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Abstract
The ubiquitin-proteasome system for protein degradation plays a major role in regulating

cell function and many signaling proteins are tightly controlled by this mechanism.

Among these, Regulator of G Protein Signaling 2 (RGS2) is a target for rapid proteasomal

degradation, however, the specific enzymes involved are not known. Using a genomic

siRNA screening approach, we identified a novel E3 ligase complex containing cullin 4B

(CUL4B), DNA damage binding protein 1 (DDB1) and F-box protein 44 (FBXO44) that

mediates RGS2 protein degradation. While the more typical F-box partners CUL1 and

Skp1 can bind FBXO44, that E3 ligase complex does not bind RGS2 and is not involved in

RGS2 degradation. These observations define an unexpected DDB1/CUL4B-containing

FBXO44 E3 ligase complex. Pharmacological targeting of this mechanism provides a

novel therapeutic approach to hypertension, anxiety, and other diseases associated with

RGS2 dysregulation.

Introduction
The ubiquitin-proteasomal pathway of protein degradation controls critical biological func-
tions including cell cycle and gene transcription [1–4] and dysregulation can result in accumu-
lation of misfolded proteins, cell cycle arrest and uncontrolled cell proliferation. Consequently,
disease states such as cancer and cardiovascular disease can be related to defects in this machin-
ery [1,5–8]. This intricate system involves the coupling of a chain of ubiquitin molecules onto
the target protein through a series of enzymes; E1, ubiquitin activating enzyme; E2, ubiquitin
conjugating enzyme and E3 ligases. The ubiquitin chain is then recognized by the 26S protea-
some, which degrades the target protein. The diverse and complex mechanisms for proteasome
substrate recognition [4] arises from the large family (>600) of mammalian E3 ligases [2].

General proteasome inhibitors, such as Bortezomib (PS-341; Velcade) and carfilzomib have
found value for the treatment of multiple myeloma and other cancers [9,10]. Not surprisingly,
given the numerous processes regulated by the proteasome, these drugs are associated with a
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broad array of side effects. More selective strategies such as targeting specific E3 ligases have re-
cently been successful in cancer drug discovery with the development of several inhibitors of
the tumor suppressor p53 binding to its E3 ligase MDM2 [11–15]. However, further insight
into specific E3 ligase selectivity is needed to apply this strategy to other clinically relevant
degradation pathways.

Regulator of G Protein Signaling (RGS) proteins have received increasing attention as drug
targets [16–20]. RGS proteins reduce the amplitude and duration of signaling through G pro-
tein-coupled receptors (GPCRs) through their GTPase accelerating protein (GAP) activity to-
wards active (GTP-bound) Gα subunits of heterotrimeric G proteins [20,21]. Many clinically
used drugs (~25–40%) act on GPCRs or related processes so there is a huge potential for RGS
proteins in drug discovery. In the past decade several RGS inhibitors have been described [22–
24], however, increasing the activity of a protein using small molecules is challenging.

RGS2 is widely expressed throughout the cardiovascular system (e.g. heart, kidney and vas-
cular smooth muscle) as well as in the central nervous system [25–29]. It inhibits signaling
through a number of GPCRs mediating vasoconstriction, such as Angiotensin II and Endothe-
lin-1 receptors and consequently RGS2-/- mice exhibit hypertension and prolonged responses
to vasoconstrictor agents [30]. Furthermore, decreased protein levels (and activity) of RGS2
have been implicated in the progression of prostate cancer [31] and anxiety [32–34]. Thus,
finding selective ways to increase RGS2 protein levels could have broad clinical implications.
We previously showed that digoxin-mediated stabilization of RGS2 protein levels has function-
al effects on GPCR signaling [35], demonstrating that increased RGS2 protein levels correlates
with enhanced functionality.

RGS2 has a very short protein half-life due to rapid proteasomal degradation [35,36] and
general proteasome inhibitors, such as MG-132, significantly increase RGS2 protein levels in
vitro [35]. For the closely related RGS4 and RGS5 proteins the precise molecular mechanism
for protein degradation has been described [37–39]. However, the enzymes that are responsible
for RGS2 protein degradation have yet to be identified. The elucidation of these mechanisms
would provide novel, selective strategies for the development of small-molecule stabilizers of
RGS2.

In the current study we used high-throughput siRNA screening to identify genes that are in-
volved in RGS2 protein degradation. Hits, or those genes that, when removed, increased RGS2
protein levels were confirmed by siRNA knock-down and overexpression studies as well as ef-
fects on RGS2 protein half-life. We further demonstrated association between RGS2 and degra-
dation components by a series of co-immunoprecipitation studies. Together these experiments
led to the identification of a novel cullin 4B (CUL4B)/DNA damage binding protein (DDB1)/
F-box 44 (FBXO44) E3 ligase complex responsible for RGS2 protein degradation. We also
identify the first association of an F-box-only protein with a CUL4 complex. Although
FBXO44 was also found to associate with its cognate partners Skp1 and CUL1, that complex is
unable to degrade RGS2, highlighting the complexity of substrate recognition mechanisms
within the ubiquitin-proteasomal pathway. These new findings reveal possible novel drug tar-
gets for selective enhancement of RGS2 function.

Experimental Procedures

Materials
MG-132 was purchased from Calbiochem (Quincy, MA). If not otherwise indicated all chemi-
cals were from Sigma-Aldrich (St Louis, MO) and all tissue culture supplies were from Invitro-
gen/Gibco (Grand Island, NY). siGENOME SMART-POOL siRNA was obtained from
Dharmacon/GE Healthcare (Lafayette, CO)
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DNA constructs
pcDNA3.1-RGS2-HA and pcDNA3.1-RGS4-HA have been previously described [36] as have
pCMV-C3-RGS2-ProLabel and pCMV-C3-RGS4-ProLabel [35]. FLAG-FBXO44 and
FLAG-FBXO44ΔN were gifts from Kevin Glenn, University of Iowa. pcDNA3-myc3-CUL4A
and pcDNA3-myc3-CUL4B were obtained through Addgene [40].

Antibodies
Rat anti-HA was from Roche (11867423001; Pleasanton, CA) and rabbit anti-ubiquitin FK1
was fromMillipore (Billerica, MA). Mouse anti-FLAG (F3040), rabbit anti-FLAG (F7425), rab-
bit anti-CUL4A (SAB1411512), rabbit anti-CUL4B (SAB2107673), rabbit anti-FBXO44
(HPA003363), Rabbit anti-rat-HRP (A5795) and goat anti-rabbit-HRP (A0545) were from
Sigma-Aldrich. Rabbit anti-CUL1 (#4995), rabbit anti-Skp1 (#12248) and rabbit anti-DDB1
(#6998) were from Cell Signaling (Danvers, MA). Rabbit anti-HA (sc-805), goat anti-Actin-
HRP (sc-1615) and goat anti-mouse-HRP antibody (sc-2060) were from Santa Cruz (Santa
Cruz, CA). Rabbit anti-RGS2 antibody was a gift from Dr. David Siderovski, University of
North Carolina.

Cells and transfections
The culture conditions of HEK-293 cells and the development of stable HEK-293 cell lines ex-
pressing RGS2-ProLabel or RGS4-ProLabel has been previously described [35]. Cells were
transfected with DNA plasmids using Lipofectamine 2000 (Invitrogen) under serum free con-
ditions in Opti-MEM (GIBCO, 31985). For transient transfections, experiments were run 24 h
after transfection.

siRNA transfections were performed using 25 nM siGENOME SMART-POOL siRNA
(Dharmacon/Thermo Scientific, Pittsburgh, PA) using Lipofectamine 2000; experiments were
performed 48 h after transfection.

Celltiter Fluor viability and PathHunter ProLabel assay
The multiplex procedure for the Celltiter Fluor viability assay and the PathHunter ProLabel
assay has been previously described [35]. The PathHunter ProLabel protein expression assay
(DiscoveRx) was performed immediately following the viability assay. Chemiluminescence
corresponding to relative RGS2 or RGS4 protein expression was detected on a Pherastar plate
reader (BMG, Cary, NC).

siRNA screen
The druggable genome subset of the human siGENOME SMART-POOL siRNA library [41]
was introduced into RGS2-PL cells through reverse transfection in 384-well plates (Corning
#3570, Tewksbury, MA). Briefly, 5 μl siRNA (250 nM; final concentration 25 nM) was spotted
in each well. Non-targeting siRNA (SMART-POOL #1) was used as background control and
siTOX, PLK1 and Kif-11 were used as transfection efficiency controls. Lipofectamine RNAi-
MAX was diluted in OPTI-MEM to 40 μl/ml and incubated at room temperature for 10 min.
5 μl (0.2 μl RNAiMAX/well) was added to each well and the plates were incubated for 30 min
at room temperature. Cells were trypsinized, counted in a Countess automatic cell counter
(Invitrogen) and re-suspended in OPTI-MEM, 1% FBS to a concentration of 250,000 cells/ml.
40 μl of cell mixture was added to each well (10,000 cells/well). After 24 h, 5 μl Passive Lysis
buffer (Promega, Madison, WI) was added in each corner well to create zero controls for the
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viability assay and 10 μMMG-132 was added as a positive control for RGS2
protein upregulation.

The Celltiter Fluor (Promega) and PathHunter ProLabel (DiscoveRx, Freemont, CA) assays
were performed 48h after transfection [35]. Data was uploaded to the MScreen database (Cen-
ter for Chemical Genomics, University of Michigan) and analyzed for genes that, when
knocked down, increased RGS2-PL levels>3 SD above levels with non-targeting siRNA.

Bioinformatic analysis
To assess global gene expression levels in HEK 293 cells without siRNA knockdown http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM258517 "HEK293, Control RNA treatment"
was chosen as characteristic of control expression levels. Each gene on this array was annotated
according to the quantile associated with the observed expression level and these data were
used to annotate genes found to be responsive to siRNA knockdown. GeneGo analysis with the
"Analyze Network" algorithm was performed, using the siRNA responsive genes to seed the
network. In addition, ConceptGen analysis of the siRNA response genes was performed to re-
veal enriched GOMolecular Function concepts.

siRNA confirmation of degradation hits
Based on the bioinformatics analysis 21 genes involved in protein degradation were identified
as hits in the siRNA screen for genes that regulate RGS2 protein levels. Each siGENOME
SMART-POOL contains a mix of four siRNA oligos targeting different regions of the gene of
interest. To confirm the results from the screen each individual oligo from the 21 protein deg-
radation genes was ordered and subjected to the same assay as the primary screen. siRNA was
introduced in the RGS2-PL cells through reverse transfection as described above and the Cellti-
ter Fluor and PathHunter ProLabel assay was run 48h after transfection. For a gene to be con-
sidered a confirmed hit at least 2 of the 4 oligos needed to have an effect on RGS2
protein levels.

Preparation of cell lysates
Cells were harvested and lysed on ice in RIPA buffer containing phosphatase and protease in-
hibitors (20 mM Tris-HCl, pH7.4, 150 mMNaCl, 1 mM EDTA, 1 mM β-glycerophospate, 1%
Triton X-100, 0.1% SDS, 2mMNa3VO4, Complete protease inhibitor cocktail EDTA-free
(Roche)). Lysates were transferred to plastic centrifuge tubes and sonicated for 10 min at 4°C,
centrifuged at 500×g for 3 min and the supernatant used for SDS-PAGE and immunoblotting.

Preparation of tissue lysates
Heart tissue from C57/Bl6 mice was homogenized using a bullet blender (NextAdvance) in
300 μl lysis buffer containing protease and phosphatase inhibitors (20 mM Tris-HCl (pH 7.4),
150 mM NaCl, 2 mM EDTA, 5% glycerol, 1% Triton-X100, 2 mMNa2VO4, Complete protease
inhibitors, EDTA-free (Roche)).

SDS-PAGE andWestern blot
Protein concentration in the cell and tissue lysates was adjusted with Laemmli buffer (BioRad,
Hercules, CA) and equal amounts of protein in each lane were resolved on a 12% SDS-PAGE
gel for 1 h at 160 V. Samples were transferred to an Immobilon-P membrane (Millipore) and
subjected to Western immunoblot analysis using Tris-buffered saline (10 mM Tris, pH 8.0,
150 mMNaCl), 0.1% Tween-20 (TBS-T), 5% (w/v) nonfat dry milk for blocking and antibody
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diluent. The membrane was washed four times after each antibody in TBS-T and the protein
bands were visualized on autoradiography film using the Super Signal West Pico chemilumi-
nescent substrate (Pierce).

Co-immunoprecipitation
Cells were washed with ice-cold PBS and harvested in lysis buffer (20 mM Tris-HCl (pH 7.4),
150 mM NaCl, 2 mM EDTA, 5% glycerol, 1% Triton-X100, 2 mMNa2VO4, Complete protease
inhibitors, EDTA-free (Roche)). Lysis proceeded on ice for 30 min followed by centrifugation
for 10 min at 10,000×g followed by pre-clearing with 50 μl Protein G-agarose beads (Roche)
and rotation for 30 min at 4°C. Tissue lysates were subjected to the same pre-clearing step.
1 mg/sample was subjected to immunoprecipitation using 1 μg of indicated antibodies and
50μl Protein G-agarose with constant rotation for 2 h at 4°C. Following several washes with
lysis buffer, bound proteins were eluted in Laemmli buffer (BioRad, Hercules, CA) and subjected
to SDS-PAGE andWestern blot. In cases where only one antibody was available for a protein
(such as for endogenous FBXO44) Protein A-HRP (Life Technologies) was used for detection.

Data analysis
Western blot images were scanned and quantified using the ImageJ software (NIH, Bethesda,
MD). All data were analyzed using GraphPad Prism 6.0 (GraphPad; La Jolla, CA). Dose re-
sponse curves were fit using non-linear regression. Datasets were analyzed with one-way
ANOVA with Bonferroni’s post hoc test for multiple comparisons. Data are presented as
mean ± S.D. with a p-value less than 0.05 considered significant.

Results

Distinct mechanisms of RGS2 and RGS4 protein degradation
Both RGS2 and RGS4 are rapidly degraded by the proteasome [35,36]. In line with this, both
RGS2 and 4 protein levels are increased [35,36], to a similar magnitude, by proteasome inhibi-
tion (Fig 1A and 1B). Furthermore, treatment with the proteasome inhibitor MG-132 results in
poly-ubiquitination of RGS2 (Fig 1C and [42]), strongly implicating the ubiquitin-proteasomal
pathway in RGS2 protein degradation.

RGS4 is a known substrate for the N-end rule pathway of proteasomal degradation and is
targeted to this system by arginyl transferase (encoded by ATE-1) [37,38]. Based on its N-ter-
minal sequence we had proposed [43] that RGS2 would also be an ATE-1 substrate (Fig 1D).
As expected [37,44], siRNA-mediated knock-down of ATE-1 resulted in a substantial increase
in RGS4 protein levels (Fig 1E and 1F). In contrast, RGS2 protein levels were unaffected by
ATE-1 siRNA. Consequently, RGS2 proteasomal degradation must utilize a
different mechanism.

High-throughput siRNA screen to identify genes involved in RGS2
protein degradation
We utilized the “druggable genome” subset of the Dharmacon siGENOME SMART-POOL
siRNA library in a high throughput screen of changes in RGS2 protein levels. This library in-
cludes ~3,200 genes representing druggable targets, as well as a majority of genes (for proteases
and Ub ligases) involved in protein degradation. As a robust platform to efficiently detect
RGS2 protein levels we used the DiscoveRx PathHunter ProLabel HTS-compatible β-galactosi-
dase complementation assay previously described [35] (Z-factor 0.72). The screen was
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performed in triplicate of each siRNA SMART-POOL in 384-well plates and cells were assayed
for RGS2 expression 48 hours after transfection.

Hits were defined when RGS2 protein expression increased>3 S.D. above non-targeting
siRNA for at least two out of the three siRNA replicates. Bioinformatic analysis and gene classi-
fications of the hits are presented in S1 Table. Since the primary objective was to identify RGS2
degradation mechanisms we focused on genes involved in proteasomal degradation. Since the
SMART-POOL siRNA contains four oligos, we used the individual oligos for follow-up, which
revealed cullin 4B (CUL4B) and F-box 44 (FBXO44) as the top hits (S2 Table) so we investigat-
ed the role of these two proteins in RGS2 protein degradation.

RGS2 protein levels are regulated by FBXO44 and CUL4B
SiRNA-mediated knock-down of FBXO44 or CUL4B, but not CUL4A, resulted in a significant
increase in RGS2 protein, in the PathHunter ProLabel assay (Fig 2A). Little is known about the
function of FBXO44 and only a few specific functions have been attributed to CUL4B [45,46].
These results raise the possibility of a novel E3 ligase complex containing these two proteins in
RGS2 degradation. Consistent with this, overexpression of either CUL4B or FLAG-FBXO44
significantly decreased RGS2 protein levels. In contrast, overexpression of CUL4A had no sig-
nificant effect on RGS2 protein levels (Fig 2B).

If CUL4B and FBXO44 are involved in RGS2 degradation, then reducing their expression
should prolong the half-life of RGS2 protein. To confirm this prediction, HEK-293 cells were
transiently transfected with RGS2-HA and siRNA against FBXO44, CUL4A or CUL4B then
treated with cycloheximide to inhibit protein synthesis. Consistent with our previous work
[35], RGS2 had a very short protein half-life of 16±4 min with non-targeting siRNA (Fig 2C–
2G) but was significantly increased when cells were transfected with siRNA against either
FBXO44 (Fig 2C, 2D and 2G; t1/2 = 31±6 min) or CUL4B (Fig 2C, 2F and 2G; t1/2 = 43±13 min).
CUL4A siRNA had no significant effect on RGS2 protein half-life (Fig 2C, 2E and 2G; t1/2 =
19±2 min), further establishing the selectivity between CUL4A and CUL4B in regulating RGS2
protein stability.

FBXO44 associates with RGS2
Since F-box proteins are responsible for substrate recognition in cullin-RING ligase (CRL)
complexes [47] one would expect FBXO44 to bind RGS2. Indeed, RGS2-HA co-immunopre-
cipitated FLAG-FBXO44 (Fig 3A). In the reciprocal experiment FLAG-FBXO44 could co-im-
munoprecipitate RGS2-HA (Fig 3B), suggesting that these two proteins can exist in a complex
in cells. Reduction in RGS2 protein levels was again observed in both cases when
FLAG-FBXO44 was co-expressed. In contrast, neither wild-type RGS4 (data not shown) nor a
stabilized mutant of RGS4 (RGS4C2S; Fig 3C) immunoprecipitated with FLAG-FBXO44, fur-
ther establishing the specificity of the FBXO44 mechanism for RGS2 over another closely relat-
ed and rapidly degraded RGS protein.

Fig 1. Protein expression of both RGS2 and RGS4 is dramatically increased by the proteasome inhibitor MG-132 as shown byWestern blot (A) and the
chemiluminescence-based PathHunter ProLabel assay (B). C. Co-immunoprecipitation of HEK-293 cells transiently transfected with RGS2 and HA-ubiquitin
with or without treatment with 10μMMG-132. Proteasome inhibition results in a marked increase in protein levels and poly-ubiquitination of RGS2.D. The N-
end rule pathway for the known substrate RGS4 and the hypothetical pathway for RGS2 (C; cysteine, G; glutamine; E; glutamic acid, R; arginine). ATE-1
siRNA results in a significant increase in protein levels of RGS4, but has no effect on RGS2 protein levels by the PathHunter ProLabel assay (E) andWestern
blot (F). In both assays the protein levels of each RGS protein is compared to the levels with non-targeting siRNA (NT), but note that basal protein levels of
RGS4-HA are much lower than RGS2-HA. Data are presented as mean ± S.D. of 3 independent experiments run in triplicate; **P<0.01; ***P<0.001 using
one-way ANOVAwith Bonferroni’s post hoc test for pairwise comparisons.

doi:10.1371/journal.pone.0123581.g001
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Fig 2. A. Increased RGS2 protein levels (PathHunter ProLabel assay) result from siRNA-mediated knockdown of CUL4B or FBXO44, but not of CUL4AB.
Overexpression of CUL4B and FBXO44 decreases RGS2 protein levels whereas CUL4A overexpression has no effect.C-G. FBXO44 and CUL4B regulate
RGS2 protein stability. HEK-293 cells were transiently transfected with RGS2-HA and treated with cycloheximide (10μg/ml) to inhibit protein synthesis.
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FBXO44 belongs to the FBA (for F-box associated) family of F-box proteins that contain no
distinct additional protein domains apart from the F-box domain, [48]. To determine the role
of the F-box domain for association of FBXO44 with RGS2 we used FBXO44 lacking the N-ter-
minus and F-box, FBXO44ΔN (Fig 3D). RGS2 could still co-immunoprecipitate FBXO44ΔN
(Fig 3E), showing that the N-terminus and F-box domain are not essential for association with
RGS2.

Representative Western blots (C) and time-course plots showing prolonged RGS2 protein half-life after either FBXO44 (D) or CUL4B (F) but not CUL4A (E)
siRNA. Values were normalized to the level at 0 min (no cycloheximide), using actin as a loading control.G.Quantification of RGS2 protein half-life after
siRNA-mediated knockdown of FBXO44, CUL4A and CUL4B. Data are presented as mean ± S.D. of 3 independent experiments run in triplicate; *P<0.05;
**P<0.01; ***P<0.001 using one-way ANOVA with Bonferroni’s post hoc test for pairwise comparisons.

doi:10.1371/journal.pone.0123581.g002

Fig 3. A. FLAG-FBXO44 co-immunoprecipitates with RGS2-HA. B. The reciprocal experiment shows that RGS2-HA co-immunoprecipitates with
FLAG-FBXO44. Also note that co-expression with FLAG-FBXO44 reduces total protein levels of RGS2-HA. C. RGS4C2S-HA does not co-immunoprecipitate
FLAG-FBXO44. The RGS4C2S-HAmutant was used due to the low protein expression obtained with wild-type RGS4-HA. D. Schematic of full length FBXO44
and FBXO44ΔN. E. RGS2-HA co-immunoprecipitates both full length FBXO44 and FBXO44ΔN. F. RGS2 immunoprecipitates with FBXO44 in lysates from
mouse whole heart tissue.

doi:10.1371/journal.pone.0123581.g003
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To further validate the association between RGS2 and FBXO44 we demonstrated successful
co-immunoprecipitation of endogenous proteins from mouse heart tissue lysate (Fig 3F).
These data confirm the association between RGS2 and FBXO44 in a biologically
relevant system.

CUL4B, but not CUL1, regulates RGS2 protein levels
F-box proteins are generally associated with Skp1 and CUL1 in SCF (Skp-cullin-F-box) com-
plexes and association of an F-box protein with CUL4 has not previously been described.
Hence, we next investigated whether FBXO44 could associate with CUL4B. Indeed,
FLAG-FBXO44 could co-immunoprecipitate CUL4B (Fig 4A). The closely related CUL4A did
not co-immunoprecipitate with FLAG-FBXO44, despite ample protein expression of CUL4A.

As expected FLAG-FBXO44 also co-immunoprecitated its canonical interaction partner
CUL1 (Fig 4B). We therefore used CUL1 siRNA to see if RGS2 could also be regulated by
CUL1. In contrast to FBXO44 and CUL4B, siRNA-mediated knockdown of CUL1 had no ef-
fect on RGS2 protein levels as demonstrated by both the PathHunter ProLabel assay (Fig 4C)
and western blot (Fig 4D and 4E). Furthermore, simultaneous knockdown of CUL4B and
FBXO44 had no additive effects on RGS2 protein levels (Fig 4C) suggesting that the two pro-
teins regulate RGS2 protein levels through a shared mechanism.

DDB1, but not Skp1, is involved in RGS2 protein degradation
In the classical SCF complex, Skp1 serves as the link between CUL1 and F-box proteins. In
CUL4B complexes, DNA damage binding protein 1 (DDB1) serves a similar role. Neither Skp1
nor DDB1 were among the genes included in the primary screen. We therefore investigated
whether Skp1 or DDB1 would associate with RGS2 and regulate its protein degradation. Co-
immunoprecipitation using FLAG-FBXO44 demonstrated that both Skp1 and DDB1 can asso-
ciate with FBXO44 in cells (Fig 5A; left). However, RGS2-HA associated only with DDB1 (Fig
5A; right). We also looked at the role of the N-terminus and F-box domain of FBXO44 for as-
sociation with Skp1, DDB1 and CUL4B. In contrast to the association with RGS2 (Fig 3E), the
N-terminal region and/or the F-box domain of FBXO44 is essential for association with Skp1,
DDB1 and CUL4B (Fig 5B) as only full length but not FBXO44ΔN was able to co-immunopre-
cipitate these three proteins. This is in line with previous literature demonstrating that the F-
box domain is responsible for binding to Skp1 and suggests that FBXO44 also associates with
CUL4B-DDB1 complexes through its N-terminal region.

We next investigated the effects of siRNA knockdown of Skp1 and DDB1 on RGS2 protein
levels. siRNA-mediated knockdown of DDB1 significantly increased RGS2 protein levels, while
reducing Skp1 expression had no effect on RGS2 protein levels (Fig 5C–5E).

Taken together our data provide strong evidence that RGS2 protein degradation is mediated
by a novel CUL4B-DDB1-FBXO44 E3 ligase. Although FBXO44 also associates with a
CUL1-Skp1 complex, this E3 ligase complex appears to be incapable of recruiting and degrad-
ing RGS2 (Fig 6).

Discussion
Over the past decade it has become clear that low RGS2 protein levels are associated with dis-
eases as diverse as hypertension [30,49], heart failure [50–52], prostate cancer [31], and anxiety
[32,33]. Also, protein degradation can be a major mechanism to reduce RGS2 protein levels.
Wild-type RGS2 has a very short protein half-life [35] and human SNPs associated with hyper-
tension (e.g. Q2L in a Japanese population [53]) are characterized by low protein levels in vitro
[36]. Pharmacologically increasing RGS2 protein levels has functional effects on GPCR
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signaling [35] suggesting that inhibiting RGS2 protein degradation could have broad therapeu-
tic applications. The RGS2-FBXO44 protein-protein association identified here could be a
novel site for small molecule modulators of RGS2 protein levels with much greater specificity
than general proteasome inhibition.

Apart from RGS2, several other RGS proteins, including RGS4, 5 and 16 are substrates for
rapid proteasomal degradation [36,37]. Indeed, our lab previously showed that both RGS2 and
RGS4 are degraded through the proteasome [36] and that RGS4 seems to be more heavily

Fig 4. A. Endogenous CUL4B, but not CUL4A is co-immunoprecipitated with FLAG-FBXO44 in HEK-293T cells.B. FLAG-FBXO44 associates with both the
canonical SCF component CUL1 as well as CUL4B. As shown with both the PathHunter ProLabel assay (C) andWestern blot (D, E), CUL1 siRNA has no
significant effect on RGS2 protein levels. There is no additive effect of simultaneous siRNA knockdown of FBXO44 and CUL4B. Data are presented as
mean ± S.D. of 3 independent experiments run in triplicate; ***P<0.01; ***P<0.001 using one-way ANOVAwith Bonferroni’s post hoc test for
pairwise comparisons.

doi:10.1371/journal.pone.0123581.g004
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regulated as demonstrated by lower basal protein levels and a larger effect of the proteasome in-
hibitor MG-132. In the present study we did not observe a difference in the magnitude of MG-
132-induced increases in RGS2 vs. RGS4 (Fig 1A), however the basal protein levels of RGS4
was lower than RGS2 also in our study. The difference between the two studies can, however,
be accounted for by the use of different treatment duration and concentration of MG-132. Bod-
enstein et al. conducted all experiments using 20 μMMG-132 for 4 hours [36] whereas in our
current study we used 10 μM overnight (16–18 hours), when a single concentration
was chosen.

RGS4 and 5 are well-known substrates for the N-end rule pathway and the Harper lab dem-
onstrated that RGS4 is degraded by the N-degron-specific E2/E3 pairs USE1/UBR1 and UBE2/
UBR1 [39]. We now show that RGS2 is ubiquitinated (Fig 1C) and subject to rapid degradation
by the proteasome [35,36]. Despite the similarities, RGS2 and RGS4 clearly utilize distinct
pathways for proteasomal targeting. Our results define a novel CRL complex involved in
RGS2 degradation.

To date over 600 E3 ligases have been identified and they are divided into several classes of
which the CRL family is by far the largest (reviewed in [54–56]). The current study identifies a
novel substrate for CUL4B, RGS2, which is not regulated by the very closely related CUL4A.
Despite the high similarity between these proteins (80% sequence homology), several other
CUL4B-specific substrates have been identified previously, including Peroxiredoxin III [46],
Jab5 [57] and Histone H2A [45]. In contrast, substrates specific for CUL4A have yet to
be identified.

Fig 5. A. FLAG-FBXO44 associates with both Skp1 and DDB1 (left) whereas RGS2 only associates with DDB1 (right). B. The N-terminus and/or the F-
box domain of FBXO44 is necessary for association with CUL4B, DDB1 and Skp1 as FBXO44ΔN does not co-immunoprecipitate either protein. Note that
endogenous FBXO44 is recognized by the FBXO44 antibody used for Western blot. Hence, two bands (endogenous full length and transiently expressed
FBXO44ΔN) are detected in the input. As shown with both Western blot (C, D) and the PathHunter ProLabel assay (E) DDB1 siRNA causes a significant
increase in RGS2 protein levels whereas knockdown of Skp1 has no effect. Data are presented as mean ± S.D. of 3 independent experiments run in
triplicate; **P<0.01; ***P<0.001 using one-way ANOVA with Bonferroni’s post hoc test for pairwise comparisons.

doi:10.1371/journal.pone.0123581.g005

Fig 6. Model of a CUL4B/DDB1/FBXO44 E3 ligase complex responsible for RGS2 protein degradation.
FBXO44 also associates with a CUL1/Skp1 complex, however this complex is unable to regulate RGS2
protein degradation.

doi:10.1371/journal.pone.0123581.g006

A CUL4B/DDB1/FBXO44 E3 Ligase Degrades RGS2 Protein

PLOS ONE | DOI:10.1371/journal.pone.0123581 May 13, 2015 13 / 18



F-box proteins are the substrate-recognizing component of SCF complexes [47] and to date
over 50 mammalian F-box proteins have been identified. FBXO44 is a member of the FBA fam-
ily (FBXO2, FBXO6, FBXO17, FBXO27 and FBXO44) [58] which are all predicted to bind gly-
coproteins through the C-terminal domain. However, despite the high sequence similarity with
the other members, FBXO44 does not bind these substrates [58]. Recently BRCA1 was identi-
fied as a novel substrate for FBXO44 [59]. Low protein expression of BRCA1 is known to pro-
mote breast- and ovarian cancers and FBXO44 promotes ubiquitination and degradation of
BRCA1. Furthermore, high levels of FBXO44 (and low levels of BRCA1) could be found in
human breast cancer tumors [59] providing a rationale for targeting FBXO44. Interestingly,
Lyu et al. found RGS2 mRNA levels to be down-regulated in both human breast cancer tissue
as well as in invasive breast cancer cell lines [42]. Furthermore, overexpression of RGS2 could
suppress cancer cell growth. They also identified that the deubiquitinating enzyme (DUB)
MCPIP1 can stabilize RGS2 protein. This finding, together with our present results, suggests
that RGS2 protein stability could be a promising avenue in the treatment of breast cancer. It
also sheds light on how RGS2 protein levels are regulated by the ubiquitin-proteasome system.

While FBXO44 does interact with its canonical complex CUL1/Skp1, it also associates with
CUL4B/DDB1. Surprisingly, only the latter complex is capable of recruiting and degrading
RGS2 protein. The mechanism for this specificity is unclear. Binding of FBXO44 to Skp1 or
DDB1, respectively could cause distinct conformations to either favor or inhibit RGS2 protein
binding (see Fig 6). Indeed, Skp1 has previously been suggested to stabilize conformations of
F-box proteins that favor substrate binding [60] and it is feasible to suggest that the same is
true for DDB1.

Further biochemical studies are needed to characterize the association between FBXO44
and CUL4B-DDB1 on a molecular level. CUL4-DDB1 complexes can interact with proteins
containing an F-box domain but generally in the context of a WD40 motif [61]. Hu et al.
showed that FBW5 (containing both WD40 and F-box domains) can promote degradation of
the tumor suppressor tuberous sclerosis gene 2 through association with a CRL4 complex [62].
Our study is the first to identify a CUL4-F-box protein association in the absence of a WD40
domain, further adding complexity to the CRL E3 ligase system. The canonical Gα-RGS2 inter-
action raises questions in this regard. Gβ contains WD40 motifs that are crucial to their func-
tion [63]. Based on our experimental results we cannot exclude the possibility that other
proteins are mediating the interaction between FBXO44 and RGS2. Further studies are needed
to elucidate this mechanism.

RGS2 is highly expressed in brain, heart, kidney and vascular smooth muscle cells. A ge-
nome-wide screen of mRNA transcripts previously revealed that FBXO44, CUL4B and DDB1
seem to be widely expressed, including in tissues where RGS2 is also present [64]. In the cur-
rent study we demonstrated that RGS2 associates with FBXO44 in heart tissue. Previous litera-
ture indicates that FBXO44 is also expressed in the brain but not the kidney [58], opening up
the possibility for tissue-specific regulation of RGS2 protein levels. However, the previous
study also did not detect FBXO44 protein in the heart. Hence, the tissue distribution of
FBXO44 still needs complete elucidation.

In conclusion, we have defined a novel multiprotein E3 ligase capable of RGS2 degradation,
where F-box substrate specificity is uniquely dependent on a CUL4B/DDB1 context. Future
studies will further dissect the molecular basis of RGS2 protein degradation and evaluate this
mechanism as a potential druggable target.

A CUL4B/DDB1/FBXO44 E3 Ligase Degrades RGS2 Protein

PLOS ONE | DOI:10.1371/journal.pone.0123581 May 13, 2015 14 / 18



Supporting Information
S1 Table. Bioinformatic classification of hits from siRNA screen for genes that regulate
RGS2 protein expression.
(DOCX)

S2 Table. Genes involved in ubiquitin-proteasome-mediated protein degradation that were
primary hits in the siRNA screen for up-regulation of RGS2 protein expression.
(DOCX)

Acknowledgments
The authors thank Dr. Kevin Glenn (University of Iowa) for providing the FBXO44 constructs
and Richard C. McEachin at the University of Michigan Bioinformatics Core for assistance
with data analysis. Tonia Buckholz (CCG), Jason Gestwicki (Life Science Institute) and Mat-
thew Scaglione (Department of Neurology, University of Michigan) provided helpful advice.

Author Contributions
Conceived and designed the experiments: BS SS RRN. Performed the experiments: BS SS. Ana-
lyzed the data: BS RRN. Contributed reagents/materials/analysis tools: SS RRN. Wrote the
paper: BS RRN.

References
1. Ciechanover A, Schwartz AL Ubiquitin-mediated degradation of cellular proteins in health and disease.

Hepatology 2002; 35: 3–6. PMID: 11786953

2. Hershko A, Ciechanover A The ubiquitin system. Annu Rev Biochem 1998; 67: 425–479. PMID:
9759494

3. Pickart CMMechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70: 503–533. PMID:
11395416

4. Ravid T, Hochstrasser M Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev
Mol Cell Biol 2008; 9: 679–689. doi: 10.1038/nrm2468 PMID: 18698327

5. Chen C, Seth AK, Aplin AE Genetic and Expression Aberrations of E3 Ubiquitin Ligases in Human
Breast Cancer. Molecular Cancer Research 2006; 4: 695–707. PMID: 17050664

6. Herrmann J, Ciechanover A, Lerman LO, Lerman A The ubiquitin-proteasome system in cardiovascular
diseases-a hypothesis extended. Cardiovasc Res 2004; 61: 11–21. PMID: 14732197

7. Hoeller D, Hecker CM, Dikic I Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev
Cancer 2006; 6: 776–788. PMID: 16990855

8. Patterson C, Ike C, Willis PWt, Stouffer GA, Willis MS The bitter end: the ubiquitin-proteasome system
and cardiac dysfunction. Circulation 2007; 115: 1456–1463. PMID: 17372187

9. Adams J The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004; 5: 417–
421. PMID: 15144949

10. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, et al. Proteasome Inhibi-
tors: A Novel Class of Potent and Effective Antitumor Agents. Cancer Research 1999; 59: 2615–2622.
PMID: 10363983

11. Arya AK, El-Fert A, Devling T, Eccles RM, AslamMA, Rubbi CP, et al. Nutlin-3, the small-molecule in-
hibitor of MDM2, promotes senescence and radiosensitises laryngeal carcinoma cells harbouring wild-
type p53. Br J Cancer 2010; 103: 186–195. doi: 10.1038/sj.bjc.6605739 PMID: 20588277

12. Ding Q, Zhang Z, Liu JJ, Jiang N, Zhang J, Ross TM, et al. Discovery of RG7388, a potent and selective
p53-MDM2 inhibitor in clinical development. J Med Chem 2013; 56: 5979–5983. doi: 10.1021/
jm400487c PMID: 23808545

13. Park EJ, Choi KS, Yoo YH, Kwon TK Nutlin-3, a small-molecule MDM2 inhibitor, sensitizes Caki cells to
TRAIL-induced apoptosis through p53-mediated PUMA upregulation and ROS-mediated DR5 upregu-
lation. Anticancer Drugs 2013; 24: 260–269. doi: 10.1097/CAD.0b013e32835c0311 PMID: 23187459

A CUL4B/DDB1/FBXO44 E3 Ligase Degrades RGS2 Protein

PLOS ONE | DOI:10.1371/journal.pone.0123581 May 13, 2015 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123581.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0123581.s002
http://www.ncbi.nlm.nih.gov/pubmed/11786953
http://www.ncbi.nlm.nih.gov/pubmed/9759494
http://www.ncbi.nlm.nih.gov/pubmed/11395416
http://dx.doi.org/10.1038/nrm2468
http://www.ncbi.nlm.nih.gov/pubmed/18698327
http://www.ncbi.nlm.nih.gov/pubmed/17050664
http://www.ncbi.nlm.nih.gov/pubmed/14732197
http://www.ncbi.nlm.nih.gov/pubmed/16990855
http://www.ncbi.nlm.nih.gov/pubmed/17372187
http://www.ncbi.nlm.nih.gov/pubmed/15144949
http://www.ncbi.nlm.nih.gov/pubmed/10363983
http://dx.doi.org/10.1038/sj.bjc.6605739
http://www.ncbi.nlm.nih.gov/pubmed/20588277
http://dx.doi.org/10.1021/jm400487c
http://dx.doi.org/10.1021/jm400487c
http://www.ncbi.nlm.nih.gov/pubmed/23808545
http://dx.doi.org/10.1097/CAD.0b013e32835c0311
http://www.ncbi.nlm.nih.gov/pubmed/23187459


14. Sun D, Li Z, Rew Y, Gribble M, Bartberger MD, Beck HP, et al. Discovery of AMG 232, a potent, selec-
tive, and orally bioavailable MDM2-p53 inhibitor in clinical development. J Med Chem 2014; 57: 1454–
1472. doi: 10.1021/jm401753e PMID: 24456472

15. Zhao Y, Yu S, SunW, Liu L, Lu J, McEachern D, et al. A potent small-molecule inhibitor of the MDM2-
p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J Med Chem 2013;
56: 5553–5561. doi: 10.1021/jm4005708 PMID: 23786219

16. Cho H, Harrison K, Kehrl JH Regulators of G protein signaling: potential drug targets for controlling car-
diovascular and immune function. Curr Drug Targets Immune Endocr Metabol Disord 2004; 4: 107–
118. PMID: 15180451

17. Druey KM Regulators of G protein signalling: potential targets for treatment of allergic inflammatory dis-
eases such as asthma. Expert Opin Ther Targets 2003; 7: 475–484. PMID: 12885267

18. Hurst JH, Hooks SB Regulator of G-protein signaling (RGS) proteins in cancer biology. Biochem Phar-
macol 2009; 78: 1289–1297. doi: 10.1016/j.bcp.2009.06.028 PMID: 19559677

19. Neubig RR, Siderovski DP Regulators of G-protein signalling as new central nervous system drug tar-
gets. Nat Rev Drug Discov 2002; 1: 187–197. PMID: 12120503

20. Sjogren B, Blazer LL, Neubig RR Regulators of G protein signaling proteins as targets for drug discov-
ery. Prog Mol Biol Transl Sci 2010; 91: 81–119. doi: 10.1016/S1877-1173(10)91004-1 PMID:
20691960

21. Hollinger S, Hepler JR Cellular regulation of RGS proteins: modulators and integrators of G protein sig-
naling. Pharmacol Rev 2002; 54: 527–559. PMID: 12223533

22. Blazer LL, Roman DL, Chung A, Larsen MJ, Greedy BM, Husbands SM, et al. Reversible, allosteric
small-molecule inhibitors of regulator of G protein signaling proteins. Mol Pharmacol 2010; 78: 524–
533. doi: 10.1124/mol.110.065128 PMID: 20571077

23. Blazer LL, Zhang H, Casey EM, Husbands SM, Neubig RR A nanomolar-potency small molecule inhibi-
tor of regulator of G-protein signaling proteins. Biochemistry 2011; 50: 3181–3192. doi: 10.1021/
bi1019622 PMID: 21329361

24. Turner EM, Blazer LL, Neubig RR, Husbands SM Small Molecule Inhibitors of Regulator of G Protein
Signalling (RGS) Proteins. ACSMed Chem Lett 2012; 3: 146–150. PMID: 22368763

25. Doupnik CA, Xu T, Shinaman JM Profile of RGS expression in single rat atrial myocytes. Biochim Bio-
phys Acta 2001; 1522: 97–107. PMID: 11750060

26. Geurts M, Maloteaux JM, Hermans E Altered expression of regulators of G-protein signaling (RGS)
mRNAs in the striatum of rats undergoing dopamine depletion. Biochem Pharmacol 2003; 66: 1163–
1170. PMID: 14505795

27. Gold SJ, Han MH, Herman AE, Ni YG, Pudiak CM, Aghajanian GK, et al. Regulation of RGS proteins
by chronic morphine in rat locus coeruleus. Eur J Neurosci 2003; 17: 971–980. PMID: 12653973

28. Mittmann C, Chung CH, Hoppner G, Michalek C, Nose M, Schuler C, et al. Expression of ten RGS pro-
teins in human myocardium: functional characterization of an upregulation of RGS4 in heart failure.
Cardiovasc Res 2002; 55: 778–786. PMID: 12176127

29. Tsang S, Woo AY, ZhuW, Xiao RP Deregulation of RGS2 in cardiovascular diseases. Front Biosci
(Schol Ed) 2010; 2: 547–557. PMID: 20036967

30. Heximer SP, Knutsen RH, Sun X, Kaltenbronn KM, Rhee MH, Peng N, et al. Hypertension and pro-
longed vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest 2003; 111: 445–452. PMID:
12588882

31. Cao X, Qin J, Xie Y, Khan O, Dowd F, Scofield M, et al. Regulator of G-protein signaling 2 (RGS2) inhib-
its androgen-independent activation of androgen receptor in prostate cancer cells. Oncogene 2006;
25: 3719–3734. PMID: 16449965

32. Oliveira-Dos-Santos AJ, Matsumoto G, Snow BE, Bai D, Houston FP, Whishaw IQ, et al. Regulation of
T cell activation, anxiety, and male aggression by RGS2. Proc Natl Acad Sci U S A 2000; 97: 12272–
12277. PMID: 11027316

33. Otowa T, Shimada T, Kawamura Y, Sugaya N, Yoshida E, Inoue K, et al. Association of RGS2 variants
with panic disorder in a Japanese population. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:
430–434. doi: 10.1002/ajmg.b.31178 PMID: 21438143

34. Sugimoto K, Katsuya T, Kamide K, Fujisawa T, Shimaoka I, Ohishi M, et al. Promoter Polymorphism of
RGS2 Gene Is Associated with Change of Blood Pressure in Subjects with Antihypertensive Treat-
ment: The Azelnidipine and Temocapril in Hypertensive Patients with Type 2 Diabetes Study. Int J
Hypertens 2010; 2010: 196307. doi: 10.4061/2010/196307 PMID: 20981351

35. Sjogren B, Parra S, Heath LJ, Atkins KB, Xie ZJ, Neubig RR Cardiotonic steroids stabilize regulator of
G protein signaling 2 protein levels. Mol Pharmacol 2012; 82: 500–509. doi: 10.1124/mol.112.079293
PMID: 22695717

A CUL4B/DDB1/FBXO44 E3 Ligase Degrades RGS2 Protein

PLOS ONE | DOI:10.1371/journal.pone.0123581 May 13, 2015 16 / 18

http://dx.doi.org/10.1021/jm401753e
http://www.ncbi.nlm.nih.gov/pubmed/24456472
http://dx.doi.org/10.1021/jm4005708
http://www.ncbi.nlm.nih.gov/pubmed/23786219
http://www.ncbi.nlm.nih.gov/pubmed/15180451
http://www.ncbi.nlm.nih.gov/pubmed/12885267
http://dx.doi.org/10.1016/j.bcp.2009.06.028
http://www.ncbi.nlm.nih.gov/pubmed/19559677
http://www.ncbi.nlm.nih.gov/pubmed/12120503
http://dx.doi.org/10.1016/S1877-1173(10)91004-1
http://www.ncbi.nlm.nih.gov/pubmed/20691960
http://www.ncbi.nlm.nih.gov/pubmed/12223533
http://dx.doi.org/10.1124/mol.110.065128
http://www.ncbi.nlm.nih.gov/pubmed/20571077
http://dx.doi.org/10.1021/bi1019622
http://dx.doi.org/10.1021/bi1019622
http://www.ncbi.nlm.nih.gov/pubmed/21329361
http://www.ncbi.nlm.nih.gov/pubmed/22368763
http://www.ncbi.nlm.nih.gov/pubmed/11750060
http://www.ncbi.nlm.nih.gov/pubmed/14505795
http://www.ncbi.nlm.nih.gov/pubmed/12653973
http://www.ncbi.nlm.nih.gov/pubmed/12176127
http://www.ncbi.nlm.nih.gov/pubmed/20036967
http://www.ncbi.nlm.nih.gov/pubmed/12588882
http://www.ncbi.nlm.nih.gov/pubmed/16449965
http://www.ncbi.nlm.nih.gov/pubmed/11027316
http://dx.doi.org/10.1002/ajmg.b.31178
http://www.ncbi.nlm.nih.gov/pubmed/21438143
http://dx.doi.org/10.4061/2010/196307
http://www.ncbi.nlm.nih.gov/pubmed/20981351
http://dx.doi.org/10.1124/mol.112.079293
http://www.ncbi.nlm.nih.gov/pubmed/22695717


36. Bodenstein J, Sunahara RK, Neubig RR N-terminal residues control proteasomal degradation of
RGS2, RGS4, and RGS5 in human embryonic kidney 293 cells. Mol Pharmacol 2007; 71: 1040–1050.
PMID: 17220356

37. Davydov IV, Varshavsky A RGS4 Is Arginylated and Degraded by the N-end Rule Pathway in Vitro.
Journal of Biological Chemistry 2000; 275: 22931–22941. PMID: 10783390

38. Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, Davydov IV, et al. RGS4 and RGS5 are in vivo substrates
of the N-end rule pathway. Proceedings of the National Academy of Sciences of the United States of
America 2005; 102: 15030–15035. PMID: 16217033

39. Lee PC, SowaME, Gygi SP, Harper JW Alternative ubiquitin activation/conjugation cascades interact
with N-end rule ubiquitin ligases to control degradation of RGS proteins. Mol Cell 2011; 43: 392–405.
doi: 10.1016/j.molcel.2011.05.034 PMID: 21816346

40. Hu J, McCall CM, Ohta T, Xiong Y Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase
in response to DNA damage. Nat Cell Biol 2004; 6: 1003–1009. PMID: 15448697

41. Hopkins AL, Groom CR The druggable genome. Nat Rev Drug Discov 2002; 1: 727–730. PMID:
12209152

42. Lyu JH, Park DW, Huang B, Kang SH, Lee SJ, Lee C, et al. RGS2 suppresses breast cancer cell growth
via a MCPIP1-dependent pathway. J Cell Biochem 2015; 116: 260–267. doi: 10.1002/jcb.24964 PMID:
25187114

43. Sjogren B, Neubig RR Thinking outside of the "RGS box": new approaches to therapeutic targeting of
regulators of G protein signaling. Mol Pharmacol 2010; 78: 550–557. doi: 10.1124/mol.110.065219
PMID: 20664002

44. Brower CS, Varshavsky A Ablation of Arginylation in the Mouse N-End Rule Pathway: Loss of Fat,
Higher Metabolic Rate, Damaged Spermatogenesis, and Neurological Perturbations. PLoS ONE 2009;
4: e7757. doi: 10.1371/journal.pone.0007757 PMID: 19915679

45. Guerrero-Santoro J, Kapetanaki MG, Hsieh CL, Gorbachinsky I, Levine AS, Rapic-Otrin V The cullin
4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates
histone H2A. Cancer Res 2008; 68: 5014–5022. doi: 10.1158/0008-5472.CAN-07-6162 PMID:
18593899

46. Li X, Lu D, He F, Zhou H, Liu Q, Wang Y, et al. Cullin 4B protein ubiquitin ligase targets peroxiredoxin III
for degradation. J Biol Chem 2011; 286: 32344–32354. doi: 10.1074/jbc.M111.249003 PMID:
21795677

47. HoMS, Tsai PI, Chien CT F-box proteins: the key to protein degradation. J Biomed Sci 2006; 13: 181–
191. PMID: 16463014

48. Ilyin GP, Serandour AL, Pigeon C, Rialland M, Glaise D, Guguen-Guillouzo C A new subfamily of struc-
turally related human F-box proteins. Gene 2002; 296: 11–20. PMID: 12383498

49. Hahntow IN, Mairuhu G, van Valkengoed IG, Baas F, Alewijnse AE, Koopmans RP, et al. Are RGS2
gene polymorphisms associated with high blood pressure in an ethnicity- and gender-specific manner?
Am J Hypertens 2009; 22: 80–86. doi: 10.1038/ajh.2008.310 PMID: 19023274

50. Nunn C, Zou MX, Sobiesiak AJ, Roy AA, Kirshenbaum LA, Chidiac P RGS2 inhibits beta-adrenergic re-
ceptor-induced cardiomyocyte hypertrophy. Cell Signal 2010; 22: 1231–1239. doi: 10.1016/j.cellsig.
2010.03.015 PMID: 20362664

51. Tuomi JM, Chidiac P, Jones DL Evidence for enhanced M3muscarinic receptor function and sensitivity
to atrial arrhythmia in the RGS2-deficient mouse. Am J Physiol Heart Circ Physiol 2010; 298: H554–
561. doi: 10.1152/ajpheart.00779.2009 PMID: 19966055

52. ZhangW, Anger T, Su J, Hao J, Xu X, Zhu M, et al. Selective loss of fine tuning of Gq/11 signaling by
RGS2 protein exacerbates cardiomyocyte hypertrophy. J Biol Chem 2006; 281: 5811–5820. PMID:
16380388

53. Yang J, Kamide K, Kokubo Y, Takiuchi S, Tanaka C, Banno M, et al. Genetic variations of regulator of
G-protein signaling 2 in hypertensive patients and in the general population. J Hypertens 2005; 23:
1497–1505. PMID: 16003176

54. Deshaies RJ SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 1999; 15: 435–
467. PMID: 10611969

55. Sarikas A, Hartmann T, Pan ZQ The cullin protein family. Genome Biol 2011; 12: 220. doi: 10.1186/gb-
2011-12-4-220 PMID: 21554755

56. Zimmerman ES, Schulman BA, Zheng N Structural assembly of cullin-RING ubiquitin ligase com-
plexes. Curr Opin Struct Biol 2010; 20: 714–721. doi: 10.1016/j.sbi.2010.08.010 PMID: 20880695

57. He F, Lu D, Jiang B, Wang Y, Liu Q, Liu Q, et al. X-linked intellectual disability gene CUL4B targets
Jab1/CSN5 for degradation and regulates bone morphogenetic protein signaling. Biochim Biophys
Acta 2013; 1832: 595–605. doi: 10.1016/j.bbadis.2013.01.015 PMID: 23357576

A CUL4B/DDB1/FBXO44 E3 Ligase Degrades RGS2 Protein

PLOS ONE | DOI:10.1371/journal.pone.0123581 May 13, 2015 17 / 18

http://www.ncbi.nlm.nih.gov/pubmed/17220356
http://www.ncbi.nlm.nih.gov/pubmed/10783390
http://www.ncbi.nlm.nih.gov/pubmed/16217033
http://dx.doi.org/10.1016/j.molcel.2011.05.034
http://www.ncbi.nlm.nih.gov/pubmed/21816346
http://www.ncbi.nlm.nih.gov/pubmed/15448697
http://www.ncbi.nlm.nih.gov/pubmed/12209152
http://dx.doi.org/10.1002/jcb.24964
http://www.ncbi.nlm.nih.gov/pubmed/25187114
http://dx.doi.org/10.1124/mol.110.065219
http://www.ncbi.nlm.nih.gov/pubmed/20664002
http://dx.doi.org/10.1371/journal.pone.0007757
http://www.ncbi.nlm.nih.gov/pubmed/19915679
http://dx.doi.org/10.1158/0008-5472.CAN-07-6162
http://www.ncbi.nlm.nih.gov/pubmed/18593899
http://dx.doi.org/10.1074/jbc.M111.249003
http://www.ncbi.nlm.nih.gov/pubmed/21795677
http://www.ncbi.nlm.nih.gov/pubmed/16463014
http://www.ncbi.nlm.nih.gov/pubmed/12383498
http://dx.doi.org/10.1038/ajh.2008.310
http://www.ncbi.nlm.nih.gov/pubmed/19023274
http://dx.doi.org/10.1016/j.cellsig.2010.03.015
http://dx.doi.org/10.1016/j.cellsig.2010.03.015
http://www.ncbi.nlm.nih.gov/pubmed/20362664
http://dx.doi.org/10.1152/ajpheart.00779.2009
http://www.ncbi.nlm.nih.gov/pubmed/19966055
http://www.ncbi.nlm.nih.gov/pubmed/16380388
http://www.ncbi.nlm.nih.gov/pubmed/16003176
http://www.ncbi.nlm.nih.gov/pubmed/10611969
http://dx.doi.org/10.1186/gb-2011-12-4-220
http://dx.doi.org/10.1186/gb-2011-12-4-220
http://www.ncbi.nlm.nih.gov/pubmed/21554755
http://dx.doi.org/10.1016/j.sbi.2010.08.010
http://www.ncbi.nlm.nih.gov/pubmed/20880695
http://dx.doi.org/10.1016/j.bbadis.2013.01.015
http://www.ncbi.nlm.nih.gov/pubmed/23357576


58. Glenn KA, Nelson RF, Wen HM, Mallinger AJ, Paulson HL Diversity in tissue expression, substrate
binding, and SCF complex formation for a lectin family of ubiquitin ligases. J Biol Chem 2008; 283:
12717–12729. doi: 10.1074/jbc.M709508200 PMID: 18203720

59. Lu Y, Li J, Cheng D, Parameswaran B, Zhang S, Jiang Z, et al. The F-box protein FBXO44 mediates
BRCA1 ubiquitination and degradation. J Biol Chem 2012; 287: 41014–41022. doi: 10.1074/jbc.M112.
407106 PMID: 23086937

60. Yoshida Y, Murakami A, Tanaka K Skp1 stabilizes the conformation of F-box proteins. Biochem Bio-
phys Res Commun 2011; 410: 24–28. doi: 10.1016/j.bbrc.2011.05.098 PMID: 21640084

61. Jackson S, Xiong Y CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 2009; 34: 562–
570. doi: 10.1016/j.tibs.2009.07.002 PMID: 19818632

62. Hu J, Zacharek S, He YJ, Lee H, Shumway S, Duronio RJ, et al. WD40 protein FBW5 promotes ubiquiti-
nation of tumor suppressor TSC2 by DDB1-CUL4-ROC1 ligase. Genes Dev 2008; 22: 866–871. doi:
10.1101/gad.1624008 PMID: 18381890

63. Lin Y, Smrcka AV Understanding molecular recognition by G protein betagamma subunits on the path
to pharmacological targeting. Mol Pharmacol 2011; 80: 551–557. doi: 10.1124/mol.111.073072 PMID:
21737569

64. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, et al. A gene atlas of the mouse and human
protein-encoding transcriptomes. Proc Natl Acad Sci U S A 2004; 101: 6062–6067. PMID: 15075390

A CUL4B/DDB1/FBXO44 E3 Ligase Degrades RGS2 Protein

PLOS ONE | DOI:10.1371/journal.pone.0123581 May 13, 2015 18 / 18

http://dx.doi.org/10.1074/jbc.M709508200
http://www.ncbi.nlm.nih.gov/pubmed/18203720
http://dx.doi.org/10.1074/jbc.M112.407106
http://dx.doi.org/10.1074/jbc.M112.407106
http://www.ncbi.nlm.nih.gov/pubmed/23086937
http://dx.doi.org/10.1016/j.bbrc.2011.05.098
http://www.ncbi.nlm.nih.gov/pubmed/21640084
http://dx.doi.org/10.1016/j.tibs.2009.07.002
http://www.ncbi.nlm.nih.gov/pubmed/19818632
http://dx.doi.org/10.1101/gad.1624008
http://www.ncbi.nlm.nih.gov/pubmed/18381890
http://dx.doi.org/10.1124/mol.111.073072
http://www.ncbi.nlm.nih.gov/pubmed/21737569
http://www.ncbi.nlm.nih.gov/pubmed/15075390

