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Abstract

Ovarian cancer is one of the most lethal gynecologic malignancies reported throughout the world. The initial,
standard-of-care, adjuvant chemotherapy in epithelial ovarian cancer is usually a platinum drug, such as cisplatin or
carboplatin, combined with a taxane. However, despite surgical removal of the tumor and initial high response
rates to first-line chemotherapy, around 80% of women will develop cancer recurrence. Effective strategies,
including chemotherapy and new research models, are necessary to improve the prognosis. The replication stress
response (RSR) is characteristic of the development of tumors, including ovarian cancer. Hence, RSR pathway and
DNA repair proteins have emerged as a new area for anticancer drug development. Although clinical trials have
shown poly (ADP-ribose) polymerase inhibitors (PARPi) response rates of around 40% in women who carry a
mutation in the BRCA1/2 genes, PARPi is responsible for tumor suppression, but not for complete tumor regression.
Recent reports suggest that cells with impaired homologous recombination (HR) activities due to mutations in TP53
gene or specific DNA repair proteins are specifically sensitive to ataxia telangiectasia and Rad3-related protein (ATR)
inhibitors. Replication stress activates DNA repair checkpoint proteins (ATR, CHK1), which prevent further DNA
damage. This review describes the use of DNA repair checkpoint inhibitors as single agents and strategies
combining these inhibitors with DNA-damaging compounds for ovarian cancer therapy, as well as the new
platforms used for optimizing ovarian cancer therapy.
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Introduction
Ovarian cancer is considered to be one of the most le-
thal gynaecologic malignancies worldwide. It is the sev-
enth most common cancer and the fifth leading cause of
cancer-related deaths [1]. As a result of the absence of
formal screening and the continued lack of early detec-
tion methods, the majority (around 80%) of patients are
diagnosed at an advanced stage (III/IV) [2]. The 5-year
survival rate of patients with high-grade serous ovarian
carcinomas (HGSOCs) still ranges between 35 and 40%

[3]. In 2019 in the USA, an estimated 22,530 women
were diagnosed with ovarian cancer and 13,980 died
from the disease [4].
Ovarian tumors can be divided into two types: type I

ovarian cancers are composed of mucinous, endome-
trioid and low-grade serous carcinomas, while type II
tend to grow more aggressively and include carcinosar-
comas, undifferentiated carcinomas and high-grade ser-
ous carcinomas [5]. Moreover, almost all of the type II
carcinomas, i.e. 96%, have TP53 mutation [6] and
around half of HGSOCs carry an alteration in homolo-
gous recombination (HR) pathway genes, most com-
monly in breast cancer gene (BRCA) 1/2 [7]. Women
carrying mutations in these genes have a lifetime risk of
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developing ovarian cancer of 36 to 60% for BRCA1 and
16 to 27% for BRCA2 [8].
The initial, standard-of-care, adjuvant chemotherapy

in epithelial ovarian cancer (EOC) is usually a platinum
drug, such as cisplatin or carboplatin, combined with a
taxane, usually paclitaxel [9]. Cisplatin interferes with
the DNA repair mechanism by crosslinking the purine
bases of the DNA, and thus inducing apoptosis of cancer
cells [10]. The standard regimen for advanced ovarian
cancer has been expanded with bevacizumab, a recom-
binant humanized monoclonal antibody directed against
vascular endothelial growth factor (VEGF) [11]. Other
promising angiogenesis inhibitors are sorafenib and su-
nitinib [12, 13]. Since the addition of bevacizumab to the
combination of standard chemotherapeutics, many other
targeted anticancer agents have been studied in the hope
of increasing the effectiveness of ovarian cancer treat-
ment. Ovarian cancer cells often acquire resistance to
common chemotherapy drugs such as cisplatin. If a
tumor recurs within 6 months of cisplatin treatment, it
is considered to be platinum-resistant [14, 15].
The aim of this article is to review the current know-

ledge of the targeting of DNA repair pathways in ovarian
cancer. This review describes the use of DNA repair
checkpoint inhibitors, especially poly (ADP-ribose) poly-
merase inhibitors (PARPi), ataxia telangiectasia and
Rad3-related protein inhibitors (ATRi) and checkpoint
kinase 1 inhibitors (CHK1i), as monotherapy/single
agents, and their role in the treatment of patients with
BRCAmut ovarian cancer. It also briefly characterizes the
rationale of therapies combining these inhibitors, as well
as recent updates/advances in those therapies in vitro
and in clinical trials.

Replication stress and cell cycle disturbances in
ovarian cancer
Increased understanding of the tumor repair pathways has
revealed their significance in the sensitivity of cells to che-
motherapeutic agents. DNA damage signalling pathways
have a central role in detecting DNA damage and regulat-
ing its repair. Regulation of cellular responses to interfer-
ence in these pathways by numerous extrinsic and
intrinsic genotoxic agents leads to genomic instability and
thus to cell death [16]. Replication stress is defined as per-
turbations in cell replication. In defence against disorders
in the course of DNA biosynthesis, cells have developed a
network of biochemical reactions that can be described as
a response to replicative stress. Under conditions of repli-
cative stress, the rate of DNA biosynthesis is decreased
and the possibility of entering into mitosis is blocked until
the expression of specific genes and activation of repair
factors occurs. Ataxia telangiectasia mutated (ATM) and
ataxia telangiectasia and RAD3-related (ATR) proteins
share some phosphorylation targets, but their precise role

in the intra-S phase checkpoint pathway may differ de-
pending on the nature of stress involved [17]. The action
of ATR/ATM kinases induces cascade signal transmission
to effector proteins (e.g. checkpoint kinase 1/2 (CHK1/
CHK2)). Both biochemical pathways function according
to the following event patterns: DNA breaks–ATM–
CHK2 and DNA breaks–ATR–replication block–CHK1.
In each of these pathways, the target substrate is

CDC25 phosphatase. ATR also activates Dbf4-dependent
kinases (DDK). The other checkpoint protein, WEE1
kinase, also keeps cyclin-dependent kinases (CDK)
muted. Inactivation of CDK/DDK is pivotal for the in-
hibition of origin firings under replication stress [18].
WEE1, which belongs to the large Ser/Thr family of pro-
tein kinases, is known as one of the most essential mole-
cules in executing cell cycle arrest at the G2/M
checkpoint, which is pivotal for premitotic DNA repair
[19]. WEE1 kinase coordinates the initiation of mitosis
by antagonistic regulation of Cdk1/Cdk2. In a compar-
able manner to ATR and CHK1, it operates during regu-
lar undisturbed cell division and is involved in the
preservation of genome integrity [20].
Cyclin A-Cdk1 and cyclin B-Cdk1 complexes play a

major role in the regulation of mitosis. They are inactive
until the late G2 phase, due to two separate processes:
inactivation of Cdk1 kinase and inhibition of its activa-
tors—Cdc25A, Cdc25B and Cdc25C phosphatases. The
WEE1 kinase family—nuclear (WEE1) and membrane
(Myt1)—are responsible for inhibiting Cdk1 activity.
WEE1 and Myt1 start to work when the cell goes from
mitosis to the G1 phase of the new cycle. At this time,
reduction of the new cyclin B-Cdk1 complex is required
for cyclin B degradation [21]. In addition, their activity
may be increased in the case of DNA damage and ex-
pression of CHK1 and CHK2 kinases, which phosphoryl-
ate a specific WEE1 serine (Ser642) and induce
attachment of 14-3-3 protein [22]. Autophosphorylation
of WEE1 proteins is also possible, which contributes to
their positive regulation (Fig. 1). To allow mitosis to
occur, WEE1 is phosphorylated by Polo-like Kinase 1
(PLK1), which triggers WEE1 degradation [23].
Cancer cells, due to mutations in the p53/pRb path-

way, frequently exhibit a deficient G1-arrest and mostly
depend on G2-arrest [24]. WEE1 inhibitors appear to
have potential high efficiency in p53-deficient ovarian
cancers, generating a condition of synthetic lethality
among p53 mutant tumors. Inhibition of WEE1 has
demonstrated its effectiveness in DNA damage as a con-
sequence of unregulated replication and strengthened
the effectiveness of DNA-damaging agents [25]. Until
now, only one (the most potent and selective) WEE1 in-
hibitor (Adavosertib, also under the names AZD1775
and MK1775) was found to be useful in clinical trials (in
both phases I and II). WEE1i is able to stimulate origin
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firing, with dynamics of action comparable to ATR and
CHK1 inhibitors. However, the mechanism of its action
is not fully understood and requires a more detailed in-
vestigation [26]. MK1775 increased the cytotoxicity of
numerous DNA-damaging drugs (such as antimetabo-
lites, topoisomerase inhibitors and DNA crosslinking
agents) towards various cancer cells. WEE1i was highly
effective in p53-deficient cells and cells with defects in
DNA damage repair pathways [27]. MK1775 was also
combined with carboplatin treatment and paclitaxel in
platinum-sensitive recurrent ovarian cancer [25]. The
first report to present clinical evidence of MK1775 en-
hancing the efficacy of carboplatin in TP53-mutated tu-
mors was published by Leijen et al. in 2016,
NCT01164995 [28]. It was shown that it was active in a
wide variety of human tumor xenografts, including
models of ovarian cancer, with limited single-agent clin-
ical activity [29].
ATR participates in the response to single-stranded

(ssDNA) and double-stranded DNA breaks (DSBs)
and to a variety of DNA lesions that interfere with
replication [30]. ATR promotes cell cycle arrest and
repair of DNA or induces apoptosis if the repair sys-
tems are overwhelmed. As a consequence, CHK1 is

activated. Proteins that are part of the DNA damage
response (DDR) pathway are phosphorylated, includ-
ing histone H2AX, breast cancer type 1/2 susceptibil-
ity protein (BRCA1/2), RAD51 and p53. In addition,
inactivation of p53 leads to loss of activity of the G1
checkpoint, which favours G1–S transition [31]. Previ-
ous studies have shown that chemotherapeutics such
as cladribine induce ATR-dependent phosphorylation
of H2AX, a biomarker for DNA double-strand breaks,
and the p53 suppressor protein [32, 33]. In response
to DNA damage, ATR phosphorylates CHK1 protein,
which in turn mediates CDC25A-C phosphorylation,
leading to the blocking of CDK1 and CDK2 (thus
preventing cell cycle progression). CHK1 can stabilize
the replisome, possibly by targeting replication pro-
teins (e.g. CDC6, minichromosome maintenance pro-
teins 2–7 (MCM2-7)), and after resolving the
replication problems can restart stalled replication
forks. Functional changeability of the ATM/ATR–
CHK2/CHK1–CDC25/CDK axis underlies the molecu-
lar foundation of the intra-S-phase checkpoint [34].
In response to replication stress, replication protein A

(RPA) is the first to be loaded onto the unstable single
stranded DNA (ssDNA), and the long stretches of RPA-

Fig. 1 Participation of WEE1 kinases (Cdk1 inhibitors) and CDC25 phosphatases (Cdk1 activators) in the regulation of the activity of Cdk1 kinase
during G2 and M phases. The binding of WEE1 kinases to 14-3-3 protein, which activates WEE1 kinases, may be carried out in two different
ways—via the phosphorylation of ser642 (with participation of CHK1) or autophosphorylation. WEE1 inhibitor abrogates the G2/M checkpoint,
resulting in cancer cell death
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coated ssDNA adjacent to the double-stranded DNA
(dsDNA) act as a platform to trigger the ATR/CHK1
[35]. ATR combines with ATR-interacting protein
(ATRIP), and their complexes are located in the cell
nucleus at the sites of DNA damage [36]. The RAD9–
RAD1–hus1 (9-1-1 complex) is required for the recruit-
ment of DNA topoisomerase 2-binding protein 1
(TopBP1) [37]. The activators of ATR–ATRIP com-
plexes are the TopBP1 and two other factors: replication
factor C (RFC) and proliferating cell nuclear antigen
(PCNA). During replication, RFC recognizes the sites of
primer junctions of RNA with template DNA and as-
sembles around them a toroidal protein homotrimer,
PCNA, commonly named as sliding clamp, which deter-
mines the movement of DNA polymerases associated
with it [38]. The first stage of the signaling pathway is
the placement of cell cycle checkpoint protein Rad17
and ATR–ATRIP complexes in the damaged sections;
the second is Rad17-dependent assembly of PCNA-type
complexes around the DNA. The PCNA-type complexes
support the activation of ATR molecules and, conse-
quently, the phosphorylation of its substrates located
within the chromatin, such as Rad17 and Rad9 [39].
When DNA errors and damage which are caused during
the genetic material replication are not removed in time,
the stalled replication forks are susceptible to fork col-
lapse, leading to highly lethal DSBs (Fig. 2).
The disappearance of the function of the internal

phase S control point, caused for example by the muta-
tion of ATR, means that cells with damaged genetic ma-
terial are blocked and are unable to enter mitosis despite
the occurrence of non-replicated sections. Induction of
DNA damage and activation of cellular responses, i.e.
cascades of DNA damage signalling pathways, by a num-
ber of anticancer drugs result in cell cycle arrest at the
G1/S and G2/M phases. When the amount of DNA
damage is too high to allow the cell to survive, it is most
often redirected to apoptosis [40]. Hence, DNA repair
has emerged as a new area for anticancer drug develop-
ment [41]. Numerous drugs are currently being tested in
clinical trials; some of them are presented in Table 1.
Most HGSOCs have mutations in TP53 and other gen-
etic alterations associated with increased replication
stress. Inhibitors of ATR and CHK1 are therefore prom-
ising drugs for ovarian cancer treatment.

DNA repair checkpoint inhibitors
PARP
Inhibition of a DNA repair pathway sensitizes tumor
cells with the BRCA 1/2 mutation to the DNA-
damaging results of other chemotherapeutics. Given this,
patients with BRCAmut can respond more effectively to
chemotherapy [8]. Therefore, the analysis of BRCA mu-
tational status is crucial for therapeutic decisions [9]. An

enhanced risk of ovarian cancer is related to DNA dam-
age. Poly (ADP-ribose) polymerase (PARP) repairs
ssDNA breaks. When these breaks are not repaired effi-
ciently, which is the situation when PARP is blocked by
the inhibitor, DSBs occur. DSBs are mainly repaired
through two pathways: the HR pathway and the non-
homologous end joining (NHEJ) pathway, although
other mechanisms also exist. BRCA1 and BRCA2 par-
ticipate in the DNA damage response, the network of
interacting pathways that is essential for repair of genetic
material. Both proteins are involved in the error-free re-
pair of DSBs by HR in the S phase. BRCA1 signals DNA
damage and ensures cell cycle regulation, while BRCA2
interacts and facilitates the loading and formation of
RAD51 filaments on the damaged DNA strand. Tumors
with impaired HR pathways lack an alternative DNA re-
pair pathway [42, 43]. Mutation in BRCA1 or BRCA2 in
HR-deficient cancer cells will lead to the repair of DSBs
via error-prone repair pathways, accumulation of muta-
tions and eventually cell death [44].
Ovarian cancer cell lines with BRCA1 mutated and

impaired HR (UWB1.289, SNU-251, OVCAR8) exhibit
higher sensitivity towards PARPi, when compared with
cells with wild-type or restored BRCA1 (SKOV3,
A2780PAR and A2780CR) [45]. One group of com-
pounds that have drawn intense research interest are
PARPi inhibitors. In BRCA mutated cancer cells, PARP
inhibition leads to tumor cell death, as a result of syn-
thetic lethality. According to this assumption, PARPi
blocks the base excision repair (BER) through F-Box
DNA helicase 1 (Fbh1)-dependent Rad51 regulation
[46]. Combination of olaparib with anticancer agents
that disrupt HR repair represents an effective strategy to
sensitize ovarian cancer cells. Synthetic lethality was de-
fined classically in 1946 to describe a functional gene–
gene relationship in Drosophila, in which two genes are
nonlethal (viable) when inactivated alone but become le-
thal when inactivated together. Synthetic lethality is a
consequence of the tendency of organisms to maintain
buffering schemes that allow phenotypic stability despite
genetic variation [47, 48]. Another mechanism of PARPi
action involves PARPi binding to and trapping the
PARP1 enzyme on chromatin (Fig. 3). Talazoparib, a
PARPi, enhances trapping of PARP1 in DSBs, leading to
decreased NHEJ and leukemia cell death [49, 50]. This
agent is currently under clinical evaluation in patients
with deleterious BRCA 1/2 mutation-associated ovarian
cancer who have had prior PARP inhibitor treatment
(NCT02326844). Moreover, DSBs can be resected by the
microhomology-mediated end joining (MMEJ) pathway
(also known as alternative non-homologous end-joining,
Alt-NHEJ). MMEJ is independent from classical NHEJ
and does not rely on NHEJ core factors such as Ku pro-
tein, DNA-dependent protein kinase (DNA-PK), or
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ligase IV. DNA polymerase θ (POLQ) plays an important
role in this pathway. Efficient recruitment of POLQ de-
pends on PARP1 [51, 52].
The first Food and Drug Administration (FDA)-ap-

proved PARP inhibitor was olaparib (Lynparza). In 2005,
the first two publications demonstrating the substantial
sensitivity of BRCA-deficient cell lines to inhibition of
PARP led to an unprecedented and swift implementation
of PARP inhibitors in clinical practice [53]. Several
PARP inhibitors, including olaparib, niraparib, veliparib,
rucaparib and talazoparib, are being tested in clinical

trials, and olaparib, niraparib and rucaparib
(NCT03522246) have been registered for use in a clinical
setting. In 2014, olaparib gained European Medicines
Agency (EMA) approval to treat advanced EOC in
monotherapy of patients with germline BRCAmut who
had received and did not respond to at least three lines
of chemotherapy [54]. A phase II clinical trial revealed
that olaparib significantly increased the effectiveness of
standard treatment with a combination of carboplatin
and paclitaxel. Progression-free survival was longer by
around 3 months in the olaparib with chemotherapy

Fig. 2 DNA damage and replication checkpoints. Anticancer drugs induce replication disorders. Replication stress is the effect of the slowing or
stalling of replication fork progression. DNA synthesis inhibition or damage induces checkpoint responses controlled by the ATR–CHK1 pathway.
DNA lesions delay entry to S-phase (G1 checkpoint), slow the replication of damaged DNA or prevent entry to mitosis (G2 checkpoint). Given that
both PARP and checkpoint proteins prevent fork collapse, their corresponding inhibitors may increase the level of replication stress, genome
instability and, in consequence, cell death
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group compared with chemotherapy alone. In the USA
in 2018, the FDA-approved olaparib for the maintenance
treatment of patients with BRCAmut advanced EOC who
are in complete or partial response to first-line
platinum-based chemotherapy [55]. Two more PARP in-
hibitors, rucaparib (Rubraca) and niraparib (Zejula), ap-
proved by the FDA, are a promising class of agents for
targeted EOC therapy [56]. Research is ongoing into the
use of iniparib in combination with carboplatin and
gemcitabine in the treatment of patients with platinum-
resistant recurrent ovarian cancer (NCT01033292).
PARP inhibitors are usually combined with other drugs
to increase the therapeutic effect. A combination of two
investigational drugs, cediranib and olaparib, was evalu-
ated in patients with ovarian cancer whose cancer wors-
ened despite previously receiving a PARP inhibitor such
as olaparib (NCT02681237).
Clinical trials have shown PARPi response rates of

around 40% in women who carry a mutation in the
BRCA1/2 genes (NCT00494442). However, PARPi is re-
sponsible for tumor suppression, but not for complete
tumor regression [57]. Although olaparib is a step

forward in the treatment of BRCA1/2-deficient tumors,
resistance to PARP inhibitors is unfortunately a common
phenomenon. Rare complete responses are seen with
PARPi monotherapy in clinical practice [58]. BRCA1/2-
deficient tumor cells can become resistant to PARP
inhibitors by restoring HR repair and/or by stabilizing
replication forks. PARPi-induced drug resistance mecha-
nisms have focused also on heat shock protein 90
(HSP90)-mediated stabilization of BRCA1mut, RAD51
upregulation, loss of REV7 or promotion of alternative
error-prone NHEJ DNA repair [59, 60]. Furthermore, a
BRCA2-mutated ovarian cancer cell line, with sensitivity
to both platinum and PARPi, regained the BRCA2 func-
tion by secondary mutation after treatment with cis-
platin and PARPi [61]. In addition, an acquired low level
of expression of PARP1 may be a cause of resistance to
PARPi in patient-derived tumor xenograft models [62].
Moreover, as a result of PARP1 inhibition, cancer cells
may upregulate the HR repair pathway and increase
RAD51 expression to maintain cell viability [63]. The
formation of RAD51 foci was observed together with
PARPi resistance in patient-derived xenograft models, as

Fig. 3 The role of PARP inhibitors in cancer therapy. PARP inhibitors are effective in HR-deficient cancer cells by the mechanism of synthetic
lethality (left panel) and by PARP trapping (right panel). Other mechanisms of PARPi action are described in the text
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well as patient-derived samples carrying the BRCAmut

[64]. On the other hand, increased expression of the
ATP-binding cassette sub-family B member 1 (ABCB1)
(also known as multidrug resistance protein 1 [MDR1]),
which encodes the membrane drug transporter P-
glycoprotein, is a well-described mechanism of resist-
ance to doxorubicin, paclitaxel and related taxane drugs.
ABCB1-mediated resistance to PARPi is a novel finding
in ovarian cancer [65]. Nonetheless, loss of BRCA1/2
factors determines PARPi sensitivity. MiR-493-5p may
induce platinum and PARPi resistance, specifically in the
cells with BRCA2 mutation [66]. Hence, there is an ur-
gent need to develop new, more effective strategies.
All drugs, including olaparib, have potential side ef-

fects. Most side effects of olaparib were of low grade,
with anaemia and neutropenia being the most common,
in the SOLO1 trail [67]. On the other hand, cardiac ad-
verse effects are the leading cause of discontinuation of
clinical trials and withdrawal of drugs from the market.
There are reports suggesting that olaparib is a cardio-
protective agent against doxorubicin-induced cardiomy-
opathy [68] and that it protects cardiomyocytes against
oxidative stress [69].

ATR
ATM and ATR kinases are two master regulators of
DNA damage responses. ATR, a serine/threonine-pro-
tein kinase belonging to the phosphatidylinositol 3-
kinase-related kinase (PIKK) family of proteins, is a
key regulator of the DNA replication stress response
(RSR) and DNA-damage activated checkpoints [70].
As ATR is a master regulator of the DDR, this find-
ing underscores the relevance of DDR as a new thera-
peutic target in ovarian cancer therapy. ATR is
activated in response to a broad spectrum of DNA
damage, such as single- and double-stranded DNA,
and also adducts, cross-links and inhibits DNA poly-
merase, while ATM is primarily activated in response
to DNA double-strand breaks [71–73]. Moreover,
ATM is responsible for the phosphorylation of check-
point kinase 2 (CHK2) and ATR phosphorylates
checkpoint kinase 1 (CHK1) [74]. CHK1 activation is
mediated by Claspin (CLSPN), Timeless and Tipin
[75]. The ATR lies upstream of CHK1 and phosphor-
ylates numerous factors including Werner syndrome
ATP-dependent helicase (WRN), SWI/SNF-related
matrix-associated actin-dependent regulator of chro-
matin sub-family A-like protein 1 (SMARCAL1), and
Fanconi anaemia complementation group I (FANCI),
which may help preserve replication fork stability and
control cell-cycle progression [76–78]. The direct sub-
strates of ATR include RPA, MCM2, p53 and many
other factors that play roles in replication fork pro-
gression, DNA repair and control of the cell cycle

[79, 80]. Additionally, ATR substrates control protein
modification, transcriptional regulation and develop-
mental processes [81]. ATR has a crucial role in sta-
bilizing genomic integrity throughout the cell cycle
and is therefore essential for cell survival [82] (Fig. 4).
ATR controls cell cycle arrest from S to G2 phases
[83]. Furthermore, ATR plays a role in the G2/M
phase checkpoint [84]. In cells with TP53 mutation, it
leads to checkpoint-defective cells, and the inhibition
of ATR is lethal [85, 86]. Dysregulation of ATR dis-
rupts a broad range of cellular processes [16]. Recent
reports suggest that cells with impaired HR activities
due to mutations in TP53 gene or specific DNA re-
pair proteins are specifically sensitive to ATR inhibi-
tors [86–89]. However, the underlying mechanisms of
ATR inhibition monotherapy on ATM status remain
unclear [84].
ATR inhibitors have the potential to show preferential

cell killing of tumor cells where ATM is defective or
where replicative stress is high. In recent years, ATR in-
hibitors with far greater potency and selectivity have
been developed as drug-like agents. Many ATR inhibi-
tors, such as NU6027, ETP-46464 and VX-970, also in-
hibit CDK2, mTOR, ATM and PIK3 kinases [90, 91].
VX-970/M6620 is an analogue of VE-821 from the ami-
nopyrazine series with a marked increase in ATR en-
zyme cytotoxicity (IC50 = 0.019 μM) in HCT116 cells.
VX-970 is selective versus DNA-PK, mTOR, PI3Kγ and
50 unrelated protein kinases [92]. One of the most
promising is AZD6738, which is a potent and selective
sulfoximine morpholinopyrimidine ATR inhibitor.
AZD6738 is currently used as a monotherapy and in

combination with gemcitabine (NCT02595892), gemici-
tabine and carboplatin (NCT02627443), avelumab and
nedisertib (NCT04266912), paclitaxel (NCT02630199)
and radiotherapy (NCT02223923). VE-821, another
identified ATR inhibitor, sensitized OVCAR-8, SKOV-3
and PEO1 ovarian cancer cell lines to cisplatin, topote-
can and veliparib [93, 94]. Additionally, cisplatin or
topotecan, combined with MK-877 (CHK1i) or VE-821,
reduced the G2/M phase accumulations [94]. Currently,
clinical trials are ongoing on M6620 in combination with
gemcitabine, avelumab (NCT03704467), topotecan
(NCT02487095) and carboplatin (NCT02627443) in
ovarian cancer. On the other hand, VX-970 is the most
effective in combination with platinum agents or mel-
phalan [95]. BAY 1895344 is a new potent ATR inhibitor
developed by Bayer. BAY 1895344 is being studied in
cancers with DNA repair deficiency. The in vivo antitu-
mor efficacy of BAY 1895344 in combination with car-
boplatin was investigated in the IGROV-1 ovarian
cancer model [96]. BAY 1895344 is currently under clin-
ical investigation in patients with advanced solid tumors
and lymphomas (NCT03188965). VX-803 (M4344), on
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the other hand, is now in clinical trials as a monotherapy
or in combination with carboplatin for advanced solid
tumors (NCT02278250), and in combination with nira-
parib against ovarian cancer (NCT04149145).

CHK1
CHK1 is a serine/threonine kinase, which responds to
DNA damage and replication stress and therefore reg-
ulates mitotic progression. ATR and CHK1 share the
same pathway; it is possible that the antitumor prop-
erties of ATR inhibitors may not differ significantly
from those of CHK1 inhibitors currently tested in
clinical trials. Moreover, ATR controls many other
proteins, not only CHK1, as described in the previous
section, suggesting that it is responsible for control-
ling additional cell responses. Nonetheless, CHK1 can
be autophosphorylated and thus activated, independ-
ently of ATR [97].
Activation of CHK1 and its downstream effectors leads

to an array of coordinated activities that include reduced

new origin firing, delay of cell cycle progression and res-
toration of the stalled replication forks. The phosphoryl-
ation of CHK1 at Ser317 and Ser345 after checkpoint
signaling is regulated by ATR, and thus, phosphorylation
at Ser345 fosters relocalization or retention of the pro-
tein in the nucleus [98]. Translocation of the protein
from the cytoplasm to the nucleus causes the activation
of the G2/M checkpoint and regulates cell cycle progres-
sion [99] by inactivating CDC25 phosphatases (CDC25A
and CDC25C), which would otherwise activate the
CDKs, responsible for the G2/M transition [100]. Cancer
cells with p53 mutation cannot activate the G1/S check-
point and relies only on the S and G2/M checkpoints,
both controlled by CHK1 [101]. This suggests that pa-
tients with p53-mutated tumors could benefit from the
treatment based on CHK1 inhibition [102]. CHK1 also
phosphorylates BRCA2 and RAD51 proteins [103].
Therefore, CHK1 inhibition renders the cells to be more
sensitive to DNA damage [93]. As previously mentioned,
CHK1 may also be autophosphorylated at Ser296 [104];

Fig. 4 Participation of ATR in maintenance of genome stability. DNA double strand breaks or replication stress induce an ATR protein response.
ATR is recruited to regions of ssDNA replication protein A (RPA) through its partner, ATR-interacting protein (ATRIP). Subsequently, RAD9–RAD1-
hus1 (9-1-1 complex) and DNA topoisomerase 2 binding protein 1 (TOPBP1) are incorporated, leading to ATR activation. ATR–ATRIP recruitment
results in CHK1 activation. This process is mediated by Claspin, Timeless and Tipin, which form a complex at replication forks. In the event of large
areas of DNA damage or no repair, the replication fork stops, origin suppression occurs and the cell cycle is stopped. ATR/CHK1 blockade
prevents DNA damage-induced cell-cycle arrest, resulting in inappropriate entry into mitosis, chromosome aberrations, unequal partitioning of
the genome, and apoptosis
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thus, once activated, it may restrain replication catastro-
phe in S-phase, even in the presence of an ATRi [97].
Several CHK1 inhibitors are known, including com-

pounds in research phase I (AZD7762, PF-477736,
GDC-0425 and GDC-0575) or in phase II (LY2603618
and LY2606368) of trials in combination with gemcita-
bine, irinotecan, pemetrexed and cytarabine [105, 106].
V158411 inhibited CHK1 and CHK2 and abolished
DNA damage-induced S- and G2-phase checkpoints.
The in vitro cytotoxicity of gemcitabine, cisplatin, SN38
and camptothecin was potentiated by V158411 in TP53-
deficient, but not in TP53-proficient, human tumor cell
lines [107]. Research has also been conducted on Prexa-
sertib (LY2606368), which is a small ATP-competitive
selective inhibitor of CHK1 and CHK2. Prexasertib
blocks the autophosphorylation of and subsequently ac-
tivates the CHK proteins, which regulate the activity of
phase-M inducer cyclin-dependent kinases and phospha-
tases [108]. Prexasertib is currently in phase 1 and 2
clinical trials and was tested either as a single agent
(NCT02203513, NCT03414047) or in combination with
olaparib in 14 clinically annotated and molecularly char-
acterized luciferized HGSOC patient-derived xenograft
(PDX) models, and in a panel of ovarian cancer cell
lines. The ability of prexasertib to impair HR repair and
replication fork stability was assessed. Thirteen models
were resistant to olaparib monotherapy, including four
carrying a BRCA1 mutation [102]. Another example is
MK-8776 (formerly, SCH900776, a pyrazolopyrimidine
derivative), a highly selective CHK1 inhibitor [79]. MK-
8776 is approximately 500 times more selective for
CHK1 than for CHK2. MK-8776 and LY 2603618 sensi-
tized cells only to gemcitabine [93, 94]. UCN-01, another
CHK1 inhibitor, also exhibits a radiosensitivity effect;
however, MK-8776 demonstrated more pronounced ef-
fects with lower cytotoxicity [80]. Even in the absence of
DNA damage caused by external agents, CHK1/2 inhib-
ition yielded DNA damage and mitotic catastrophe pre-
clinically in tumors with DNA repair dysfunction [109].
Moreover, in cells lacking BRCA1, CHK1 is necessary
for the repair of endogenous DNA damage; therefore, in-
hibition of this protein had an anti-proliferative effect on
the cells [102]. Several potential mechanisms for
sensitization by CHK1 inhibition have been proposed,
including inhibition of repair systems for DSBs, spindle
assembly checkpoint (SAC) activation, promotion of pre-
mature mitosis, and mitotic catastrophe (MC). However,
it remains unclear how CHK1 inhibition triggers
sensitization in ovarian cancer cells.

Synergy in cell killing based on ATR/CHK1 and
PARP inhibitors
BRCA1/2 proteins play an important role in the pro-
tection of stalled replication forks. This is controlled

by the ATR/CHK1 checkpoint kinase pathway. Im-
paired ATM kinase function activates ATR. This sys-
tem of mutual taking of functions in the cell has
been used to fight cancer. By binding to reversed
forks, the BRCA1/2 proteins play a critical role in
protecting the cell from genomic instability. On the
other hand, ATR/CHK1 blockade prevents DNA
damage-induced cell-cycle arrest, resulting in in-
appropriate entry into mitosis, chromosome aberra-
tions, unequal partitioning of the genome, and
apoptosis [93]. The ATR/CHK1 pathway stabilizes
replication forks and prevents their collapse into
DNA double-strand breaks. Thus, inhibition of ATR/
CHK1 is expected to increase reliance on HR to re-
organize the replication fork structure and complete
replication. ATR inhibition is lethal with numerous
cancer-associated changes, including oncogenic stress
(oncogenic RAS mutations, MYC and G1/S-specific
cyclin-E1 (CCNE1) overexpression), deficiencies in
DNA repair (TTP53, BRCA1/2, partner and localizer
of BRCA2 (PALB2) and ATM loss) and other defects
[110]. Several studies have shown that some tumors
are even more sensitive to combinations of ATR in-
hibitors with inhibitors of other repair proteins such
as PARP and CHK1. Inhibiting these proteins alone
may be insufficient to cause cell death, so it may be
necessary to apply PARPi and cell cycle checkpoint
inhibitors as combination therapies [57].
Clinical trials are currently underway using the com-

bination of AZD6738 and olaparib in recurrent ovarian
cancer (NCT03462342) and in gynaecological cancers
with ARId1A loss or no loss (NCT04065269). An exten-
sive signal-searching study is being conducted. HR-
deficient patients with/without additional mutations in
ATM, CHK-2, MRN (MRE11/NBS1/RAD50), CDKN2A/
B and APOBEC will be treated with olaparib or olaparib
and AZD6738 (NCT02576444). Moreover, patients with
advanced solid tumors and ovarian cancer will be treated
with BAY1895344 in combination with niraparib
(NCT04267939). The investigators are combining
LY2606368 (CHK1i) with olaparib (NCT03057145) in
patients with solid tumors. Moreover, NU6027 (CHK1i)
in combination with a PARP inhibitor was shown to at-
tenuate G2/M arrest and was synthetically lethal in the
MCF7 cell line [87].

New platforms for optimizing ovarian cancer
therapy under replication stress
New models for preclinical ovarian cancer have been
sought for a long time. The resolve to achieve this was
strengthened with the decision by the National Cancer
Institute (NCI) to retire the NCI-60, a panel of 60 hu-
man cancer cell lines grown in culture, from its drug
screening programme [111]. Cell lines and cell-line-
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derived xenografts (CDXs) are still the most commonly
used basic research models in ovarian cancer. Recently,
scientific interest has increasingly focused on the cancer
microenvironment. Given this, preclinical modelling of
individual cancers should be included in the framework
of personalized medicine. Currently, attention is focused
on promising new research models including patient-
derived xenografts (PDX) and organoids.
PDX maintain the characteristics of the patient’s ori-

ginal tumor, including histology, mutational status and
gene expression, through multiple passages in mice.
PDX also exhibit a similar response to standard chemo-
therapy to that demonstrated in the patient. They are a
copy of the xenograft model in which fresh tumor tissue
is obtained directly from patients and implanted into an
immunodeficient mice lacking a human immune system
[57]. Different types of mice (e.g. NCG, NOD-
Prkdcem26Cd52 IL2rgem26Cd22/Gp t; NSG, NOD-SCID
IL2Rγ−/−) have been used in PDX models of ovarian can-
cer. Olaparib, MK8776 or AZD6738 were used to treat
ovarian tumors with BRCA2mut obtained with PDX
[112]. Moreover, PDX has been applied to study the ola-
parib response predicted on the basis of HR gene ana-
lysis. The homogenate was injected subcutaneously into
the lower dorsal flank or axilla of the NCG mice and
DDR mutation analysis of PDX cases was carried out
[113]. A PDX model (NSG mice) was also derived from
BRCA-mutant HGSOCs exhibiting solid, pseudoendo-
metrioid and transitional cell carcinomas. It exhibited
higher levels of phosphorylated CHK1 than BRCA-intact
HGSOC. Using PET imaging, studies have shown that
PARP inhibitor treatment results in tumor suppression
but not complete tumor regression, similar to the re-
sponse observed in clinical settings [57]. The response of
12 HGSOCs (PDX; NSG mice) to the PARPi rucaparib
was measured, with dose-dependent responses observed
in chemo-naive BRCA1/2-mutated PDX and no re-
sponses in PDX lacking DNA repair pathway defects.
Among BRCA1-methylated PDX, silencing of all BRCA1
copies predicted the rucaparib response, whereas hetero-
zygous methylation was correlated with resistance
(ARIEL2 part 1 trial) [114].
Until now, PDX models could only be established in

immunocompromised mouse strains. Currently, to as-
sess immunotherapy, research is being carried out on
PDX to which autologous transfer of patient-specific
tumor infiltrating lymphocytes (TILs) has been per-
formed [115].
Another approach in personalized medicine involves

organoid cultures of patient-derived tumors. These are
three-dimensional (3D) constructs that represent an excel-
lent preclinical model for human tumors that has cancer
homology and has been gradually applied to gene analysis,
drug screening and other types of research; they facilitate

the translation from basic cancer research to clinical prac-
tice [116]. Researchers have also begun to apply organoids
in studies of ovarian cancer. Several teams have confirmed
that patient-derived organoids closely resemble the ori-
ginal gynecologic tumors, and thereby may serve as a
promising resource for preclinical studies [117, 118]. Hans
Clevers’ team collected 56 organoids from 32 patients,
representing all the main subtypes of OC, and confirmed
that homologous recombinant (HR) defective cells are
sensitive to PARP inhibitors, which are also present in the
ovarian cancer organoid [117]. Another team developed a
HGSOC organoid and used it for functional analysis of
DNA repair and prediction of patients’ clinical response
to DNA repair inhibitors [118]. By studying the HR and
cross-protection defects of 33 HGS-like organoids in 22
patients, it was confirmed that the functional defects of
HR in the organoid are related to the sensitivity of PARP
inhibitors regardless of the mutation status of DNA repair
genes. In addition, the functional defects in cross-
protection of replication are related to the sensitivity to
carboplatin, CHK1, and ATR inhibitors. These findings in-
dicate that genome analysis and organ-like function test-
ing can identify targeted DNA damage and repair defects.
The OC organoid can be used for DNA repair analysis
and therapeutic sensitivity testing, which can immediately
evaluate target defects in maternal tumors and provide ap-
propriate treatment options [118].
Western blot analysis of 33 organoid cultures showed

that prexasertib increases DNA damage, indicated by in-
creased expression of γH2AX, and increased replication
stress, as indicated by increased phosphorylated RPA
(pRPA). Prexasertib activates the ATR pathway in both
fork-unstable and fork-stable lines, as shown by the in-
creased phosphorylation of the ATR targets KAP1
(pKAP1) and CHK1 (pCHK1) [119]. The elevated pCHK1
level is a pharmacodynamic marker of CHK1 inhibition by
prexasertib. Prexasertib stimulates a tumor in terms of
sensitivity to other DNA repair agents, blocking the ATR/
CHK1 pathway, thereby increasing replication stress
[120]. In addition, other factors that increase replication
stress may interact with prexasertib and promote fork in-
stability and cancer cell death. For example, regardless of
the genetic status, a stalled fork protection defect was
present in 61% of the organoid lines tested, and this defect
was associated with carboplatin, prexasertib, and VE-822
sensitivity. In contrast, only 6% of organoid lines tested
had a functional HR defect and PARPi sensitivity. Overall,
this suggests that stalled fork protection defects are more
common than HR defects and have a larger array of spe-
cific therapies [118].

Conclusions
The first generation of ATR and CHK1 inhibitors has
been shown to sensitize ovarian tumors to DNA-
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damaging agents that primarily induce replicative stress
as their mechanism of action. The analysis of BRCA mu-
tational status is still the first step in designing individu-
alized strategies for the management of patients with
ovarian cancer. Inhibition of ATR or CHK1 as a mono-
therapy or in combination with DNA-damaging chemo-
therapy drugs or PARP inhibitors is being tested in
early-phase clinical trials in gynaecological cancers. ATR
inhibitors, such as M6620 and AZD6738, give a very
good prognosis. Phase 2 combination trials are ongoing.
In turn, two of the best studied CHK1 inhibitors are
MK-8776 and prexasertib. Preclinical observations indi-
cate that the synthetic lethality of ATR or CHK1 inhibi-
tors in ATM-deficient cancers may be a new
opportunity for effective ovarian cancer therapy.
We also need to understand the long-term tolerability

of the various PARP inhibitors and the mechanisms
leading to the development of multidrug resistance.
Moreover, mutations and damage in ATM or p53 genes
are therapeutic opportunities for inhibitors involved in
replication stress. Despite learning about a dozen or so
genes that lead to synthetic lethality with PARP, new
ones are still being sought. The development of new
in vivo model systems such as PDX and organoids will
facilitate the optimization of ovarian cancer therapy.
Clustered regularly interspaced short palindromic re-
peats (CRISPR)-directed Cas9-mediated endonuclease
activity disrupts specific genetic sequences in the gen-
ome and is a new tool for finding therapeutic goals. In
this way, the sequence of C12ofr5 was identified, which
is a gene that encodes a metabolic regulator, TP53-
induced glycolysis and apoptosis regulator (TIGAR).
Downregulation of TIGAR results in enhanced cytotoxic
effects of olaparib [121]. Only further deepening of the
knowledge about genes involved in DNA repair and
blocking all restoration options in the pathway can lead
to definitive ovarian cancer cell death.
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