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Abstract

Background: Short-read resequencing of genomes produces abundant information of the genetic variation of
individuals. Due to their numerous nature, these variants are rarely exhaustively validated. Furthermore, low levels of
undetected variant miscalling will have a systematic and disproportionate impact on the interpretation of individual
genome sequence information, especially should these also be carried through into in reference databases of
genomic variation.

Results: We find that sequence variation from short-read sequence data is subject to recurrent-yet-intermittent
miscalling that occurs in a sequence intrinsic manner and is very sensitive to sequence read length. The miscalls
arise from difficulties aligning short reads to redundant genomic regions, where the rate of sequencing error
approaches the sequence diversity between redundant regions. We find the resultant miscalled variants to be
sensitive to small sequence variations between genomes, and thereby are often intrinsic to an individual, pedigree,
strain or human ethnic group. In human exome sequences, we identify 2–300 recurrent false positive variants per
individual, almost all of which are present in public databases of human genomic variation. From the exomes of
non-reference strains of inbred mice, we identify 3–5000 recurrent false positive variants per mouse – the number
of which increasing with greater distance between an individual mouse strain and the reference C57BL6 mouse
genome. We show that recurrently miscalled variants may be reproduced for a given genome from repeated
simulation rounds of read resampling, realignment and recalling. As such, it is possible to identify more than two-
thirds of false positive variation from only ten rounds of simulation.

Conclusion: Identification and removal of recurrent false positive variants from specific individual variant sets will
improve overall data quality. Variant miscalls arising are highly sequence intrinsic and are often specific to an
individual, pedigree or ethnicity. Further, read length is a strong determinant of whether given false variants will be
called for any given genome – which has profound significance for cohort studies that pool datasets collected and
sequenced at different points in time.
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Background
Significant effort has been made to validate the abundant
genetic variation identified from personal genome
sequencing [1, 2], yet it remains impractical to exhaust-
ively validate rare or novel variants identified in most
individuals. Genomic sequence can be easily obtained in
clinical care, but subsequently encounters the difficulty
of pathogenic variant identification [3]. Generally, patho-
genic variants are not found at high population frequen-
cies and, subsequently, rare variants are prioritised in
searching for causal mutations [3–5]. In this context,
trace levels of spurious SNV miscalls from short-read
sequencing have a disproportionately large impact [6]
and may lead to an incorrect diagnosis of pathogenicity.
Until very recently, the history of mammalian genome

sequencing has been a progression towards shorter
sequencing reads and now relies heavily on aligning
these to a reference genome [7]. Highly similar genomic
regions are difficult to resolve with short-read informa-
tion and read misalignment is a prevailing source of
variant miscalls [8]. Algorithmically, for example, the
Burrows-Wheeler Transformation method implemented
by the BWA tool [9] must resort to random read assign-
ment between highly similar regions should their
mapping quality score fail to differentiate them.
When mapping short-read data to a reference genome,

read misalignment has been identified as the predomin-
ant source of incorrect variant calls [8]. Misalignment of
reads in redundant genomic regions is often highly spe-
cific to the given genome sequence from which it is de-
rived. It has remained difficult to appraise the quality of
single nucleotide variant sets identified for any given
individual genome sequence obtained from short-read
sequencing data. For any given location within the
genome it is possible to calculate how unique that
sequence may be – or how easy it is to uniquely align
(or map) a short sequence read to that region. Such
mappability scores may be calculated genome-wide for
any genome reference sequence [10]. For paralogous
coding regions resulting from recent gene duplication,
the mappability of any given base in these genes will be
low. As the mappability of a region decreases to the
point where sequence variation between regions
approaches the inherent rate of sequencing error, the
chances of read misalignment increase substantially. In
such cases, the true variation between paralogous regions
may become miscalled as variants in similar regions due
to the mis-assignment of reads between these regions. For
a given reference sequence, variants that may potentially
arise is this way may be catalogued to create a black-list
for subsequent filtering of miscalled variation [11].
We could replicate and catalogue these recurrent

miscalls for any given exome by only ten rounds of
read resampling, realignment and recalling. We

identify that recurrent false positives are almost
wholly present in databases of human sequence vari-
ation and demonstrate how each individual sample
generates a unique set of recurrent false positive vari-
ants. We show that these variants correlate with re-
dundant coding regions of the genome, including the
non-coding sequence surrounding these recently-
duplicated regions. Miscalled variants caused by this
mechanism are frequently found within genes that
might legitimately being clinically-actionable and thus
presents a risk to patients with disease phenotypes
that correlate with the miscalled gene variant. The
strong dependence of read length and miscalled vari-
ants also is a pitfall to comparison of cohorts se-
quenced at different times and with different
technologies. Identifying and removing recurrent false
positive variants, while computationally more expen-
sive, is simple to achieve and allows their removal
from the set of true variant calls for a given genome.

Results
Recurrent false positive variants identified from inbred
mice
We have previously generated a large dataset of
mouse exomes from inbred C57BL6 mice harbouring
random, N-ethyl-N-nitrosourea (ENU) induced muta-
tions [12]. In addition to the 30–60 induced muta-
tions present per pedigree, we observed a category of
variant calls that recurred at seemingly random sites
in an intermittent mode. These did not validate with
genotyping and were not heritable [12]. We refer to
these as Recurrent False Positive (RFP) variants. From
2114 sequenced mouse exomes, we identified at total
of 104,303 unique SNV sites, the bulk of which are
strain-specific variation, but also include ENU-
induced mutations (https://databases.apf.edu.au/muta-
tions/) and RFP variants. Figure 1a shows the fre-
quency distribution of all SNVs identified in this
population of exome sequences. Strain-specific vari-
ation occurs at a frequency approaching 100% and,
conversely, ENU induced mutations were pedigree-
specific at very low frequencies (< 1%). RFP variants
are comparatively fewer and occur at intermediate
frequencies between these extremes, conservatively
between 5 and 95% in our mouse exome population.
Using these population frequency thresholds, we

identified 649,984 variants at 708 unique sites at
which RFP variants occur in our data. A distinguishing
feature of these variants (compared to randomly chosen
single nucleotide positions) is they occur in genomic re-
gions with significantly lower alignability ([10], t-test p <
2.2e-16). Previous work has demonstrated that redundant
genomic sequences correlate with low alignability scores
and represent one cause of read misalignment [8].
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Another cause of low alignability is the quality of the ref-
erence genome. With variant calling from mouse exomes,
we routinely needed to filter 42.5% fewer RFP SNVs when
aligning to the improved mm10 reference genome com-
pared to the mm9 reference. Collectively, these factors
provide a cogent explanation for the miscalling of RFP
variants.

Recapitulation of mouse common variants through
simulation
We were able to reproduce RFP variant calls from any
given single mouse exome by simulation. Through mul-
tiple rounds of resampling of short reads, realigning
these with the mouse reference genome and recalling se-
quence variants we could reproduce more than half of
the RFP variants identified from our population of
C57BL6 mouse exomes. In this process, reads were re-
dundantly and randomly sampled from a full exome se-
quence to extract 80 million 120 bp reads. Each sampled
read included randomly introduced sequence errors at a
base frequency of 1% to mimic the observed error rate
encountered during resequencing with current short-
read sequencing technology. These simulated reads were
subsequently realigned to the reference genome and var-
iants recalled (called an additional time from the new se-
quence alignment). Each simulated round from the same
exome produced a number of intermittent variant calls
that were not reproduced in every round, similar to the
RFP variants. Variants called with > 95% frequency were
predominantly true strain variation and were discarded.
Further rounds of this procedure with the same exome
incrementally increased the unique RFP variants identi-
fied (Fig. 1b). The RFP variants obtained in this manner
incrementally replicates a subset of the false positive var-
iants observed from actual resequencing. 380 iterations
of this resampling, realignment and recalling of the col-
ony C57BL6 genome produced 656 RFP variants, match-
ing 367 (51.8%) of the set observed from actual exome
data. A greater number of RFP variants are called when
aligning a non-reference mouse strain with the refer-
ence. We repeated the resampling, realignment and
recalling procedure with three more distant strains FVB
[13], CBA and C3H ([14] (Fig. 1b). The incremental in-
crease of RFP variants with repeated iteration approxi-
mated a Poisson distribution with λ = ~ 1. Just 10
rounds of resampling, realignment and recalling pro-
duced 70% of the final total of intermittent variants ob-
served with 100 rounds.
The FVB, CBA and C3H genetic backgrounds pro-

duced thousands of RFP variants per genome and these
variants variably overlap by between one to two thirds in
each mouse strain (Fig. 1c). The greater overlap of RFP
variants between the more closely related C3H and CBA
strains demonstrates how sequence divergence of non-
reference strains gives rise to strain-specific variation.
The degree of this sequence difference between refer-
ence and individual genome substantially contributes to
the quantity and distribution of RFP variants in any indi-
vidual. This has large implications for detecting causal
variants in human disease, as the genetic background of
any individual will generate a sample-specific set of RFP
variants not relevant to their disease.

Fig. 1 Recurrent false positive variant calls result from difficulties
encountered with alignment of short reads to complex mammalian
genomes. a The frequencies of observed variant calls from 2314
exomes of inbred mice show an intermediate category of recurrent-
yet-intermittent SNVs, between the frequency extremes of fixed
strain-specific variation and the rare, pedigree-specific induced
mutation. b Recurrent false positive variants can be replicated for a
given individual sequence through randomly sampling short reads,
realigning these to a reference genome and recalling sequence
variants. Variants that are only intermittently called accumulate after
multiple cycles of this process and increase in number following an
approximately Poisson distribution. Blue dots show the smaller
number of recurrent false positive variants obtained from sampling a
C57BL6 mouse and realigning it to itself. Greater numbers are
obtained through simulation with three non-reference mouse strains
FVB (orange), CBA (red), and C3H (grey)
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Recurrent false positive variants from human sequence
data
RFP variants in human sequences could also be identi-
fied with the same sampling, realignment and calling
method applied to mouse sequences. We generated a cata-
logue of RFP variants for the HapMap individual NA12878
(Platinum Genome [15]; whole genome; Additional file 1:
Table S1) and compared these with the Genome Aggrega-
tion Database (GnomAD; gnomad.broadinstitute.org).
Almost, but not all, RFP variants for this individual (96.7%)
were present in this database, noting that the NA12878
individual is already present in GnomAD and that RFP
variants arise stochastically due to the random sampling of
short reads and sequencing error. As with the mouse, RFP
variants simulated from human short-read data were simi-
larly found more frequently in redundant genomic regions.
When all RFP variants from NA12878 were compared with
the same number of randomly chosen coding nucleotide
sites they showed lower alignability ([10]; t-test p < 3.4e-12).
In this study RFP variants were simulated within

exonic regions, and visually, the false variants are
evenly distributed. We annotated the RFP variants
with Variant Effect Predictor [16]. In this individual
and from this sequence, RFP variants were identified
in coding exons (missense 59.0%; synonymous 22.2%),
untranslated exon regions (3′ UTR 4.2%; 5′ UTR
7.7%), critical splice-donor sites (2.1%) and caused
gain (3.4%) and loss (1.2%) of Stop codons. Further to
this, we appraised whether the RFP variants were
subject to being flagged when filtered due to low map
quality or other variant quality filters (such as those
applied the the GnomAD variant set). Interestingly,
80.2% of the RFP variants that matched a GnomAD
variant for this NA12878 individual were flagged as
PASS and only 19.8% non-PASS (combined
VQSRTranches filters 12.4%; InbreedingCoeff filter
4.4%; AC_Adj0 filter 3.1%).
Further RFP variant cataloguing analysis was also

performed with genomes of two further individuals of
ethnicities not dominant in the GnomAD set (an
Omani and an Indigenous Australian from the Tiwi
community; Fig. 1d). The number of RFP variants in
each of these individuals was broadly similar, with an
average of 334.5 per individual. The majority are
unique to each individual and the proportion of RFP
variants that are unique to a given individual varies
substantially, though not predictably with, say, se-
quence divergence from the human reference se-
quence. The RFP variants per individual were also
almost entirely present in the GnomAD database,
with population frequencies ranging from common to
rare – and importantly, each individual possessed a
small number that were unique (Omani, 1.8%; Indi-
genous Australian, 3.1%; NA12878, 3.3%).

Sources of recurrent false positive variants
We investigated, by hand, a randomly-selected subset of
the RFP variants recapitulated in the above human se-
quences. Twelve examples of these are shown in Additional
file 2: Table S2. For each RFP variant, the surrounding exon
coding sequence was used as a query sequence for
homology search against the human genome reference
sequence (hg37d5 assembly) with BLASTN [17]. Each exon
containing an RFP variant had matches to paralogous
sequences that included one or several with sequence iden-
tity generally greater than 98%. The paralogous regions are
mostly between coding regions and their associated
untranslated regions, yet frequently include non-coding
paralogous regions present as psuedogenes.
While read mismapping is related to the difficulty an

aligner encounters with short-read data, variant callers
may differ in their propensity to make RFP variant calls
from the same alignment. Our mouse variant calls made
with real exomes derived from a mutagenised population
of thousands of laboratory mice were performed over
time using SAMtools, and we have not replicated these.
However, the variant calls for the resampled human data
here were made with both SAMtools and GATK (see
Methods). Direct comparison was made by making vari-
ant calls on the NA12878 individual using the same
alignments generated by 30 rounds of read resampling
and realignment. Hence, variant callers were working
from the same set of read misalignments in each repli-
cate. Interestingly, both variant callers produce RFP vari-
ant calls of similar propensity (SAMtools: 334; GATK:
398) but these only overlap by 64 variants, less than a
fifth in both cases. Clearly, more four-fifths of RFP vari-
ants could be identified and removed by excluding vari-
ants not identified by both callers.

Gene distribution of recurrent false positive variants
RFP variants are skewed towards redundant regions of
the genome and the genes in which these occur reflects
this. In total, 1458 human genes were identified contain-
ing one or more RFP variants. Six of the top ten RFP
variant-containing genes are HLA genes (HLA-DRB1,
59; HLA-B, 56; HLA-DRB5, 39; HLA-DQB1, 36; HLA-
A, 24; HLA-DQA1, 19). The other members of the top
ten include a mucin gene (MUC4, 32 RFP variants), the
autoimmunity-associated LILRB3 [18] RFP variants) and
two others (MAGEC1, 24 and DSPP, 33). The full list of
genes that contain more than one RFP variant is
included in Additional file 3: Table S3. Of these top ten
RFP variant-containing genes, five of the six HLA genes
contain pathogenic variants in the ClinVar database [19].
Of the hundred-most RFP variant-containing genes, an-
other five genes are similarly clinically relevant. A total
of 138 (138/1458 = 9.5%) clinically-relevant genes associ-
ated with disease phenotypes in the ClinVar database
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were identified to contain RFP variants in the cohorts
we analysed. Conversely, redundant gene families were
well represented among the RFP variant-containing
genes, and include the mucins (8 genes), zinc-finger (38
genes), collagen (17 genes) and solute carrier protein
genes (27 genes).

Sequence-specificity of recurrent false positive variants
The sequence-specificity and covariation with ethnicity
of RFP variants was further investigated within single
ethnic groups. We repeated the analysis with exomes
from ten Omani individuals from pedigrees with an
inherited predisposition to autoimmune disease and ten
Indigenous Australian individuals with a predisposition
to kidney disease. The RFP variants from these individ-
uals of the same ethnicity show more similarity than
with other groups (Fig. 2c). This is especially apparent
for the Indigenous Australian individuals, for whom the
RFP variants they hold do not intersect overly with, say,
the Omani or NA12878 individuals. The Omani individ-
uals show a strong tendency towards unique RFPs in
every individual and less overlap between individuals.
Hence there are clear differences between the represen-
tative ethnic groups shown here - and this reflects the
sequence similarity between the individuals included in

each group. In this instance, the catalogue of RFP vari-
ants for the Omani individuals is of substantial practical
clinical value. Autoimmunity in these individuals could
plausibly have been ascribed to predicted-damaging RFP
variants in genes with strong associations to lupus (IRF5,
LILRB3) or autoimmune hepatitis (C4A). The IRF5 vari-
ant in particular was a strong candidate, yet was proven
to be miscalled on subsequent genotyping.

Effect of read length versus ethnicity
The effect of read length on the propensity to cause RFP
variants from the same genome was investigated with
the NA12878 genome (Fig. 2d). At four incremental read
lengths (80, 100, 120 and 140 base pairs) RFP variants
were simulated through with 30 rounds of resampling,
realignment and recalling from the genome of this indi-
vidual. As shown in Fig. 2d, the RFP variants simulated
in this manner are predominantly unique (0.29–0.48),
or overlap modestly with read sets of similar length.
The overall number of RFP variants decreases by
about a third (32.5%) as read lengths increase from
80 bp to 140 bp.
As the read lengths obtained by sequencing technology

has increased, it has become commonplace to pool indi-
viduals to produce population cohorts with produced

Fig. 2 a Recurrent false positive variants arise in a sequence-specific manner in three mouse strains. Similarities between these variant sets closely
mirror the sequence similarity and relatedness between individual genomes. b Likewise, with human sequences, while a small set of recurrent
false positive variants are common between all four individuals, the majority are highly ethnically-dependent to individual-specific. c Further to
this, simulation of recurrent false positive variants from a closely related group of Omani individuals indicates that most are individual-specific,
with a smaller number being population-specific. d Effect of read length on identification of Recurrent False Positives. Simulation of recurrent
false positive variants with different length short-reads from the same genome (NA12878) demonstrates that most of these false positives are
specific to read length
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with heterogenous read lengths between samples. We
investigated this effect on RFP variant calls on the
combined data used in this work, plus that available
from the 1000 Genomes Project [18]. From 1000
Genomes data we selected a single genome representative
for each broad ethnic group (Additional file 4: Table S4).
These data represented 15 different ethnic designations,
obtained using a 75 bp read length, but including two
samples with 90 bp and 100 bp read lengths, and were
combined with the Omani and Indigenous Australian
cohorts that were whole genomes sequenced with 150 bp
reads (Additional file 4: Table S4). For each genome, RFPs
were simulated from 30 rounds of resampling, realign-
ment and recalling of single nucleotide variants. Across
the three cohorts that include all individual sequences,
plus the platinum genome NA12878 sequence, we created
a catalogue of the RFP variants called (Additional file 5:
Table S5).
Similarities between these RFP variant sets are sum-

marised in Fig. 3 and shows that the Indigenous Austra-
lian cohort, the Omani cohort and the 1000 Genomes
cohort present distinct subsets of the total RFP variant
set identified (Additional file 6: Table S6). One key
feature to note in this comparison is that the NA12878
genome occurs twice in this figure – once as en exome of
75 bp reads from the 1000 Genomes Project and again as
an platinum genome [15] obtained as 150 bp reads. Given
that this genome was obtained twice, it is significant that

the RFP variants identified each time do not group
together, but instead group with the 1000 Genomes cohort
and the Omani cohort. Even stronger than sequence
specificity, the RFP variants correlate with another factor
that causes genomes sequenced with similar methodolo-
gies to be similar.

Discussion
Our results identify a class of false variant calls that are
an inherent factor in reliably realigning short read
sequence information to a complex mammalian genome.
This class of variants was shown to arise from analysis
of both mouse and human sequences. Significantly, we
find that human recurrent false positive SNVs are almost
completely represented in human population sequence
databases, such as GnomAD. Further, these recurrent
false positive SNVs may be identified for any given genome
sequence through repeated sampling and realignment
against a reference sequence. Hence, from this work we
show that it is possible to computationally remove the bulk
of these spurious SNV calls. Also, we show that sequence
read length has a strong influence on the RFP variants
called for a given genome – and these read length similar-
ities are stronger than those caused by sequence similarity.
This effect of read length and false positive variants calls is
highly relevant to cohort studies where genome sequences
of affected and unaffected groups were obtained at different
times and with different read lengths.

Fig. 3 A heatmap of similarity between pairs of RFP variant sets between individuals. Labels show population cohorts and sequence metadata,
including replicates of the NA12878 genome obtained with slight methodological differences (labelled CEU_NA12878 (from 1000 Genomes) and
NA12878). Points in grey are comparisons of the same individual with themselves – and have a similarity score of 1.0, coloured in grey.
Increasingly dark shades of orange indicate, as per the legend, increasing pairwise similarities between RFP variant sets obtained for each
individual. No individuals had similarity with another individual in this set that had better than 0.5 similarity
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At the heart of these variant miscalls is misalignment
of reads between redundant regions of the genome.
These redundant regions differ very slightly, so as that
the low level of sequencing error inherent in short read
data will similar to the true variation that exists between
near duplicate sequences in the genome reference.
Hence, reads may be stochastically misassigned between
these redundant regions and when calling sequence
variation, the true differences present in the misaligned
reads become called as sequence variation between the
re-sequenced and reference genomes. Hence, these
miscalls will be recurrent to specific nucleotide sites in
any given re-sequenced genome, yet will recur in an
intermittent manner due to the stochastic way in which
sequencing error and misalignment occurs. Importantly,
this will produce some miscalled variants with what will
appear as rare sequence variation when these variants
are aggregated in human population variation databases.
This mechanism of RFP genesis suggests that their re-
moval can be achieved by both exhaustive cataloguing of
RFP variants and/or identifying for a given genome the
near-identical regions and the minor sequence differ-
ences that exist between them. In practice, the exhaust-
ive cataloguing through simulation is simple to achieve.
Even more simply, a quick work-around that will
remove more than 80% of RFP variants is to remove
variant calls that are not replicated by both of SAM-
tools and GATK. This work-around is a methodology
that has increasingly been gaining acceptance for
many other purposes also [20] and is further reason
for clinical variants to be made from the union of
calls made with multiple callers [21, 22].
Simulation and cataloguing of RFP variants is technic-

ally simple, but does substantially increase the computa-
tion required to perform this analysis for any given
genome. Each simulation round requires computation to
simulate a population of reads from a given genome,
subsequent realignment of these reads and the calling of
sequence variation between this alignment and the refer-
ence genome. This is effectively (at least) a ten-times
increase in computation for a single genome. However,
the cost of computing a single exome or genome (in the
order of tens of dollars) is relatively small compared to
the cost of generating this sequence data (two orders of
magnitude more, at current costs). Hence, increasing
this compute cost by a factor of ten is inconsequential
should this improve the quality of the derived informa-
tion substantially. Furthermore, the costs of a misidenti-
fied variant that leads to misdiagnosis in a clinical
context is difficult to quantify. Yet practically this will
easily dwarf both the cost of computation and sequence
data generation.
Given that the genesis of the false positive variant calls

lies with the misplacement of difficult-to-map reads

from near identical regions of the genome, these reads
are difficult to map purely because the sequence diver-
sity between regions is similar or less than the inherent
rate of sequencing error from short-read sequencing.
However, should an aligner have a catalogue of these
regions and be aware of the sequence diversity that
differentiates these, the real sequence variation might be
the anchor that decides to which paralogous region the
read should be mapped. The map of near-identical par-
alogous sequences would need to be more detailed that
just expressing sequence map quality, and when a read
is being mapped between very similar regions, the map
could be used to differentiate inter-paralog variation
from read-specific sequence variation and/or sequencing
error. Using this map to best solve this problem, the
aligner needs to have information of local sequence diver-
sity between near-identical paralogous regions and make
read assignment choices based on this information, differ-
entiated from noise due to sequencing error.
Having identified this source of error in variant identi-

fication, there may be better ways found to produce
reference datasets of RFP variation that can routinely be
filtered from variant call sets. As we have shown, these
will be specific to the ethnic background of any given
genome and argues for the ascertainment of reference
population datasets of genomes from diverse ethnic
groups. While any reference dataset of RFP variants for
a given ethnic group, unless exhaustively ascertained,
will almost certainly be incomplete. A further complexity
will be the sensitivity of the RFP variant set to the
sequence read length for which the genome was
obtained. However, it is evident from our analysis that
the sequences of other members of a population, even if
only a handful, will likely catalogue the majority of the
most prevalent RFP variants specific to a given popula-
tion. This by itself, without multiple rounds of resam-
pling, realignment and recalling on a given genome, may
be sufficient to ameliorate the risk of RFP variant-related
misdiagnosis to acceptable levels. Generation of such
RFP variant reference sets might be most efficiently per-
formed by databases of genomic variation on a routine
basis, and comparison of a given personal genome to
this data corpus will annotate variation likely to be due
to read misalignment.

Conclusions
Resequencing of individual genomes with short-reads –
given the redundancy of complex mammalian genomes
– leads to a category of single nucleotide variant miscalls
termed Recurrent False Positive variants. Miscalls can be
simulated by a resampling, realignment and recalling
methodology to facilitate their computational identifica-
tion for removal. A practical application of this method-
ology may be the undertaking to curate a community
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(and potentially clinical) resource of RFP variants, simu-
lated from a broad, ethnically-diverse set of input
genomes, sequenced with diverse read lengths. Such a
resource may then act as a filter set to remove the
majority of RFP variants from an individual variant set
with very little additional computational effort.

Methods
Mouse recurrent false positive variants
The exomes from 2114 distinct C57BL6 mice were
obtained and single nucleotide variation identified as
previously described [12]. The frequency of each variant
identified from this genome set was counted by deter-
mining variant occurrence in the full population of 2114
mice. Recurrent false positive variants were defined as
those that were present at frequencies greater than 5%
but less that 95%.

Mouse variation and exome database
Mouse exome data was obtained under ethics approval
2014/61 (Production and phenotyping of exome sequences
ENU gene variant mouse pedigrees) to Dr. E Bertram of
the Australian National University. The mouse variation
data is available from the Missense Mutation Library of the
Australian Phenomics Facility (https://databases.apf.edu.au/
mutations/).
Exome sequences of the FVB, C3H and CBA mouse

strains were derived from the whole genome sequences
available for these strains [13, 14].

Human whole genome data
The genome data analysed in the work comprised both
whole genome and exome sequences, obtained with
predominantly 150 bp and 75 bp reads, respectively (see
Additional file 4: Table S4).
Genome data from Omani individuals were obtained

with hospital-based consent to J Al Shekaili (Royal Hos-
pital, Muscat) for the genetic analysis of these individuals.
Indigenous Australian genome data from the Tiwi com-
munity was obtained with appropriate consent granted to
SJ Foote (The Australian National University 2014/663).
Data from public genome sequences was obtained from
the 1000 Genomes Project (http://1000genomes.org).
The genome sequence of the human NA12878 individ-

ual was obtained from the Illumina Platinum Genomes
resource [15].

Simulation of recurrently miscalled variants
To resample, realign and recall variants for any given
genome, random reads were sampled from an input gen-
ome sequence in Fasta format with the tool WGSim
(version 0.3.1; WGSim GitHub repository: http://github.
com/lh3/wgsim). The parameters passed to the WGSim
tool used were –e 0.01, −r 0, −R 0, −X 0 and –A 1.

Synthetic exome sequences for both the mouse genome
(mm10) and the human genome (hg37d5) were derived
from EnsEMBL BioMart (www.ensembl.org) and con-
sisted of the sequences of all exons, including non-
coding exons, and 325 bp of padding upstream and
downstream of each exon. From these derived sequences
and the WGSim parameters used, mock exome sequence
datasets contained 80 million, 120 bp paired-end reads
with random sequencing errors at a frequency of 1%. Se-
quence datasets were then aligned to the chosen reference
genome with BWA mem (v0.7.12; [9]) using default pa-
rameters. From these alignments, single nucleotide vari-
ants were called with SAMtools (v1.3.1; http://www.htslib.
org; [23]), using a workflow consisting of rmdup, sort,
mpileup and bcftools call. Also, to test tool-independence
of human calls, GATK (v3.6.0; https://software.broadinsti-
tute.org/gatk/; [24]) was used with best-practice method-
ology and parameter sets. Individual exome and whole
genome sequences were derived as alternative reference
sequences using the FastaAlternateReferenceMaker tool
from the GATK suite. A more detailed description of the
workflow employed, including example commands, along
with scripted execution is available at https://sourceforge.
net/projects/recurrentmiscalls/.

Additional files

Additional file 1: Table S1. Recurrent false positive variants for
NA12878 individual. (DOCX 31 kb)

Additional file 2: Table S2. Near-paralogs of example human recurrent
false positive variants. (DOCX 23 kb)

Additional file 3: Table S3. Genes that contain one or more RFP
variant. (DOCX 23 kb)

Additional file 4: Table S4. Genome sequence metadata. (DOCX 22 kb)

Additional file 5: Table S5. A catalogue of all recurrent false positive
variants identified among 1000 Genome, Omani and Indigenous
Australian cohorts. (DOCX 263 kb)

Additional file 6: Table S6. Recurrent false positive variants by
population cohort. (DOCX 304 kb)
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ENU: N-ethyl-N-nitrosourea; RFP: Recurrent false positive; SNV: Single
nucleotide variant
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