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Abstract

Developing accurate but inexpensive methods for estimating above-ground carbon biomass is an important technical
challenge that must be overcome before a carbon offset market can be successfully implemented in the United States.
Previous studies have shown that LiDAR (light detection and ranging) is well-suited for modeling above-ground biomass in
mature forests; however, there has been little previous research on the ability of LiDAR to model above-ground biomass in
areas with young, aggrading vegetation. This study compared the abilities of discrete-return LiDAR and high resolution
optical imagery to model above-ground carbon biomass at a young restored forested wetland site in eastern North
Carolina. We found that the optical imagery model explained more of the observed variation in carbon biomass than the
LiDAR model (adj-R2 values of 0.34 and 0.18 respectively; root mean squared errors of 0.14 Mg C/ha and 0.17 Mg C/ha
respectively). Optical imagery was also better able to predict high and low biomass extremes than the LiDAR model.
Combining both the optical and LiDAR improved upon the optical model but only marginally (adj-R2 of 0.37). These results
suggest that the ability of discrete-return LiDAR to model above-ground biomass may be rather limited in areas with young,
small trees and that high spatial resolution optical imagery may be the better tool in such areas.
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Introduction

The destruction of forests and wetlands is a primary contributor

to global climate change [1], [2], [3]. For this reason, national and

international climate change mitigation plans often include as key

components programs designed to protect and restore these

ecosystems. The United Nation’s REDD program as well as recent

proposals in the United States for a carbon offset market are

examples of such programs. Broadly speaking, they aim to

promote conservation by placing a monetary value on the carbon

sequestration services provided by healthy ecosystems [4], [5], [6].

Due to the significant monetary and ecological values involved,

successfully implementing these programs requires accurate and,

ideally, inexpensive methods for estimating the amount of carbon

sequestered in plant biomass [7], [8]. Historically, estimating

carbon biomass over large areas involved collecting biomass

density data in the field and then applying expansion factors to

scale up. More recently, methods have been developed for

estimating carbon biomass using remotely sensed data. This

approach involves creating empirical models that relate variables

extracted from the remotely sensed data to sample biomass data.

The models can then be used to produce spatially explicit maps of

carbon biomass, from which estimates of total biomass can be

derived. Compared with earlier methods, the use of remotely

sensed data has the potential for producing more accurate

estimates of total biomass; however, remote sensing methods can

also be more expensive due to the cost of acquiring and processing

the remotely sensed data.

Light detection and ranging (LiDAR) is a relatively new remote

sensing technology that is widely regarded to be well-suited for

estimating biomass over large areas [9], [10]. Airborne LiDAR

instruments operate by directing pulses of laser light toward the

ground and then recording the amount of time required for the

pulses to strike objects on the ground and then reflect back to a

sensor. Using this return time along with information from the

aircraft’s navigational equipment, it is possible to calculate the

three-dimensional coordinates of those objects on the ground [11],

[12]. Airborne LiDAR instruments can be divided into two types

based on the characteristics of the emitted laser pulses and the

amount of information they record from the returning electro-

magnetic waves. Full-waveform LiDAR instruments record the

entire electromagnetic wave that returns to the sensor, and their

emitted laser beams are typically spread over a larger area (on the

order of tens of meters) when they reach the ground. By contrast,

discrete-return LiDAR instruments record only the individual

peaks in the returning wave, and they usually have a much smaller

footprint (usually ,1 m) [12]. While full-waveform LiDAR is used

mainly as a research tool for studying vegetation patterns, discrete-
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return LiDAR technology has become widely available for a

variety of commercial and research purposes.

LiDAR-based biomass models have generally been quite

successful, with R2 values of greater than 0.8 reported for tall-

stature mature forests [10], [13], [14], [15]. LiDAR-based biomass

models have also generally out-performed models based on other

remote sensing technologies, such as radar or optical imagery [10],

[16], [17]. LiDAR technology is unique in that its pulses can

penetrate tree canopies and retrieve highly accurate and detailed

information about a forest’s vertical structure in addition to its

horizontal structure [12], [18], [19]. In mature forests with mid to

high biomass densities (e.g. 100 Mg/ha), vertical structural

characteristics are highly correlated with total biomass, and so

LiDAR has the potential for producing more accurate estimates of

biomass than remote sensing technologies that can only retrieve

information about a forest’s horizontal structure.

Many early successful LiDAR biomass studies were conducted

using full-waveform instruments over areas with mature forests

[10], [13], [14], [15]. More recently, researchers have shown that

discrete-return LiDAR can also reliably estimate biomass and

measure forest canopy characteristics from which biomass can be

estimated [20], [21], [22], [23]. While these studies have

succeeded in showing that LiDAR is a valuable tool for modeling

biomass in mature forests, the abilities of either type of LiDAR to

estimate biomass in areas with relatively short-stature vegetation

have not yet been adequately evaluated. While there have been

several studies that employed discrete-return LiDAR in areas with

relatively sparse vegetation or small (,6 m) trees [24], [25], [26],

[27], these studies focused on modeling forest characteristics (e.g,

heights) other than biomass. In the context of a carbon offset

market, being able to produce reliable estimates of carbon biomass

in areas with relatively small trees, such as areas that have been

recently reforested or afforested, would be essential.

The main goal of this current study was to evaluate the ability of

discrete-return LiDAR to estimate the amount of carbon

sequestered over a four-year period at a recently restored forested

wetland. In doing this, we had two specific objectives. First, we

aimed to determine how successfully, relative to previous LiDAR

studies of mature forests, discrete-return LiDAR could model

above-ground carbon biomass at a study site with relatively young,

small trees. Because, other things being equal, smaller objects are

more difficult to detect using LiDAR or any other remote sensing

technology, our hypothesis was that a LiDAR-based model would

not perform as well in areas with smaller trees. Second, we aimed

to determine whether LiDAR could model above-ground carbon

biomass at the study site better than high-resolution optical

imagery. Because the forest at the study site had not yet achieved

canopy closure, we hypothesized that the LiDAR model would

perform only slightly better, if at all, than the optical imagery

model.

Materials and Methods

Study Area
The Timberlake Restoration Project is a privately-owned

wetland mitigation area located on the Albemarle Peninsula in

eastern North Carolina. This region was once covered by pocosin

(evergreen shrub-scrub) wetlands; however, a large percentage of

those wetlands were extensively logged in the early 1900s and then

drained for agriculture in the 1970s and 1980s [28], [29].

Timberlake includes an old agriculture field, approximately

440 ha in size, which is currently being restored to its pre-

agricultural forested wetland state. This process began in 2004

after the last corn harvest, and it involved filling in drainage

ditches, removing pumps, filling in sections of the main canal, and

delineating a zone of preferential water flow [30]. The old

agriculture field is mostly flat, with a range of elevation between -

0.5 m and 2 m above sea level. Lower elevations are often

inundated with water for much of the year [31].

In 2004, approximately 750,000 live saplings were planted at

the site. Trees were planted as live stakes approximately eight feet

apart. A total of fourteen tree species were planted, which were

grouped into three ‘‘mixes’’ at the time of planting: riverine, non-

riverine, and cedar. The riverine mix was planted in lower

elevation areas, where soil water levels were expected to be higher,

while the non-riverine mix was planted in higher elevations. The

riverine mix included: Salix nigra, Taxodium distichum, Baccharis

halimifolia, Fraxinus pennsylvania, Nyssa aquatic, N sylvatica var. biflora,

Persea borbonia, and Rhus copallinum. The non-riverine mix included:

Liquidambar styraciflua, Quercus michauxii, Q. phellos, Q. nigra, and Q.

falcata. In addition, two smaller areas at the site were planted with

a single species, Atlantic white-cedar (Chamaecyparis thyoides).

Sample Biomass Data Collection
To comply with wetland mitigation permitting requirements,

vegetation monitoring has been conducted at the site annually

since 2004 (Figure 1). The northern part of the agricultural field is

being sold through the North Carolina Ecosystem Enhancement

Program (EEP), which requires vegetation monitoring in square,

10610 m plots, of which 76 were distributed in a regular east-west

grid. For each tree in these plots, the species, height, and diameter

at ground level have been recorded annually by an independent

contractor. Because the planted trees were initially quite small

(,1 m), diameter at ground level was measured instead of

diameter at breast height (1.37 m). Tree height was measured

using a height pole, and diameter at ground level was measured

using a ruler or calipers. In 2008, the average tree height was

observed to be 1.5 m, with a maximum height of 4.4 m. Per plot,

the number of individual trees measured ranged from 0 to 25.

Vegetation monitoring for a particular year was usually conducted

in the spring, before the next growing season had begun.

Vegetation monitoring in the southern part of the property was

conducted under the direction of North Carolina’s Mitigation

Bank Review Team (MBRT). These 112 plots differed substan-

tially in area and types of measurements, and were used in this

study only to identify riverine and non-riverine areas in the

southern part of the study area by their species composition. The

study area was characterized as riverine, non-riverine, or cedar

using information about which tree species were planted on each

EEP and MBRT plot. Each plot was scored and a spline

interpolation algorithm was used to map dominant vegetation

types for the whole study area (Figure 1). Riverine areas

constituted approximately 268 ha (61% of the study area), non-

riverine areas approximately 148 ha (34%), and cedar areas

approximately 22 ha (5%) (Table 1). All further discussion of field

plots refer to the 76 EEP plots in the northern half of the study

area.

The total above-ground carbon biomass (AGCB) for each plot

in 2008 was estimated in three steps. First, species-specific

regression equations were developed to estimate each tree’s

diameter at breast height (DBH) from its field recorded diameter

at ground level. Permission to access the site was provided by the

owner of the land (the Great Dismal Mitigation Bank, Limited

Liability Company). In the summer of 2011, an average of 20 field

measurements of both DBH and diameter at ground level were

collected for each tree species. Any stem with a diameter greater

than 1.0 cm was recorded. Because several tree species at the site

have a growth form of multiple stems (e.g. Salix nigra), the cross-
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sectional area for each stem was calculated from the diameter

measurements, and these values were then added together to get

total cross-sectional area. Regression equations were then devel-

oped to predict total stem area at breast height from total stem

area at ground level (Table 2).

The second step used each tree’s estimated DBH to estimate its

above-ground biomass. This was done using published dry-weight

biomass allometric equations for each species, if available. For

species with no published allometric equations, dry-weight

biomass was estimated using the most appropriate generic

equations available (Table 3). Estimates of above-ground carbon

were calculated for each tree by multiplying the above-ground

biomass estimates by 0.5 [32].

The final step in estimating plot level AGCB was to sum the

AGCB estimates for all the trees in each respective plot. As of the

summer of 2011, much of the study area was covered with dense

grasses and sedges in addition to trees. Given the fast pace of

Figure 1. Map of plot locations and dominant vegetation types. Vegetation measurements were collected annually from 10610 m plots
within a section of the wetland mitigation area sold to the NC Ecosystem Enhancement Program (NCEEP), a state in lieu fee trading program (red
boxes). These NC EEP plots covered the northern part of the study area and included both riverine and non-riverine areas; however, there were no
plots within the portions of the site planted with white cedar.
doi:10.1371/journal.pone.0068251.g001

Table 1. Characteristics of restoration area by dominant
vegetation type.

Vegetation Type Area (ha) Num EEP Plots

Riverine 268 29

Non-Riverine 148 47

Cedar 22 0

Total 438 76

doi:10.1371/journal.pone.0068251.t001
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change at the restoration site, we decided that it would be too

difficult to estimate the amount of herbaceous biomass present in

2008. Thus, for the purpose of this analysis, we only estimated

above-ground carbon biomass in woody vegetation for each of the

plots (Table 4).

Remote Sensing Datasets
Discrete-return LiDAR data was collected by an independent

contractor over the study site on November 18, 2008. The data

were originally collected to analyze the hydrology of the study area

and not for estimating biomass. An Optech GEMINI sensor was

mounted on a twin-engine Cessna Skymaster, which flew at an

average altitude of 650 m and at an average speed of 59.2 m/s.

The pulse and scan frequencies were 100 kHz and 45 Hz

respectively, and up to four returns were collected per pulse

(NCALM, 2008). Vertical and horizontal point coordinates were

estimated to be accurate within approximately 5–10 cm

(NCALM, 2008). The LiDAR dataset as a whole had an average

pulse density of 5–6 pulses/m2 and approximately 10 total

returns/m2. The average footprint diameter was calculated to be

approximately 16.25 cm [33].

Optical imagery for the study area was acquired from the

USDA’s National Agricultural Imagery Program. The imagery

had a cell size of 1 m and included four bands: red, green, blue,

and near-infrared (NIR). Though the optical imagery was

collected after the 2009 growing season had begun, alternative

imagery sources were less preferable due to the lack of a near-

infrared band or to a spatial resolution that was too coarse (10 m

to 30 m).

Remote Sensing Data Extraction
GPS coordinates were collected at the southwest corner of each

of the 76 vegetation plots using a Garmin 272 GPS unit. These

GPS coordinates were estimated to be within 2–3 m of the actual

corners of the plots. The GPS coordinates were used to create

10610 meter analysis windows representing the vegetation plots.

The LiDAR data points were separated into ground and

vegetation points [34]. The LiDAR points falling within the

analysis windows were then isolated and analyzed. The following

variables were extracted from the LiDAR data for each plot:

percentage of points classified as vegetation points; the mean,

maximum, standard deviation, 50th percentile, 75th percentile, and

90th percentile of the LiDAR point intensity values; and the mean,

maximum, standard deviation, 50th percentile, 75th percentile, and

90th percentile of the LiDAR point height-above-ground values.

Using the 2009 NAIP imagery, a map of the Normalized

Difference Vegetation Index (NDVI) [35] was created for the

entire restoration area. The NDVI equation is as follows:

(NIR{Red)=(NIRzRed) ð1Þ

Healthy green vegetation is unique in that it tends to reflect light

in the near-infrared range and absorb light in the red part of the

electromagnetic spectrum. For this reason, the NDVI can be used

to distinguish healthy green vegetation from other land covers. For

each of the 76 EEP plots, the minimum, maximum, mean, and

standard deviation NDVI values were calculated.

Biomass Model Development
Using the statistical software program R, ordinary least squares

multiple linear regression models were created that related plot

Table 2. Allometric equations for calculating cross-sectional
area at breast-height from cross-sectional area at ground
level.

Species Name b0 b1 Relationship n R2

Baccharis halimifolia 2537.98 0.5313 Linear* 14 0.47

Fraxinus pennsylvanica 2375.53 0.3867 Linear 27 0.90

Persea borbonia 2106.66 0.2735 Linear 17 0.94

Pinus taeda 2341.1 0.4568 Linear 12 0.82

Quercus falcata 2107.28 0.3118 Linear 20 0.69

Quercus michauxii 2184.97 0.3831 Linear 19 0.94

Quercus nigra 2500 0.4267 Linear 24 0.88

Quercus phellos 289.443 0.3705 Linear 19 0.84

Rhus copallinum 2176.75 0.7846 Linear 8 0.74

Salix nigra 9.176 0.6963 Power** 17 0.85

Taxodium distichum 2273.34 0.2143 Linear 29 0.70

*Equation of the form y= b1x+b0.
**Equation of the form y =b0*x

b1.
doi:10.1371/journal.pone.0068251.t002

Table 3. Biomass allometric equations used for each species.

Species Name Equation Used

Baccharis halimifolia ‘‘Mixed Hardwood’’ [36]

Fraxinus pennsylvanica Fraxinus pennsylvanica [37]

Liquidambar styraciflua Liquidambar styraciflua [37]

Nyssa aquatica Nyssa aquatica [37]

Nyssa sylvatica var. biflora Nyssa aquatica [37]

Persea borbonia ‘‘Mixed Hardwood’’ [36]

Pinus taeda Pinus taeda [38]

Quercus michauxii ‘‘Hard Maple, Oak, Hickory, Beach’’ [36]

Quercus falcata Quercus falcata [39]

Quercus nigra Quercus nigra [37]

Quercus phellos ‘‘Hard Maple, Oak, Hickory, Beach’’ [36]

Rhus copallinum ‘‘Mixed Hardwood’’ [36]

Salix nigra Salix spp. [40]

Taxodium distichum ‘‘Cedar, Larch’’ [36]

doi:10.1371/journal.pone.0068251.t003

Table 4. Descriptive statistics for sample carbon biomass
data.

Riverine Non-Riverine All

n 29 47 76

Mean (Mg C/ha) 1.34 0.51 0.83

Std. Dev. (Mg C/ha) 1.91 0.68 1.35

Min (Mg C/ha) 0.03 0.00 0.00

1st Q. (Mg C/ha) 0.19 0.05 0.10

Median (Mg C/ha) 0.58 0.27 0.39

3rd Q. (Mg C/ha) 1.63 0.71 0.91

Max (Mg C/ha) 8.40 2.87 8.40

doi:10.1371/journal.pone.0068251.t004
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AGCB data to the vegetation variables derived from the remote

sensing data. A total of three models were developed: one based on

the LiDAR point variables, another based on the NDVI variables

extracted from the optical imagery, and lastly, a model including

both the LiDAR point variables and the NDVI variables.

In creating the statistical models, the explanatory variables most

highly correlated with AGCB were initially included. Variables

were then added if doing so increased the adjusted R2 value of the

resulting model. Many of the LiDAR-derived height variables

were highly correlated with each other and adding them only

decreased the adjusted R2 value. Some variables, such as the

LiDAR intensity values, were excluded because they were

discovered to be unreliable. The range of intensity values for the

field plots was much smaller than the range of values for the entire

study area. Using them to estimate total biomass would have

required extrapolation well beyond the range of values in the

sample data, leading to unreliable estimates of total biomass. In

creating the regression models, log and square root transforma-

tions of the explanatory and response variables were considered.

Total Biomass Estimation
An analysis grid consisting of 10 m by 10 m cells was overlain

on the entire study area (n = 44763) and for each cell, the remote

sensing variables were calculated and the regression equations

were used to estimate above-ground carbon biomass. For each

regression model, an AGCB estimate for the whole restoration

area was calculated by summing the estimates of all the cells. Some

of the cells had areas of less than 100 m2 because the borders of

the restoration area cut through them. An incomplete cell was

removed from analysis if the total number of LiDAR points falling

within its boundary was less than 50 or if the cell was not large

enough to cover 10 1-m2 NDVI pixels. For the incomplete cells

Figure 2. Histograms of sample AGCB data and modeled AGCB estimates. The top left panel is a histogram of the sample above-ground
carbon biomass data. The other panels are histograms of the plot biomass data predicted by the three models. Each of the three models had
difficulty correctly capturing the observed distribution of AGCB at the study site.
doi:10.1371/journal.pone.0068251.g002
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with sufficient data, the biomass estimates was scaled down based

on the proportion of the 100 m2 area included in the truncated

cell.

Results

Sample Biomass Data
The mean carbon AGCB density over the 76 plots was 0.83 Mg

C/ha (Table 4), with individual plots ranging from 0 to 8.4 Mg C/

ha. Plots dominated by black willow (Salix nigra) trees tended to

have the highest carbon biomass. The 29 riverine plots had a

mean AGCB 0.83 Mg C/ha greater than the mean AGCB for the

non-riverine plots (n = 47, p,0.05). The overall distribution for all

field plots was skewed to lower biomass values (Figure 2, upper left

panel).

Remote Sensing Models and Carbon Estimates
The LiDAR model predicting AGCB was statistically significant

(p,0.01); however, the fit of the model was relatively poor (adj-

R2 = 0.18; RMSE=0.17 Mg C/ha) (Table 5). The LiDAR model

had difficulty accurately predicting the extreme high and low

AGCB values (Figure 3 top panel). It tended to over-predict in

areas of low observed biomass and under-predict in areas of high

observed biomass. For instance, the maximum predicted AGCB

value was only 3.51 Mg C/ha (Table 6), whereas the maximum

observed AGCB value was 8.4 Mg C/ha (Table 4). As a result, the

LiDAR model predicted a relatively homogeneous distribution of

carbon at the study site (Figure 4, left panel). The LiDAR model

predicted a total AGCB estimate of 550 Mg C (1.3 Mg C/ha).

The optical imagery model of AGCB was also statistically

significant (p,0.001) (Table 5). Compared to the LiDAR model,

the fit of the optical imagery model was somewhat better (adj-

R2 = 0.34; RMSE=0.14 Mg C/ha) and it had somewhat more

success capturing the full range of AGCB values in the sample data

(Figure 3, middle panel). The predicted range of carbon was

between 0 Mg C/ha and 10.69 Mg C/ha (Table 6). While the

optical imagery also tended to over-predict in areas of low biomass

and under-predict in areas of high biomass, the amount of bias in

the model was less than in the LiDAR model. As a result, the

optical imagery model predicted a somewhat more heterogeneous

distribution of biomass at the study site (Figure 4, middle panel).

The optical imagery model predicted a total of 810 Mg C (1.8 Mg

C/ha) for the study area.

Like the other two models, the combined LiDAR and optical

imagery model was statistically significant (p,0.001) (Table 5).

Including the variables from the two datasets led to a modest

improvement in fit (adj-R2 = 0.37; RMSE=0.14 Mg C/ha)

compared to the optical imagery model. The combination model

was also slightly more successful in predicting extreme high and

low values, though bias was still evident (Figure 3, lower panel).

The combination model predicted an even more heterogeneous

distribution of biomass across the study site (Figure 4, right panel).

The combined model predicted an AGCB range of 0 Mg C/ha to

11.25 Mg C/ha and a total of 1130 Mg C (2.6 Mg C/ha)

(Table 6).

Discussion

Biomass Distribution
The most successful biomass models, the optical imagery and

the combination models, both described significant heterogeneity

in carbon biomass accumulation at the study site between 2004

and 2008. Ecologically, this finding is somewhat surprising given

that all 750,000 trees were planted at the same time and were

approximately the same size at the time of planting. In the

predicted biomass maps for the optical imagery and the

combination models (Figure 4, middle and right panels), two

interesting patterns in biomass distribution are evident. First, there

Figure 3. Graphs of predicted vs. observed AGCB for the three
remote sensing models. For the three models, the predicted above-
ground carbon biomass values for the 76 EEP plots are graphed against
the above-ground carbon biomass values estimated using field
techniques. Points above the one-to-one line represent plots for which
the model over-estimated AGCB. Points below the one-to-one line
represent plot for which the model under-estimated AGCB. To varying
degrees, all the models over-estimated low observed AGCB values and
under-estimated high observed AGCB values.
doi:10.1371/journal.pone.0068251.g003
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appear to be thin strips of relatively high biomass running

approximately north - south throughout the study area. These

correspond to the locations of old drainage ditches used for

agriculture, which were filled in with top soil during the restoration

process. We speculate that the higher productivity is the result of

deeper soils and higher nutrient content where the former

drainage ditches were filled. Second, the southern part of the

old agriculture field appears to have areas of relatively high

biomass. These are predominantly riverine areas which differ from

non-riverine areas by being more frequently inundated with water

and composed of different tree species. It is unclear, however,

which factor – frequency of water saturation or species compo-

sition – is more responsible for the higher productivity in the

southern part of the study site.

Remote Sensing Model Performance
Our study represents the first attempt to use LiDAR to estimate

above-ground carbon biomass in a recently planted restoration

site. Compared with previous discrete-return LiDAR studies of

mature forests, the LiDAR model in this study was much less

successful, with an adj-R2 of just 0.18. The LiDAR model had

particular difficulty estimating relatively high and relatively low

biomass values. There are several factors that likely contributed to

the LiDAR model’s relatively poor explanatory power compared

to LiDAR models of mature forests. We speculate that the most

significant factor is the relatively small stature of the trees at the

study site. Due to their relatively small footprints, discrete-return

LiDAR systems usually do not scan the whole ground surface.

Instead, they merely sample the ground surface at a finite number

of points. The ability of discrete-return LiDAR to detect and

measure objects on the ground is a function of both the size of the

objects as well as the sampling density. For the 76 vegetation plots

in this study, the LiDAR pulse densities ranged from 5.4 to 9.8

pulses/m2, values that exceed those in previous, more successful

discrete-return LiDAR biomass studies of mature forests [20],

[21], [23]. This implies that the relatively poor performance of the

LiDAR model was not simply due to a lower sampling density.

Even with high pulse densities, however, the actual percentage of

area scanned by a discrete-return LiDAR system can be quite low

in absolute terms. In this study, the footprint for each pulse was

approximately 16.25 cm in diameter, which means that only a

small percentage (,20%) of each plot was effectively scanned

(Figure 5). While even small effective sampling areas might be

large enough to accurately estimate the heights of tall trees, they

may not be large enough to accurately estimate the heights of

small trees or even to detect them at all. We believe that this

difficulty in detecting and measuring the heights of small trees

contributed to relatively poor performance of the LiDAR model,

in particular to the fact that the LiDAR model tended to

underestimate the amount of carbon biomass in plots with a large

number of small trees.

While we believe that the relatively short stature of the

vegetation was the most significant cause of the relatively poor

performance of the LiDAR model, other factors may have been

influential as well. In 2008, the study site was covered with grasses

and sedges in addition to planted trees. The presence of this

herbaceous vegetation was reflected in the LiDAR data by a large

percentage of non-ground returns within one meter of the ground

surface. Returns from trees were extremely difficult to distinguish

from low-elevation returns from herbaceous plants, a fact that

helps to explain why the LiDAR model had difficulty distinguish-

ing plots with high woody biomass from plots with low woody

biomass but a lot of herbaceous plant material. The existence

herbaceous vegetation is more likely to be a difficulty when

modeling biomass in young forests than mature forests, and so this

factor may help explain the relatively poor performance of the

LiDAR model in this study compared to those in studies of mature

forests. Another possible explanation is the fact that the LiDAR

data was collected in mid-November, when leaf senescence was

well underway. Loss of leaves probably contributed to the difficulty

in detecting small trees, and it would help explain why the LiDAR

model performed relatively poorly compared to previous studies

that were conducted during a leave-on time period. However, this

is not a sufficient explanation because at least one previous LiDAR

study of tree height had successful results despite the fact that the

discrete-return LiDAR data was collected during a leaf-off time

period [22]. Finally, collecting reliable field biomass data for this

study was complicated by the fact that most biomass allometric

equations are based on diameter at breast height whereas only

measurements of diameter at ground level were collected as part of

the vegetation monitoring process. This necessitated the develop-

ment of further allometric equations for predicting diameter at

breast height from diameter at ground height. This extra step

likely introduced some amount of error into the sample biomass

data and may have contributed to the poor performance of all the

Table 5. Regression equations for predicting AGCB (Mg C/ha) and total AGCB estimates.

Model Equation Estimated Total AGCB

LiDAR {exp [3.25+0.606log(LiDAR_Mean_Height)] - 1}/10 550 Mg C

Optical {exp[3.78 - 1.406log(NDVI_Mean) +4.806log(NDVI_Max) - 1}/10 810 Mg C

LiDAR+Optical {exp [4.33+0.286log(Lidar_Mean_Height) - 1.056log(NDVI_Mean) + 1130 Mg C

3.966 (NDVI_Max)] - 1}/10

doi:10.1371/journal.pone.0068251.t005

Table 6. Descriptive statistics for model AGCB predictions
over entire study area.

Lidar Optical Lidar+Optical

n 44736 44736 44736

Mean (Mg C/ha) 1.23 1.80 2.53

Std. Dev. (Mg C/ha) 0.35 0.85 1.12

Min (Mg C/ha) 0.00 0.00 0.00

1st Q. (Mg C/ha) 1.03 1.29 1.81

Median (Mg C/ha) 1.21 1.65 2.35

3rd Q. (Mg C/ha) 1.41 2.11 3.02

Max (Mg C/ha) 3.51 10.69 11.25

Estimated Total AGCB (Mg C) 550 810 1130

doi:10.1371/journal.pone.0068251.t006
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models. Since this factor was specific to this study, it may also help

explain why the LiDAR model in this study did not perform as

well as those in previous discrete-return LiDAR biomass studies of

mature forests.

In addition to suggesting that LiDAR-based models are unlikely

to perform as well in areas with low-stature vegetation, our results

also suggest that in these areas optical imagery models may

outperform LiDAR-based models, counter to results that have

been found in previous studies for mature forests. The main

advantage LiDAR offers is the ability to retrieve information about

the vertical structure of a forest with dense canopy cover. For

recently planted or recolonized landscapes, where the tree-heights

are low and the vertical structure of the vegetation is relatively

homogeneous, LiDAR may have few advantages over optical

imagery. However, the fact that the optical imagery was collected

during a leave-on period whereas the LiDAR data was collected

during a leaf-off period may also help explain why the optical

imagery model performed better than the LiDAR model in this

study.

Conclusions and Recommendations
The results of this study suggest that while discrete-return

LiDAR data has been used successfully to model biomass in

mature forests, similar results should not necessarily be expected in

areas with relatively short-stature vegetation. At the Timberlake

study site, the absolute performance of the LiDAR model could be

improved, however, by collecting the LiDAR data during a leave-

on period and by developing methods for collecting more reliable

field data (e.g. developing biomass allometric equations based on

diameter-at-ground level instead of diameter-at-breast height).

Nevertheless, the fact that smaller trees are more difficult to detect

using discrete-return LiDAR suggests that, other things being

equal, a drop-off in model performance, and perhaps a significant

one, can be reasonably expected for areas with relatively short

stature vegetation compared with areas of large trees.

In the context of a future carbon offset market, the expected

difficulty of detecting small trees with discrete-return LiDAR

should be considered when selecting a method for estimating

carbon sequestration in an area that has been recently reforested

or afforested. The results of this study suggest that optical imagery

may prove to be the more reliable tool. However, given that all of

the remote sensing models did a relatively poor job of capturing

the observed variation in biomass (all adj-R2,0.4), it is unclear

whether remote sensing methods are actually more reliable than

the simpler method of scaling up from the sample data. We

recommend more research comparing the abilities of both remote

sensing methods and non-remote sensing methods for estimating

carbon biomass in areas with relatively small trees. The difficulty

of detecting small trees could be mitigated by increasing the pulse

density of the collected discrete-return LiDAR data. Doing so,

however, would make the LiDAR data acquisition more expensive

due to the need for more over-flights of the aircraft. The problems

associated with detecting small trees could perhaps also be

mitigated by using full-waveform LiDAR instead of discrete-

return LiDAR. Because full-waveform LiDAR pulses have larger

footprints, they sample larger areas and thus are less likely to miss

small trees. The downside of this approach, however, is that full-

waveform LiDAR systems are not yet widely available for either

scientific or commercial use. We also recommend that future

research attempt to quantify the accuracies of biomass estimates as

well as the economic tradeoffs. This information would be helpful

for policy makers when choosing methods for estimating carbon

Figure 4. Maps of estimated AGCB created using the three remote sensing models. These maps were created by applying the biomass
models to the respective remote sensing datasets which covered the entire study area. Note the differences in overall carbon biomass density and
differences in the distribution of biomass at the study site as predicted by the three models.
doi:10.1371/journal.pone.0068251.g004
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sequestration methods in the context of a large-scale climate

change mitigation program.
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