaging AZM components (e.g. [22]).

Additional questions raised by this study concern how AZM

macromolecules dissociate from former docked vesicles that have

fused with the presynaptic membrane, and how they associate with

undocked vesicles destined to dock. We demonstrate here that the

fusion of docked vesicles with the presynaptic membrane occurs

while the AZM macromolecules are still connected to it. Thus, the

dissociation must take place as the vesicle membrane flattens into

the presynaptic membrane and moves laterally for retrieval

beyond the active zone. Biochemistry has provided evidence that

after a vesicle fuses with the presynaptic membrane its synapto-

tagmin dissociates from the SNARE complex and presynaptic

membrane. The proteins of the SNARE complex also disassemble

so that synaptobrevin in the vesicle membrane dissociates from the

syntaxin and SNAP-25 of the presynaptic membrane [48].

Accordingly, if a docked vesicle’s synaptotagmin and SNARE

proteins contribute to the ribs and pins, as we suggest, a portion of

the ribs and pins must, after the vesicle fuses with the presynaptic

membrane, disassemble from the AZM and remain with the

vesicle membrane as it flattens into the presynaptic membrane for

retrieval and vesicle reformation at a distant site. Thus, undocked

vesicles would carry a portion of the ribs and pins to participate in

complete rib and pin reassembly in the AZM as undocked vesicles

become docked. We did not undertake to determine the extent of

any such disassembly and reassembly of the AZM’s ribs, pins,

spars and booms during the turnover of docked vesicles. We noted,

however, that the length of pins connecting undocked vesicles to

the presynaptic membrane at vacated docking sites was in certain

cases 3–4 times greater than the length of pins associated with

docked vesicles and that the pin length was directly proportional to

the undocked vesicle’s distance from the presynaptic membrane.

This demonstrates that, during vesicle docking, the pins, if not all

AZM macromolecules that connect to the vesicles, undergo

significant structural modification.

The energy/force involved in bringing synaptic vesicles into

direct contact with the presynaptic membrane is thought to be

derived from the affinity that the SNARE proteins have for each

other and the conformational change these proteins undergo once

their interaction begins [49]. When a vesicle comes close enough

to the presynaptic membrane for the cytoplasmic domain of

synaptobrevin to interact with the cytoplasmic domain of syntaxin

and SNAP-25, the nature of their affinity causes them to form a

coil that grows incrementally to bring the vesicle membrane into

contact with the presynaptic membrane. Thus, if syntaxin and

SNAP-25 remain in the ribs and pins after the synaptobrevin in

the membrane of former docked vesicles that have fused with the

presynaptic membrane has dissociated from them, the connection

of an undocked vesicle to spars at the vacated docking site might

bring its synaptobrevin near enough to interact with the available

syntaxin and SNAP-25. Incremental coiling within the ribs and

pins could, then, cause the vesicle to move into contact with the

presynaptic membrane. Such affinity driven conformational

changes between vesicle and AZM proteins may also provide

the energy required for the sequential association of vesicles with

booms and spars during docking. However, biochemical studies

indicate that the Rab3A- Rabphilin mediated tethering of

undocked vesicles to components of the docking site prior to their

docking is regulated by GTP-ase activity [38,50]. Such GTP-ase

regulated events may also provide energy for the sequential

association of undocked vesicles with the different classes of AZM

macromolecules. The results of this study raise the possibility of

another source of energy in moving undocked vesicles toward the

presynaptic membrane at vacated docking sites. We show that

former docked vesicles sharing a fusion pore with the presynaptic

membrane are linked to nearby undocked vesicles by non-AZM

macromolecules. If such connections were to persist as the

membrane of former docked vesicles flattens into the presynaptic

membrane, the flattening could help provide the energy to bring

undocked vesicles into close proximity to the booms, spars, ribs

Figure 12. Model of the sequential association of undocked
synaptic vesicles with different AZM macromolecules leading
to docking. When a docked synaptic vesicle (A) fuses with the
presynaptic membrane (B), booms (purple), spars (red), and ribs (yellow
gold) remain attached to the vesicle membrane until it undergoes
flattening into the presynaptic membrane (C). An undocked vesicle
within 50 nm of the docking site on the presynaptic membrane first
forms connections with booms that have dissociated from the fused
vesicle (C) and then sequentially with dissociated spars (D) and ribs-
pins (E) which direct it to the docking site on the presynaptic
membrane (A). Pins are not included in B, C and D because we were
unable to distinguish them from other presynaptic membrane linked
macromolecules as the fused vesicles flattened.
doi:10.1371/journal.pone.0033333.g012
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and pins, so that specific vesicle membrane components can

interact with specific components of the AZM macromolecules.

Undocked vesicles lying just deep to docked vesicles and toward

the midline of the AZM are linked by filamentous macromolecules

to the deep end of the AZM’s masts (Figure 11). These

macromolecules are grossly similar in appearance to booms and

to the non-AZM macromolecules that link undocked vesicles

throughout the terminal’s cytoplasm. The nearly constant

presence of the macromolecules linking undocked vesicles to

masts and the proximity of these undocked vesicles to docked

vesicles raises the possibility that such macromolecules and/or

their linkage to the masts play a specific role in active zone

function. Thus, we have included them as components of the

AZM, called topmasts. One function of the topmasts might be to

maintain at the active zone synaptic vesicles that, because of their

close proximity to the docked vesicles, preferentially replace

docked vesicles after they fuse with the presynaptic membrane.

Physiological experiments have shown that axon terminals have

three pools of synaptic vesicles: a readily releasable pool, which

has a high probability of fusing with the presynaptic membrane

during synaptic transmission; a recycling pool, which replaces the

vesicles in the readily releasable pool after they have fused with

the presynaptic membrane; and a reserve pool, which replaces

vesicles in the recycling pool as it is depleted [5]. It has long been

suggested that docked vesicles correspond to the readily

releasable pool [51,52]. Our observations raise the possibility

that the undocked vesicles linked by topmasts to the AZM

correspond to members of the recycling pool and these vesicles

move from the topmasts to booms as a stage in replacing docked

vesicles that have fused with the presynaptic membrane, relying

on energy from the sorts of molecular interactions that account

for the sequential movement of undocked vesicles from booms to

spars to ribs and pins.

Booms and spars connected to each docked vesicle and to each

undocked vesicle near vacated docking sites on the presynaptic

membrane typically arise from two different sets of masts and

steps. The masts and steps are positioned along the AZM’s midline

so the booms and spars from one mast and step approach the

vesicle at a 50u–60u angle to the booms and spars from the other

mast and step (Figure 11). This wide-angle trajectory of the booms

and spars would have a significantly greater effect on inhibiting

lateral movement of a docked vesicle, which might tend to occur,

for example, when an adjacent vesicle fuses with the presynaptic

membrane, than if the booms and spars approached the vesicle

nearly orthogonal to the AZM’s midline, as do the ribs. For an

undocked vesicle near a vacated docking site on the presynaptic

membrane, its sequential connection to two sets of booms and

spars having such different trajectories would favor movement of

the vesicle toward the presynaptic membrane in a direction

vertical to the membrane and the docking of the vesicle at

precisely the same site on the membrane as the previous docked

vesicle. Such limitations in the direction of movement and

positioning of the undocked vesicles imposed by the vesicle’s

connections to AZM might be expected if vesicle components that

interact with the AZM and presynaptic membrane during docking

and fusion have a specific and fixed arrangement in the vesicle

membrane prior to reaching the active zone. Accordingly, the

vesicle would need to approach the AZM and presynaptic

membrane in a particular way for its components to interact with

them properly. The vesicle’s synaptobrevin and synaptotagmin,

for example, could have an arrangement in the vesicle membrane

requiring the vesicle to approach the docking site at a certain

degree of rotation for the synaptobrevin to interact with syntaxin

and SNAP-25 in the ribs and pins and for synaptotagmin to

interact both with the SNARE complex and with the presynaptic

membrane. A stereotypic arrangement of vesicle proteins that

interact with the spars and booms as well as ribs and pins could

account for our finding that the average distances between

connection sites of ribs, spars and booms on the vesicle membrane

are the same for undocked vesicles near vacated docking sites on

the presynaptic membrane as for docked vesicles.

Materials and Methods

Ethics Statement
The animal experimentation described here was approved by

Stanford University’s (Protocol Number 10505) and Texas A&M

University’s (AUP Number 2011–18) administrative panels on

laboratory animal care (IACUC), which oversees the use of

animals according to U.S. federal regulations.

Preparation of resting neuromuscular junctions
We used Rana pipiens (about 5 cm nose-rump length). The

paired cutaneous pectoris muscles, which are broad, flat and 1–3

muscle fibers thick, lie just beneath the skin of the frog’s chest. The

muscles were prepared for electron tomography in one of three

ways: 1) They were immediately exposed in terminally anesthe-

tized (MS-222, Sigma Chemical, St Louis, Missouri) and pithed

frogs. Under a dissecting microscope, 0.8% glutaraldehyde (Ted

Pella, Inc., Redding, California) in Millonig’s phosphate buffer

(220 mOsM total, pH 7.2) was injected beneath the muscles and

dripped onto their superficial surface several times over 40 min.

The muscles were removed from the frog, pinned flat in a Sylgard

184 (Dow Corning, Midland, Michigan) coated petri dish

containing phosphate buffer (220 mOsM, pH 7.2) and placed on

a shaker for 30 min. The muscles were then fixed and stained for

1 hr in 1% osmium tetroxide in phosphate buffer (220 mOsM

total; pH 7.2), washed 1 hr in H2O, stained 1 hr in saturated

aqueous uranyl acetate, dehydrated in increasing concentrations of

ethanol and embedded flat in a wafer of Eponate 12 (Ted Pella,

Inc., Redding, California) less than 1 mm thick. Regions of the

muscles containing NMJs were identified in the wafers at 6400

magnification with a light microscope, and blocks were cut out and

mounted for sectioning. The sections used for conventional

electron microscopy shown in Figure 1 were ,80 nm thick

(Figure 1A) and ,50 nm thick (Figure 1B) based on their

interference colors. The sections used for electron tomography

varied from 45 nm to 90 nm in thickness based on measurements

from the reconstructed volumes. The sections were stained with

uranyl acetate in methanol and with aqueous lead citrate. 2) The

muscles were removed from anesthetized, pithed frogs and pinned

flat in a Sylgard coated petri dish containing frog Ringer’s solution

(116 mM NaCl, 20 mM KC1, 1.8 mM CaCl2, 10 mM sucrose,

1 mM NaH2PO4; 220 mOsM; pH 7.2) for 30 min. For fixation

the Ringer’s solution was replaced by the phosphate buffered

glutaraldehyde for 40 min. The muscles were then further

processed as above. 3) Dr. John Heuser and Dr. Thomas Reese

generously provided us with an araldite embedded block of tissue

from a Rana pipiens cutaneous pectoris muscle that had been fixed

by quick-freezing and stained with osmium tetroxide by freeze

substitution (as described in [53]). Sections from this block, which

contained 12 NMJs devoid of obvious ice crystal damage, were

stained with uranyl acetate and lead citrate.

Preparation of activated neuromuscular junctions
Our procedure was similar to that used by others [7] for

studying by electron microscopy the behavior of synaptic vesicles

at active frog NMJ’s. We used three muscles together with a 5 mm
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stretch of the nerve innervating each. They were pinned out in a

Petri dish containing Ringer’s solution and the cut end of

the nerve was drawn into a suction electrode. The activity of the

preparations was tested by passing current pulses trough the

suction electrode while monitoring under a dissecting microscope

the muscle contractions in response to single pulses. The Ringer’s

solution was then replaced by Ringer’s containing 10–5 g/ml (+)-

Tubocurarine chloride hydrate (Sigma-Aldrich, Inc., St. Louis,

Missouri) which blocked postsynaptic acetylcholine receptors and,

thus, blocked muscle contractions in response to acetylcholine

release, which could lead to difficulties in analyzing structural

relationships in the electron tomography data. The (+)-Tubocu-

rarine -containing Ringer’s solution was then replaced with

Ringer’s solution containing 0.8% glutaraldehyde (220 mOsM

total; pH 7.2), and we simultaneously began electrically stimulat-

ing the nerve with 1 ms pulses of current having an amplitude of

9–15 mA (about 10 times greater than the amount required to

generate maximal muscle contraction) delivered at a frequency of

10 Hz. The stimulation continued for 2 min. We had previously

observed under a dissecting microscope that in stimulated nerve-

muscle preparations not exposed to (+)-Tubocurarine, contractions

of all muscle fibers had ceased after 2 min in the fixative, which

indicated that all of the NMJ’s were fixed at that time. After

stimulation ceased, the muscles remained in fixative for 40 min.

They were then further processed for electron tomography

according to the second method used for preparing resting NMJ’s

described above.

Data collection
Data sets were collected using one of two electron microscopes

designed for automatic data acquisition: 1) a Phillips Tecnai T20

electron microscope (FEI Company Hillsboro, Oregon) equipped

with a 102461024 CCD (Gatan, Inc., Pleasanton, California) in

the laboratory of Dr. David Agard at the University of California,

San Francisco; and 2) an FEI TF30 Polara electron microscope

(FEI Company Hillsboro, Oregon) equipped with a 204862048

Tietz TemCam-F224HD CCD (Tietz Video and Imaging

Processing Systems GmbH, Gauting, Germany) in our own

laboratory at Stanford University. The stage on each microscope

was cooled to liquid nitrogen temperature to reduce specimen

shrinkage. Most data sets consisted of images taken at 1-degree tilt

intervals to 660 or 670 degrees along a single tilt axis. One was

taken at 2-degree tilt intervals to 660 degree, while others were

taken at 1-degree intervals to 660 along each of two orthogonal

tilt axes. Reconstructions from the dual axis data sets have less

noise than those from single axis data sets [54,55]. However, both

types of data sets yielded qualitatively similar structural models,

and measurements from both types rose to statistical significance.

For generating reconstructions, the images were first aligned

automatically using 5 or 10 nm gold colloid (British Biocell

International, Cardiff, U.K.) deposited on one or both sides of the

sections before data collection as fiducial markers. The average

alignment error of data sets in this study was less than 1 pixel (range,

0.5 to 1.6) root mean square. The reconstructions were made by a

weighted back-projection method. Both the alignment and recon-

struction algorithms are in the unified software package for electron

tomography, EM3D (em3d.stanford.edu) [13,56]. The spatial

resolution was 2–3 nm for high contrast structures such as the

cytoplasmic and extracellular layers of the plasma membrane [56].

None of the vesicles in our data sets were perfectly spherical.

However, in most data sets there was no significant difference in

the average dimensions of vesicles measured in all three axes. In

data sets that did exhibit compression in the z axis of the section,

probably due to thinning of the plastic caused by prolonged

exposure to the electron beam [57], the z-axis diameters of the

vesicles were 80.5 6 4.8% (mean 6 SD, n = 15 vesicles) of the

diameters measured in the x-y axis of the section. Thus, a ‘stretch’

factor [58] of 1.2 was applied to the z-axis of the volumes

reconstructed from these data sets.

Virtual slices, segmentation and rendering surface
models

Virtual slices through the reconstructed tissue sections were 1

voxel thick. Depending on the magnification of the images in a

data set, the virtual slice thickness represented 0.52 nm to 1.2 nm

of the tissue section’s thickness. When necessary, the angular

orientation of the slice plane was adjusted to maximize contrast

boundary discrimination of the structures under study.

Structures were segmented from the reconstructions by using a

combination of manual and semi-automatic methods in EM3D to

define individual volumes-of-interest (VOIs; [13]). For the

presynaptic membrane and synaptic vesicles, which were heavily

stained and had a simple geometry, a semi-automatic scheme was

used and manually adjusted as necessary. For structures that had a

complex geometry and light to moderate stain, VOIs were defined

by manually marking a closed path on the series of slices in which

they were included. The VOIs for both the semi-automatic and

manual methods were slightly larger than the structures that they

enclosed to allow accurate and complete isodensity-surface

calculations for the surface models.

We used EM3D to render a surface model from each VOI. The

rendering was done using a gray scale value that minimized the

mean spatial uncertainty averaged across the whole area of the

model. Surface models generated in this way had a spatial

resolution equal to the resolution of the reconstructed volumes

[13].

Dimensions and Angles of Approach
The dimensions of the AZM macromolecules displayed in Table 1

were obtained as follows. To rule out any effects from missing wedge

artifact that might result from the tilt-angle limitation in data

collection, we used reconstructions from several tissue sections, each

from one of the three cardinal planes of the active zone: horizontal,

transverse and median (Figure 1C). For determining lengths, the

reconstructed volume was rotated so the full length of each

macromolecule was included in a single virtual slice made along the

macromolecule’s midline, and the longitudinal extent was measured

using the ‘‘measurement’’ tool in EM3D [13]. The diameters of

steps and masts varied along their length. For those in Table 1 a

virtual slice transverse to the long axis of each structure was made

midway along its length, and the diameters were measured on the

cross-section using the ‘‘measurement’’ tool in EM3D. For

convenience as well as accuracy, we determined the average

diameter of beams, ribs, spars, booms, topmasts and pins, which

were more uniform in diameter than the steps and masts, in surface

models using the ‘‘thickness’’ tool in EM3D [13].

To determine the angle the ribs, spars and booms approached

docked vesicles, the reconstructed volume of a tissue section was

rotated so that the beam(s) could be viewed in the horizontal plane

of the active zone. All of the AZM macromolecules and synaptic

vesicles were then projected onto a 2-D plane [14] and the

projection was rotated so that the long axis of the beam(s) was

aligned with and centered on a virtual reference line running

horizontal to the field of view (see dashed line in Figure 5A). An

‘adjacent’ line was then drawn at a right-angle from the reference

line to the centroid of the connection site of a rib, spar or boom on

a vesicle. A hypotenuse was drawn along the long axis of each

AZM macromolecule from the centroid to the reference line. The
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angle between the hypotenuse and the adjacent line, which was

calculated by standard trigonometry, represented the angle of

approach of ribs, spars and booms to vesicles.

Distribution of connection sites on docked vesicles
The AZM connection sites on each synaptic vesicle were first

mapped onto a unit sphere based on the spatial coordinates of the

centroids of connection sites and the diameter of the individual

vesicle to normalize the variability of vesicle diameters. All of the

vesicles were then rotated so their connection sites faced the same

direction, which provided a rough alignment. For fine-alignment

of the vesicles to the position of the rib connections (in x, y, z

coordinates), the degree of overlap of rib connections for all

vesicles was maximized based on the following equation:

Rib Connection Overlap~
XN

i,j
xixjzyiyjzzizj

� �
;

where i=j and N is the number of vesicles

To calculate the rotation angle with maximized values for Rib

Connection Overlap, we used Euler’s rotation theorem [59]. All

vesicles were then rotated to their calculated value, and all AZM

connections were plotted onto the common unit sphere shown in

Figure 6B.

The direct distance from the centroid of each connection site to

the closest point on the presynaptic membrane was measured

using the proximity tool in EM3D and then normalized to the

average position of the rib connection sites per individual vesicle.

These normalized measurements were plotted in Figure 6C.

Figure layouts
Figure layouts were prepared using Adobe Photoshop CS3

(Adobe Systems, San Jose, CA). The grey-scale levels and curves

for Figure 1 were adjusted slightly in Photoshop in order to

optimize the fidelity of the electron micrograph images for

publication and reproduction.

The RGB color values for the surface models are as follows:

presynaptic membrane (200,200,225); synaptic vesicles (125,125,

255); ribs (255,197,31); beams (125,75,25); pegs (255,175,0); pins

(200,100,25); steps (240,240,240); spars (255,0,0); masts (0,100,0);

booms (100,0,150); topmasts (100,150,0); non-AZM macromole-

cules (200,200,200).
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