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Summary
Background Adjuvant chemotherapy provides a limited survival benefit (<5%) for patients with stage II colorectal
cancer (CRC) and is suggested for high-risk patients. Given the heterogeneity of stage II CRC, we aimed to develop a
clinically explainable artificial intelligence (AI)-powered analyser to identify radiological phenotypes that would
benefit from chemotherapy.

Methods Multimodal data from patients with CRC across six cohorts were collected, including 405 patients from the
Guangdong Provincial People’s Hospital for model development and 153 patients from the Yunnan Provincial
Cancer Centre for validation. RNA sequencing data were used to identify the differentially expressed genes in the two
radiological clusters. Histopathological patterns were evaluated to bridge the gap between the imaging and genetic
information. Finally, we investigated the discovered morphological patterns of mouse models to observe imaging
features.

Findings The survival benefit of chemotherapy varied significantly among the AI-powered radiological clusters
[interaction hazard ratio (iHR) = 5.35, (95% CI: 1.98, 14.41), adjusted Pinteraction = 0.012]. Distinct biological
pathways related to immune and stromal cell abundance were observed between the clusters. The observation
only (OO)-preferable cluster exhibited higher necrosis, haemorrhage, and tortuous vessels, whereas the adjuvant
chemotherapy (AC)-preferable cluster exhibited vessels with greater pericyte coverage, allowing for a more
enriched infiltration of B, CD4+-T, and CD8+-T cells into the core tumoural areas. Further experiments confirmed
that changes in vessel morphology led to alterations in predictive imaging features.

Interpretation The developed explainable AI-powered analyser effectively identified patients with stage II CRC with
improved overall survival after receiving adjuvant chemotherapy, thereby contributing to the advancement of
precision oncology.
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Research in context

Evidence before this study
We searched PubMed for relevant articles about explainability
artificial intelligence (AI) published from database inception
to 15 November 2024 using the search terms “deep learning”
OR “artificial intelligence” OR “machine learning” OR
“radiomics” AND “colorectal cancer” AND “explainability” OR
“biologic basis”. Only two machine learning-based studies
utilising computed tomography (CT) images have been
published in the context of predicting clinical outcomes in
colorectal cancer (CRC), with a particular focus on identifying
underlying biological pathways. However, these studies have
primarily focused on identifying prognostic biomarkers for
patients with CRC, which are less relevant for post-operative
treatment planning, especially for stage II CRC. Additionally,
the investigation of the underlying biological pathways
focused on radiogenomic analysis, with limited validation
conducted at the histopathological level. No studies have
reported preclinical experiments to validate the alterations in
predictive imaging features observed in CRC, leaving a critical
gap in the translation of imaging biomarkers into clinical
applications.

Added value of this study
The developed AI-powered tumour detection and risk
stratification model performed well in identifying patients
with stage II CRC with a favourable prognosis after receiving

adjuvant chemotherapy. Radiological stratification could
potentially reduce the morbidity and economic costs
associated with current stage II CRC management by avoiding
overtreatment and identifying missed cases that are suitable
for adjuvant treatment. Second, in response to concerns
regarding the black-box nature of AI, we integrated multi-
omics data from six CRC cohorts and preclinical animal
experiments to gain a comprehensive understanding of the
biological heterogeneity of imaging subtypes, proposing an
explainability approach to engender trust in AI decisions.

Implications of all the available evidence
This study takes a step toward closing the knowledge gap
between radiographic patterns and gene expression by
incorporating histopathological features to confirm the
consistency of radiogenomic findings at the cellular scale.
Distinct vessel stroma-related histopathological patterns and
transcriptomic profiles were observed among the radiological
clusters of CRC, which could potentially affect the
effectiveness of chemotherapy. Furthermore, this study
verified that interventions on vessel patterns in preclinical
settings can be reflected in textural heterogeneity. This
increases the transparency and acceptance of our AI-based
imaging model, which will affect clinical decisions in treating
patients with stage II CRC.
Introduction
Fluoropyrimidine or oxaliplatin doublet adjuvant
chemotherapy is considered an option for high-risk
stage II colorectal cancer (CRC), but the usefulness of
adjuvant chemotherapy remains controversial.1 Adju-
vant chemotherapy provides only a modest 5-year sur-
vival benefit (<5%)2 and should be administered with
caution.3,4 Considering the underlying complications of
intratumoural heterogeneity, risk determination is
crucial for guiding therapeutic decisions in these pa-
tients. The widespread utilisation of complex molecular
biomarkers is susceptible to limitations resulting from
the dynamic and heterogeneous nature of cancer cells
and invasiveness of the tissue sampling procedure.
Recently, the development of artificial intelligence (AI)
and radiomics applications in radiology has provided
technological feasibility for subtyping patients with
heterogeneous CRC.5,6 However, most studies have
focused on determining prognostic biomarkers, which
are less important for post-operative therapy planning.
Validated predictive biomarkers using noninvasive
imaging are needed to identify patients with stage II
CRC with a favourable prognosis after receiving adju-
vant chemotherapy.

The process of establishing AI models is often purely
data-driven, and there are risks of overfitting or over-
interpretation of the constructed models.7 Lack of expla-
nation from the biomedical aspect causes concern over
“black box” decisions. Efforts to reintroduce the biological
relevance of radiological features have gained momentum
in this field. These approaches include the integration of
genomic correlates and the evaluation of microscopic
histopathological marker expression. Radiogenomics has
been used to investigate the correlations between radio-
logical features and meaningful biological activities.8

Exploring the genetic and molecular characteristics of tu-
mours and microenvironments corresponding to
radiomics-based biomarkers can substantially change the
clinical management of CRC. Histopathological findings
can further verify the consistency of radiogenomic find-
ings on a cellular scale, bridging the gap between imaging
and genetic information.9–11 However, the acceptance of
www.thelancet.com Vol 117 July, 2025
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radiogenomics remains limited owing to the lack of cau-
sality. To address this concern, researchers have endeav-
oured to substantiate the biological significance of
imaging features in animal models. Panth et al.12 reported
that radiomics quantifies the early effects of radiation
treatment and genetic changes in cell line-derived xeno-
graft models. Zinn et al.13 reported that radiomic texture
features could predict the POSTN status in POSTN-
knockdown orthotopic xenograft mice. These results pro-
vided in-depth and robust insights into the biological
foundations underlying the observed findings.

Therefore, our multicentre study aimed to identify
AI-driven radiological phenotypes of stage II resected
CRCs with a favourable prognosis after receiving adju-
vant chemotherapy. We further analysed the genetic and
histopathological profiles of the radiological subtypes to
elucidate the biological basis of why and how radiolog-
ical subtypes correlate with the survival benefits of
adjuvant chemotherapy in CRC. Finally, the correlative
linkages between imaging and biological characteristics
were explored in preclinical settings with interventions
to validate the observed correlations.
Methods
Ethics
This study was approved by the institutional review
boards of the participating institutions (KY-N-2021-060-
01). The requirement for informed patient consent was
waived because of the retrospective nature of the study.
Animal experiments were performed in strict accor-
dance with the recommendations of the Guide for the
Care and Use of Laboratory Animals of the South China
University of Technology.

Study population, data collection and clinical
follow-up
Patients from Guangdong Provincial People’s Hospital
(GDPH) and Yunnan Provincial Cancer Centre (YNCC)
were retrospectively included in the development and
validation datasets of the AI-Power risk stratification
analyser for chemotherapeutic benefit prediction
(Fig. 1). For patients with no documented clinical end-
points, survival was censored on 28 February 2023 with
a minimum 5-year follow-up. Inclusion criteria were: (a)
patients had histopathologically confirmed stage II colon
or rectal adenocarcinoma (histopathologically staged as
T3 or T4, N0, M0, American Joint Committee on Cancer
8th edition) and had undergone surgical resection; (b)
patients had received standard adjuvant chemotherapy
or patients had not received any treatment after the
completion of radical surgery; (c) individuals had un-
dergone a diagnostic workup abdominal contrast-
enhanced computed tomography (CT) scan within two
weeks before surgery; and (d) the availability of
comprehensive histological and clinical follow-up data.
The exclusion criteria were as follows: (a) patients who
www.thelancet.com Vol 117 July, 2025
had received radiotherapy, chemotherapy, or surgery for
CRC before surgery; (b) individuals with a history of
cancer or concurrent malignancies; and (c) patients with
incomplete clinical, radiological, or pathological infor-
mation. Four cohorts obtained from publicly available
databases were included in this study. The Cancer Im-
aging Archive (COAD) cohort included diagnostic CT
scans, chemotherapy information, and genomic data.
Three additional public datasets accessed from the Gene
Expression Omnibus (GEO) were collected as drug-
associated datasets. Patients were treated with
fluorouracil-based chemotherapy as part of the thera-
peutic regimen, regardless of whether they were
receiving adjuvant or in progression, and their responses
to chemotherapy were recorded. Sex was included as a
biological variable due to its potential association with
CRC outcomes.

Image processing pipeline for the discovery of
treatment decision-related subtypes
All patients underwent enhanced abdominal CT. Pre-
treatment contrast-enhanced CT images with 1.25-mm
slices were retrieved from the Picture Archiving and
Communication System and served as the primary im-
aging input for radiomic analysis. All patient-identifiable
metadata were removed from DICOM files prior to
analysis. DeepCRC,14 a topology-aware deep-learning-
based approach for automated colorectal and CRC seg-
mentation, was used to delineate regions of interest
covering the entire tumour in all slices. The pipeline of
the DeepCRC segmentation method is provided in
Supplementary Fig. S1. Tumour delineation covered the
entire tumour in all slices in the presence of a primary
lesion. Two experienced radiologists manually checked
and validated the tumoural regions of interest (ROIs)
using ITK-SNAP software. Discrepancies were resolved
by consensus. The revised 3D ROI masks via DeepCRC
were used as input for imaging feature extraction.

Feature extraction, feature selection and model
construction
Radiomic features were extracted from the original and
wavelet-filtered images using PyRadiomics.15 The image
intensities were binned by 25 HU, and the voxel array
shift was set to 1000. The defined radiomic features
from the original and wavelet-filtered images were
extracted. The original images depict baseline structural
characteristics. Wavelet filtration (high-pass filter and
low-pass filter) filtered the original images directionally
in the x, y, and z directions, respectively, yielding eight
different combinations of decompositions. These filtra-
tions captured detailed disruptions in different orienta-
tions. The extracted radiomics features were divided
into three groups: (I) first-order statistics (II) shape
features, and (III) second-order features. Features
defined below were in accord with feature definitions as
described by the Imaging Biomarker Standardization
3
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Fig. 1: Patient recruitment. (a) Schematic illustration. (b) Development and validation cohorts. (c) TCIA cohort. (d) GEO cohorts. Abbreviations:
CRC, colorectal cancer; TCIA, The Cancer Imaging Archive; GEO, Gene Expression Omnibus.

Articles

4

Initiative (IBSI). Detailed calculations of radiomics fea-
tures are described and provided in online documenta-
tion of PyRadiomics (https://pyradiomics.readthedocs.
io/en/latest/features.html). We conducted a test-retest
study in a subset of 30 patients using original
radiologist-contoured segmentations and automated
radiologist-checked segmentations. Feature robustness
was evaluated by intraclass correlation coefficients (ICC)
of all radiomics features between different acquisition
parameters, accounting for resampled voxels and slice
spacing at a threshold value of 0.80.

Imaging features indicating treatment-specific sur-
vival benefits were selected using an interaction term
(interaction hazard ratio, iHR) between treatment and
survival status.16 First, an interaction test is performed
individually for each radiomic feature to assess the
relationship between treatment and radiomic charac-
teristics, and a subset of the most significant radiomic
features is chosen. In particular, for a given radiomic
feature, a standard multivariate Cox proportional haz-
ards model is typically applied:

hi(t) = h0(t)exp{ψ1ri +ψ2xi +ψ3rixi} (1)

where hi(t) represents the baseline hazard, ψ indicates
the regression parameters, and ri indicates the treat-
ment assignment for patient i, where ri corresponds the
application status of chemotherapy. The product rixi
www.thelancet.com Vol 117 July, 2025

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
http://www.thelancet.com


Articles
represents the interaction between treatment and the
radiomic feature value.

The selection of biomarkers was based on the Wald
test statistic, for testing a null interaction effect (ψ3 =
0). A standardized test statistic, z, which approximately
followed a standard normal distribution under the null
hypothesis of no interaction effects, was calculated as:

z = iHR

se(iHR) (2)

where iHR indicates for interaction-hazard ratio derived
from the interaction term of Eq. (1). Features with z-
statistics below 0.05 were selected for model
construction.

Hierarchical clustering, an unsupervised clustering
method, was employed to identify robust radiological
phenotypes, offering a more unbiased approach to subtype
discovery. The optimal number of clusters was determined
using dendrogram and silhouette methods. This stratifi-
cation provides a biomarker-driven framework to guide
chemotherapy: adjuvant chemotherapy (AC)-preferable
cluster and observation only (OO)- preferable cluster.

For the model evaluation, we conducted multiple
comparisons to mitigate the risk of Type I errors for
post-hoc analyses involving multiple markers across
different risk subgroups. Specifically, we applied the
Benjamini-Hochberg false discovery rate (FDR) method
(with α = 0.05) to adjust P values to assess the predictive
value of the proposed radiological analyser and routine
clinicopathological risk factors in a specific risk group.

Radiogenomic analysis for imaging-classified
subtypes
As shown in Fig. 2, after identifying radiological clusters
associated with varying survival benefits following adju-
vant chemotherapy, we further conducted an explainability
analysis. To explore the underlying biology of radiological
clusters, we used the RNA sequencing data from 60 pa-
tients in the training set to identify the enriched biological
pathways associated with the imaging clusters. Differen-
tially expressed genes in the two radiological subtypes were
identified and gene set variation analysis (GSVA) was
performed to compare the hallmark (v7.5.1) enrichment
from MSigDB and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathways in the radiological clusters.17 We
further assessed the tumour microenvironment (TME)
and related immune and stromal components using a
cellular deconvolution algorithm with the transcriptome.18

Furthermore, we evaluated the benefits of fluorouracil-
based chemotherapy and the underlying TME in patients
with CRC using the GEO dataset.

Pathologic correlations with imaging-classified
subtypes
We further comprised quantitative pathologic patterns
for imaging-classified phenotypes for biologically
www.thelancet.com Vol 117 July, 2025
distinct CRC microenvironments. Relevant prognostic
and predictive markers used routinely in the clinical
management of CRC were extracted from histopatho-
logical reports. Glass slides from whole-tumour sections
stained with haematoxylin-eosin (H&E) as part of
routine pathological practice were also collected, and the
patterns of haemorrhage, necrosis, tertiary lymphoid
structure (TLS), germinal centre +TLS (GC+TLS),
tumour budding, and desmoplastic reactions were
evaluated by two pathologists specialising in gastroin-
testinal cancers. Difficult cases were discussed to obtain
an expert consensus diagnosis.

Double immunohistochemistry (IHC) for CD31 and
PanCK was performed on tumour tissue sections.
Different blood vessel markers have been used to
differentiate histologically defined vessel subsets.19–21

CD31 was used as a pan-endothelial marker because
it stains all vessel endothelial cells at different time
points. CD34 is mainly found in vessel formation in
the early and intermediate stages, whereas von Wille-
brand factor (vWF) primarily stains later-stage vessels.
vWF immunoreactivity is predominantly detected in
morphologically recognisable thin-walled veins and
thick-walled arteries.22 The tumour-stroma ratio (TSR)
was automatically calculated using QuPath. The num-
ber of vessel junctions indicating the extent of
branching, mean mesh size representing the lumen
size, and the sum of the segment lengths were quan-
tified using ImageJ software using the “Color Decon-
volution” and “Angiogenesis Analyser” plugin tools
(details in Supplementary Methods). As shown in
Supplementary Figs. S2 and S3, the vessels were
delimited with an outline.

Multiplex IHC (mIHC) was performed on two
sequential CRC tissue sections to visualise vessel phe-
notypes and partial distribution of immune cells. Ten
formalin-fixed, paraffin-embedded specimens were
collected from patients with stage II CRC who under-
went surgery at GDPH. Based on the radiogenomic
analysis results and reviewed literature, a broad variety
of potential antigens with available antibodies were
screened for panel inclusion feasibility, and self-
designed multiplex immunofluorescence panels con-
cerning vasculature and immune cell infiltration were
used. HALO image analysis software (v. 3.2; Indica
Labs) was used to assess the infiltration of immune cells
and conduct spatial analysis. Different blood vessel
markers were used to differentiate the histologically
defined vessel subsets.19 The previously defined
1000 μm-wide tumoural interface areas23 were
segmented along the tumour margin into ten tiles, with
each tile having a 100 μm-wide zone. The cell numbers
in ten layers on both the stromal and tumoural sides of
the interface were quantified. The distances between the
immune cell components and the tumour margin in
two bilateral directions along the border were also
calculated.
5
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Fig. 2: The AI-driven risk stratification system of patients with stage II resected CRC. Abbreviations: CRC, colorectal cancer. Created with
BioRender.com.
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Intervention on the preclinical mouse model for
observation of imaging features
We conducted a preclinical imaging experiment using
mouse models to assess the correlation between the
identified radiomics features and vascular patterns. A
total of 12 female BALB/c mice (age: 4–6 weeks) were
used in this study. All mice were housed in the same
facility under controlled conditions (temperature: 22 ◦C,
12-h light/dark cycle). Cage locations were randomized
across racks to minimize microenvironmental effects.
CT26 cell-line derived xenograft (CDX) models were
established to compare the vascular patterns in tumours
using CT imaging features. Anlotinib, a multitarget
antiangiogenic tyrosine kinase inhibitor, reported to
significantly affect vascular patterns of sensitizing non-
angiogenic tumours to chemotherapy,24 was used for
the modification of vascular patterns in mouse models.
A single researcher (uninvolved in subsequent stages)
randomly allocated mice to the anlotinib intervention
group and saline control group using a block randomi-
zation protocol. Anlotinib was intragastrically adminis-
tered to the mice in the intervention group (n = 6), and
saline (n = 6) was spontaneously administered to the
mice in the control group. Contrast-enhanced CT images
were obtained from both groups using a micro-CT after a
complete course of anlotinib treatment. Tumours were
manually delineated, and radiomic features were
extracted from the CT images. All mice were euthanized
via cervical dislocation under anaesthesia (isoflurane 5%)
at the study endpoint. Tumours were excised, fixed in
4% paraformaldehyde, and subjected to H&E and CD31/
α-SMA-staining IHC for vascular pattern analysis.
Normality of the vessels was measured using the
microvessel pericyte coverage index (MPI). According to
the preliminary experimental results, the mean and
standard deviation of MPI in the experimental group and
control group were 1.2 + 0.92 and 3.9 + 1.2. The sample
size of this study was estimated using the PASS (Power
Analysis and Sample Size) software (v15.0.5, NCSS). The
sample size calculation formula of two-sample t-test was
adopted, with a type I error (α) set at 0.05 (two-sided test)
and a power of above 90% (corresponding to a type II
error (β) of 0.1). The sample size of each group collected
in this study met the minimum sample size requirement
(n ≥ 10). Pathologists analysing histology were blinded to
treatment groups and imaging results. Mann-Whitney U
tests were conducted on selected radiomics features in
radiological risk stratification model to assess the statis-
tical significance of variations in the values associated
with different vascular patterns. No animals were
excluded post-randomization. All mice completed the
study protocol. The detailed analysis methods are
described in the Supplementary Materials. The validated
correlation was evaluated to assess the relationship be-
tween radiomic features and vessel normality in CRC, to
support the clinical translation of radiomic features for
optimizing chemotherapy delivery.

Statistical analysis
Normality tests (Shapiro–Wilk test) were used to deter-
mine whether the distribution of the data. Fisher’s exact
test or the χ2 test were utilised for categorical
www.thelancet.com Vol 117 July, 2025
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measurements; the Kruskal–Wallis or Mann–Whitney
U tests were applied for continuous measurements.
Feature robustness was tested using ICCs. The inter-
action term iHR between treatment and survival status
was calculated using the Cox proportional hazards
regression method for treatment-specific survival
benefit.16 Radiological clusters were clustered using
unsupervised hierarchical clustering. Kaplan–Meier
survival curves were constructed to assess the survival
outcomes between the two radiological clusters, and the
log-rank test was used to compare survival differences.
Statistical significance was set at P value of less than
0.05. All statistical analyses and graphical representa-
tions were performed using Python version 3.7.11 and R
version 4.3.3.

Role of funders
The funding agencies played no role in the study design,
data collection, data analysis, data interpretation, or
manuscript writing.
Results
Clinicopathological features of the cohorts
As shown in Fig. 1, six cohorts of patients with CRC
were enrolled. The clinicopathological features of the
patients are shown in Supplementary Tables S1 and S2.
For model development and validation, 582 patients
were enrolled in this study, including 405 in the primary
training set from the GDPH, 153 from the YNCC, and
24 from the TCIA database for the two external test sets.
The percentage of patients who received chemotherapy
in the training and test sets was 52.6%, 38.6%, and
54.2%, respectively. The median follow-up times were
63.0 months (interquartile range, 55.0–72.0) in the pri-
mary cohort, 58.0 months (49.0–68.0) and 67.0 months
(60.0–76.5) in the external cohorts. Furthermore, three
more public datasets (GSE28702, GSE62080, and
GSE69657) were collected as chemotherapy-associated
datasets, including 70 non-responders and 64 re-
sponders to fluorouracil-based treatment.

Radiological subtypes associated with
chemotherapy survival benefits
The study design is illustrated in Fig. 2. A total of 851
radiomic features were extracted, and ten robust radio-
mic features (Supplementary Table S3, Supplementary
Figs. S4 and S5) with significant treatment interaction
effects were selected for consensus clustering to classify
patients into AC-preferable and OO-preferable clusters
(Fig. 3a). As shown in Supplementary Table S4, the
average tumour volume was higher in the OO-
preferable group, whereas tumour volume-related fea-
tures were not predictive of treatment choices. Typical
CRC images with different risk stratifications are shown
in Fig. 3b. For AC-preferable patients, adjuvant
chemotherapy significantly improved overall survival
www.thelancet.com Vol 117 July, 2025
(overall survival (OS) in both the primary (P = 0.005, log-
rank test) and validation cohorts (P = 0.010) (Fig. 3c).
Adjuvant chemotherapy showed a trend toward
improved disease-free survival (DFS) in both the pri-
mary cohort (P = 0.117, log-rank test) and the validation
cohort (P = 0.342), but these did not reach statistical
significance individually. When combining the cohorts,
the interaction effect between radiological clusters and
chemotherapy reached statistical significance [iHR 2.88
(1.01–8.25), Pinteraction = 0.048] (Supplementary Fig. S6).
The same trend was observed in the TCIA dataset
(Supplementary Fig. S7). As shown in Fig. 3d, based on
radiological clustering, 109 (25.9%) patients in the pri-
mary cohort and 59 (38.6%) patients in the validation
cohort were classified as AC-preferable, while 296 (73.1%)
patients in the primary cohort and 94 (61.4%) patients in
the validation cohort were classified as OO-preferable.
These findings suggest a potentially substantial number
of missed (25.5% in the primary cohort and 42.0% in the
external cohort) and overtreated cases (71.8% and 69.9%,
respectively) in current clinical practice.

We evaluated the efficacy of chemotherapy in rela-
tion to the proposed radiological risk stratification
model and each high-risk factor identified from clinical
and molecular records. As shown in Supplementary
Table S5, the predictive power of the proposed radio-
logical risk stratification model was statistically signifi-
cant [iHR 5.35, (95% CI: 1.98, 14.41), adjusted
Pinteraction = 0.001]. We further conducted for multiple
comparisons to mitigate the risk of Type I errors for
post-hoc analyses involving multiple markers across
different subgroups. Specifically, the Benjamini-
Hochberg FDR method (with α = 0.05) were applied
to assessing the predictive value of the proposed radio-
logical analyser and routine clinicopathological risk
factors in a specific risk group. The radiological risk
analyzer-defined cluster remained a significant predictor
(adjusted P = 0.012, Cox regression) for survival across
all patients. However, it was not significant in the ana-
lyses after multiple comparisons correction for indi-
vidual cohorts, with P values ranging from 0.023 to
0.296 for the GDPH cohort and from 0.020 to 0.259
for the YNCC cohort. No other clinicohistopatho-
logical factors (sex, age, pT staging, histological grade,
lymph node sampling, tumour location, differentia-
tion, MMR status, or vascular/perineural invasion)
demonstrated statistically significant prognostic value
across cohorts (adjusted P > 0.05, Cox regression). We
analysed the association between the radiological
clustering subtypes and available clinicopathological
risk factors at diagnosis in the primary cohort (Fig. 3e,
Supplementary Table S6). In the AC-preferable group,
there was a lower proportion of tumours in the rectum
(4.8% vs. 25.6%) than that in the OO-preferable group.
No other histopathological risk factors commonly used
in clinical reports were found to correlate with radio-
logical categorisation.
7
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Fig. 3: Risk stratification of patients with stage II colorectal cancer. (a) Heatmap plot of patients stratified by unsupervised clusters generated
from radiomic features by-treatment interaction effects in the primary training set and validation set. (b) Example images from patients with
CRC in different radiological clusters. (c) OS benefit stratification by radiological categorization. Kaplan–Meier estimates of OS for the pre-
categorized groups and each subgroup by treatments in the primary (n = 405) and validation cohorts (n = 153). P values were derived
from the log-rank test. (d) Diagram showing the proportion of patients who will receive different treatments according to the proposed
method or current clinical management. (e) Clinicohistopathological features by different radiological clusters (n = 109 and n = 296). Ab-
breviations: CRC, colorectal cancer; OS, overall survival; AC, adjuvant chemotherapy; OO, observation only.
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Radiogenomic analysis revealed a significant
difference in stromal abundance between AI-
powered radiological clusters
Next, we conducted radiogenomic analysis to identify
the biological rationales underlying the radiological
clusters (Fig. 4a). Different biological pathways were
identified between the radiological clusters. As shown in
Fig. 4b and Supplementary Fig. S8, 397 differentially
expressed genes were identified using the hallmark gene
sets in the two radiological subtypes. The apical junction,
Notch signalling, Hedgehog signalling, and myogenesis
a

c

b

Fig. 4: Radiogenomic analysis. (a) Bioinformatics analysis illustration. (b
regulated gene sets in the primary dataset (n = 60). (c) Boxplots of the frac
the primary cohort (n = 60). P values were derived from the Mann–Wh
variation analysis; AC, adjuvant chemotherapy; OO, observation only.

www.thelancet.com Vol 117 July, 2025
pathways were upregulated in the AC-preferable cluster.
OO-preferable CRC was enriched in the E2F target, MYC
target v1, MYC target v2, oxidative phosphorylation, and
peroxisomal signalling pathways. The two radiological
clusters demonstrated borderline significant differences
in stromal infiltration, with the AC-preferable cluster
having higher overall stromal infiltration than the OO-
preferable cluster (Supplementary Fig. S9). Higher
infiltration of immune and stromal cells in the AC-
preferable group was also observed. As shown in
Fig. 4c, the AC-preferable cluster had a higher immune
) GSVA enrichment scores obtained for the up-regulated and down-
tion of immune and stromal cell infiltration by radiological clusters in
itney U test. Abbreviations: CRC, colorectal cancer; GSVA, gene set
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cell distribution of CD4+-T cells (P = 0.020, Mann–
Whitney U test) and class-switched memory B-cells
(P = 0.035). Infiltration of endothelial cells (ECs,
P = 0.018) was significantly higher in the AC-preferable
cluster than in the OO-preferable cluster. We further
assessed the benefits of chemotherapy using three vali-
dation datasets. The same trend of higher abundance of
ECs in responders was observed for all three GSE data-
sets (GSE28702, GSE62080, and GSE69657). The infil-
tration of EC and microvascular EC was significantly
higher in the responder group than that in the non-
responder group in GSE28702, and the infiltration of
EC was significantly higher in the GSE62080 responder
group (Supplementary Fig. S10).

Vascular pathomorphological distinctions and
spatial-specific immune cell infiltration patterns in
two radiological clusters
Different vessel histopathological patterns were observed
between the radiological clusters. A total of 305 H&E-
stained slides, 40 double-stained IHC slides from the
primary cohort, and 111 H&E-stained slides from the
validation cohort were obtained. Expert pathologists eval-
uated the immune and stromal infiltration-related histo-
pathological patterns of CRC, including haemorrhage,
necrosis, TLS, GC+TLS, tumour budding, and desmo-
plastic reactions (Supplementary Fig. S11). As shown in
Fig. 5a and b, we found a higher percentage of necrosis
(P = 0.049, χ2 test) and haemorrhage (P = 0.044) in the
OO-preferable cluster (Supplementary Table S7), which
was validated in the external dataset (Supplementary
Table S8). Compared to the AC-preferable cluster, the
vessel structures in the tumoural area of the OO-
preferable cluster were more disorganised and morpho-
logically abnormal (Supplementary Table S9). As shown
in Fig. 5c, in the OO-preferable cluster, the presence of
bizarre vessels, exhibiting irregular branches in a chaotic
network of tangles that crisscross the stroma, was more
frequent (P = 0.045, Mann–Whitney U tests). Branching
vessels (P = 0.035) was also more frequent, the mean
mesh size representing the lumen size was greater and
the size range (mean ± standard deviation: 6276 ± 2875 vs.
4561 ± 1333 pixels, P = 0.016) was wider in the OO-
preferable cluster, indicating that vessel diameters were
uneven with some being oversized and some being
immature smaller vessels. As shown in Fig. 5d, a signif-
icantly higher TSR, indicating a higher proportion of
stroma in the tumour area, was found in the AC-
preferable cluster than that in the OO-preferable cluster
(mean: 0.484 vs. 0.389, P = 0.014).

Further experiments revealed the heterogeneous
morphology of the vasculature phenotypes and spatial
immune and stromal infiltration. We found a signifi-
cantly higher density of NG2+ vessels (P = 0.003, Mann–
Whitney U tests) in the AC-preferable subtype than in
the OO-preferable subtype, indicating a more structured
lumen with adequate pericyte coverage (Fig. 5e). We
found a higher density of vWF+ vessels that were mainly
expressed in the late stage (P = 0.028), and a lower
density of CD34+ vessels that were mainly expressed at
an early stage during vessel formation (P = 0.032) in the
AC-preferable subtype than in the OO-preferable sub-
type (Fig. 5f). The distribution of immune cells is shown
in Fig. 5g. We found that the average distance between
B cells and CD4+-T cells was predominantly positive in
the AC-preferable subtype, but negative in the OO-
preferable subtype, indicating a significantly higher
distribution of immune cells in the tumour area in the
AC-preferable subtype (P = 0.016) (Fig. 5h). As shown in
Fig. 5i, immune cell spatial analysis at the interface
showed more enriched infiltration of immune cells in
layers closer to the margin in the AC-preferable subtype,
indicating more abundant infiltration of B, CD4+-T, and
CD8+-T cells in the core tumoural area than in the
OO-preferable subtype (Supplementary Fig. S12).

Preclinical imaging: correlation between
radiological features and changes in vessel
morphology
To verify the hypothesis that interventions in vessel
morphology could influence image-derived radiomic fea-
tures, we conducted a preclinical experiment using mouse
models of CRC (Fig. 6a). Tumour growth was significantly
inhibited in the anlotinib-treated group compared to the
control group (Fig. 6b, Supplementary Fig. S13). We
evaluated the features from CT images of the mouse
model (Fig. 6c). The vascular morphology (visualised
proportion of pericyte-covered blood vessels by CD31 and
α-SMA immunostaining) increased after anlotinib treat-
ment, as compared with that of control group (Fig. 6d),
suggesting that anlotinib could promote mature tumour
vessels. Fig. 6e shows that eight of the ten selected pre-
dictors were significantly different between the control and
treatment groups, indicating that these radiomic features
were influenced by vessel morphology-related factors.

Our study explored multiscale tumoural heteroge-
neity at the radiological, pathological, and molecular
gene levels to estimate malignant progression and
treatment response, providing preclinical evidence for
the change in vascular morphology in tumour stroma in
the chemoresistance of CRC, which could be reflected
from imaging features (Fig. 6f).
Discussion
Accurate risk stratification is important for tailored se-
lection of adjuvant chemotherapy and follow-up strate-
gies in patients with heterogeneous stage II CRC.25 Our
proposed AI pipeline can be integrated into current
clinical workflows and has significant application po-
tential in hospitals for the promotion of precision
medicine. A prognostic biomarker reflecting the
intrinsic biology of a tumour could divide the population
of patients into good or poor survival regardless of
www.thelancet.com Vol 117 July, 2025
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Fig. 5: Histopathological analysis. (a) Representative images of haemorrhage and the boxplot for percentage of haemorrhage from different
radiological clusters (n = 305) in haematoxylin-eosin (H&E)-stained slides (40× and 100×, scale bar: 100 μm). P values were derived from the χ2

Articles

www.thelancet.com Vol 117 July, 2025 11

http://www.thelancet.com


Articles

12
therapeutic schemes, while a predictive biomarker dif-
ferentiates the relative efficacy of the two treatments in
biomarker-positive patients from that for biomarker-
negative patients.26 In this study, we developed an
automatic imaging-based tumour detection and risk
stratification model incorporating treatment-by-
biomarker interaction analysis for decision-making
guidance regarding adjuvant therapy to improve the
long-term survival of patients. Specifically, clinical
translation was investigated through radiological clus-
tering to stratify patients for chemotherapy regimens.
These classifications suggest that current clinical prac-
tices may result in substantial misclassification, with
20%–40% potentially undertreated, and round 70%
potentially overtreated. These findings highlight the
potential of radiomic-based stratification to enhance
precision in chemotherapy selection, reducing missed
treatment opportunities and overtreatment, thereby
improving therapeutic outcomes in colorectal cancer
management. The results demonstrated that the AI-
powered radiomic profiling analyser was predictive of
treatment choice, independent of the molecular and
clinicopathological features in the American National
Comprehensive Cancer Network guideline.3 The
GDPH and YNCC cohorts exhibited demographic and
clinicopathological differences; however, the AI-
powered radiological risk stratification model demon-
strated robust external validation across both cohorts.
This validation highlights the tool’s reliability in
bridging disparities inherent in real-world clinical data,
thereby strengthening its translational potential.
Radiological stratification could potentially reduce the
morbidity and economic costs associated with current
stage II CRC management by avoiding overtreatment
and identifying missed cases that are suitable for
adjuvant treatment.

Interpretability remains a significant challenge in
current AI research.27 Tomaszewski et al.28 have under-
scored the increasing momentum within the field to
reintegrate biological significance into radiomics. In this
study, we propose an approach for the integration of
test. (b) Representative images of necrosis and the boxplot for necrosis fro
and 100×, scale bar: 100 μm). P values were derived from the χ2 test. (c)
PanCK (brown) (40× and 100×, scale bar: 100 μm) and the boxplot for num
clusters (n = 40). P values were derived from the Mann–Whitney U tests
tumour epithelium (brown), stroma (green) and background (grey) usin
boxplot for tumour-stroma ratio (TSR) between different radiological clus
(e) Representative images of CD31 (purple) and NG2 (yellow) expression an
tumoral area of CRC samples between different radiological clusters (n
Representative images of CD34 (red) and vWF (blue) expression from diff
CD34+ and vWF+ area in the tumoral area of CRC samples between differen
Whitney U tests. (g) The construction of the tumour border in margin regi
groups. (i) Line graphs showing the average fraction of immune cells an
groups (n = 10) in different layers around the border of tumour. P value
adjuvant chemotherapy; CRC, colorectal cancer; IO, intensive observation
multimodal data to enhance the explainability of the AI
model, which includes genomic correlates,8,29,30 patho-
logic analyses9–11,31 and the demonstration of a causal
relationship.12,13 Efforts have focused on elucidating the
biological mechanisms and pathways that lead to the
morphological and corresponding radiological varia-
tions. First, radiogenomic analysis highlighted a link
between stromal EC infiltration and the survival benefit
of chemotherapy in our local cohort and in the GEO
databases. Furthermore, to close the knowledge gap
between radiographic patterns and gene expression, we
revisited stroma-related histopathological features on
routine H&E slides. Patients in the OO-preferable
cluster presented with a higher proportion of
abnormal vessels in the tumours than those in the AC-
preferable cluster. In contrast, the AC-preferable cluster
was characterised by more organised vasculature fea-
tures, indicating better vessel function and more sen-
sitive response to chemotherapy. Finally, we used
interventions in mouse models of vessel morphology to
correlate with histopathological features that could result
in the alteration of individual predictive imaging features
in the AI pipelines. Our study demonstrated that under-
lying tumour heterogeneity could be decoded by estab-
lishing correlations between imaging features and
underlying morphological and molecular attributes.
Vessel morphology, including vessel size, shape, branch-
ing, and wall composition, directly influences how tissues
appear on CT imaging. Recent studies have demonstrated
the potential of quantitative tumour-associated vasculature
radiomic biomarkers from contrast-enhanced CT/mag-
netic resonance images to characterise tumour treatment
responses.32,33 Chaotic tumour vasculature which can be
reflected in contrast-enhanced images, plays an estab-
lished role in fostering elevated textural heterogeneity.34

Conversely, the evidence linking immune cell infiltration
to imaging features remains indirect,34,35 warranting
further investigation. Vessel morphology and immune cell
infiltration interact dynamically.36,37 Further studies are
required to eliminate how immune-vascular crosstalk
shapes radiological phenotypes.
m different radiological clusters (n = 305) in H&E-stained slides (40×
Representative images of double immunostaining of CD31 (red) and
ber of branching points (counts/field) between different radiological
. (d) Representative matched IHC images and segmented images of
g the pixel classifier algorithm in QuPath (scale bar: 200 μm). The
ters (n = 40). P values were derived from the Mann–Whitney U tests.
d the boxplots for relative percentage of NG2+ and CD31+ area in the
= 10). P values were derived from the Mann–Whitney U tests. (f)
erent radiological clusters and the boxplots for relative percentage of
t radiological clusters (n = 10). P values were derived from the Mann–
ons. (h) The average distance to the interface among two radiological
d the different subsets (B cells and T cells) among two radiological
s were derived from the Mann–Whitney U tests. Abbreviations: AC,
. Created with BioRender.com.
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Fig. 6: Preclinical imaging analysis. (a) Flowchart of vessel maturity treatment and CT imaging. (b) The growth curves for mouse models
receiving no treatment (control) and anlotinib treatment. (c) Representative images of contrast-enhanced CT images for in control (left) and
anlotinib-treated groups (right). (d) Immunofluorescent double staining for CD31 (endothelial marker, green) and α-SMA (vascular smooth
muscle cell marker, red) of sections of tumour samples in control (left) and anlotinib-treated groups (right). (e) The eight selected radiomic
features with significant differences in control (left, n = 6) and anlotinib-treated groups (right, n = 6). P values were derived from the Mann–
Whitney U tests. (f) Schematic of the mechanisms by which heterogeneous morphology of tumour vessels in artificial intelligence-based
radiological subtypes leads to different survival benefit from adjuvant chemotherapy for patients with stage II colorectal cancer. Abbrevia-
tions: α-SMA, a-smooth muscle actin. Created with BioRender.com.

Articles

www.thelancet.com Vol 117 July, 2025 13

http://BioRender.com
http://www.thelancet.com


Articles

14
We identified different radiological subtypes of stage
II CRC and the proportion that could benefit from
chemotherapy, which is potentially mediated by vascular
morphology-related chemoresistance. Microvascular EC
abundance has been reported to correlate with the
number of mature blood vessels in the TME and is
predictive of chemotherapy response and patient sur-
vival in CRC.38 The OO-preferable cluster had a higher
percentage of abnormal vessels than the AC-preferable
cluster. Pathological blood vessels that are immature
and not wrapped with pericytes do not function as
normal blood vessels or efficiently deliver oxygen and
drugs.32 Improved vascular maturation and function
allow more chemotherapeutic drugs to be delivered to
the cancer.39,40 Accumulating evidence indicates that EC
heterogeneity can contribute to the TME and chemo-
therapy response.41,42 Li et al.39 reported CRC phenotypes
responding poorly to chemotherapy could be sensitised
to chemotherapeutic drugs by improving mature
vasculature. The above-mentioned hypothesis agrees
with the results of the present study, which indicates a
close link between chemotherapy response and vascu-
lature. Furthermore, the facilitation of mature vascula-
ture has been reported to improve T cell abundance and
boost the effectiveness of chemotherapy.43 In this study,
we also observed a significant enrichment of T and B
cells on the tumour side of the border compared to the
stromal side, which is in line with the known functions
of these immune cell types in CRC and other types of
cancer.44,45 Tian et al.46 reported CD4+-T cells mediated
vessel normalisation after immunotherapy and tumour
vascular normalisation could mutually improve immu-
nostimulation. Yan et al.47 have demonstrated that
tumour vascular structure is correlated with the regu-
lation of CD8+-T cells. Our results further suggest that
tumour vasculature interacts with the fraction and
function of immune cells in CRC.

There are some important limitations to the present
study. First and foremost, while the analysis incorpo-
rated six independent cohorts to assess generalizability,
key findings exhibited variability across cohorts after
rigorous statistical correction. This remains a proof-of-
concept study and should be interpreted with caution.
First, the results demonstrate a robust benefit of adju-
vant chemotherapy on OS in AC-preferable patients, but
adjuvant chemotherapy showed a non-significant asso-
ciation with improved DFS. The nonsignificant P values
may reflect limited power or a true absence of effect. An
alternative explanation is that the differential impact of
biomarkers on OS vs. DFS could possibly suggest that
the current risk stratification may reflect systemic pa-
tient vulnerability rather than intrinsic tumor aggres-
siveness of CRC. This pattern indicates the need for
replication in larger cohorts to explore potential effects.
Second, although the pooled cohort analysis retained
statistical significance, the lack of significance after
multiple comparison correction was noted. These
findings also underscore the need for prospective vali-
dation in larger, multicenter cohorts to confirm clinical
utility. Second, there were inadequate clinical and mo-
lecular profiles in the public image resources, and some
potential associations between imaging features and
certain risk factors may have been concealed. Vascular
endothelial growth factor-related signalling pathways
play an important role in blood vessel growth; however,
previous studies48,49 have also revealed additional sig-
nalling moieties capable of stimulating and modulating
angiogenesis. In this study, the inferred biological role
of the vessel phenotypes was putative, requiring sub-
stantial experiments in vivo and in vitro to elucidate the
causative and contributory factors related to the discov-
ered angiogenic vessel phenotypes in future studies.
Furthermore, there is an imaging difference between
humans and mice, although we determined the com-
parison using unsupervised clustering algorithms to
minimise the research gap, which is recommended
where the imaging properties are highly heterogeneous.
Finally, the sample size of the radiogenomic analysis
was suboptimal, as it was difficult to collect multimodal
data with a sufficient follow-up period. Although we
further evaluated the benefits of fluorouracil-based
chemotherapy and the underlying TME using the pub-
lic GEO dataset to validate the radiogenomic findings,
future large-scale, multimodal studies are anticipated to
validate and expand these findings.

In summary, the proposed explainable AI-based
imaging stratification model is a promising tool for
optimising personalised decision making for patients
with stage II CRC. These results can be further explored
in basic and translational studies to identify the regu-
lation and manipulation of cancer–microenvironment
interactions that alter the course of cancer develop-
ment, progression, and therapy.
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