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ABSTRACT
Background: Statistical analysis and data visualization are two crucial aspects in

molecular biology and biology. For analyses that compare one dependent variable

between standard (e.g., control) and one or multiple independent variables,

a comprehensive yet highly streamlined solution is valuable. The computer

programming language R is a popular platform for researchers to develop

tools that are tailored specifically for their research needs. Here we present an

R package RBioplot that takes raw input data for automated statistical analysis

and plotting, highly compatible with various molecular biology and biochemistry

lab techniques, such as, but not limited to, western blotting, PCR, and enzyme

activity assays.

Method: The package is built based on workflows operating on a simple raw

data layout, with minimum user input or data manipulation required. The package

is distributed through GitHub, which can be easily installed through one

single-line R command. A detailed installation guide is available at http://

kenstoreylab.com/?page_id=2448. Users can also download demo datasets from

the same website.

Results and Discussion: By integrating selected functions from existing statistical

and data visualization packages with extensive customization, RBioplot features

both statistical analysis and data visualization functionalities. Key properties of

RBioplot include:

- Fully automated and comprehensive statistical analysis, including normality test,

equal variance test, Student’s t-test and ANOVA (with post-hoc tests);

- Fully automated histogram, heatmap and joint-point curve plotting modules;

- Detailed output files for statistical analysis, data manipulation and high quality

graphs;

- Axis range finding and user customizable tick settings;

- High user-customizability.

Subjects Biochemistry, Bioinformatics, Computational Biology, Molecular Biology, Statistics

Keywords R package, Bioinformatics, Biostatistics, Histogram, Joint-point curve

How to cite this article Zhang and Storey (2016), RBioplot: an easy-to-use R pipeline for automated statistical analysis and data

visualization in molecular biology and biochemistry. PeerJ 4:e2436; DOI 10.7717/peerj.2436

Submitted 15 June 2016
Accepted 12 August 2016
Published 28 September 2016

Corresponding author
Kenneth B. Storey,

Kenneth_Storey@carleton.ca

Academic editor
Vsevolod Makeev

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.2436

Copyright
2016 Zhang and Storey

Distributed under
Creative Commons CC-BY 4.0

http://kenstoreylab.com/?page_id=2448
http://kenstoreylab.com/?page_id=2448
http://dx.doi.org/10.7717/peerj.2436
mailto:Kenneth_Storey@�carleton.�ca
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.2436
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


INTRODUCTION
Molecular biology and biochemistry research heavily depends on the interpretation of the

data obtained from various lab techniques, such as western blotting, PCR and a wide

range of enzyme activity assays. A fully automated and comprehensive statistical analysis

and data visualization package is highly desirable for enhancing data processing efficiency

as well as reducing erroneous actions. Due to its relatively smooth learning curve, rich

resources and strong community support, the computer programming language R has

recently become a popular platform for data science in biological research. With both

strong built-in statistical functionality and third-party developed packages such as the

data visualization package ggplot2 (Wickham, 2009), as well as the stats package

multcomp (Hothorn, Bretz & Westfall, 2008), R has enabled the possibility of developing

data analysis packages specifically tailored for molecular biology and biochemistry.

The principal goal of the present R package RBioplot resides in the concept of

minimizing user input while presenting a comprehensive statistical and data visualization

solution, also with the option of high user-customizability. Therefore, automatic data

evaluation and processing is crucial. The package contains a statistical analysis module

(core function: rbiostats), a histogram plotting module (core function: rbioplot), a

heatmap module (core function: rbioplot_heatmap) a joint-point curve plotting

module (core functions: rbioplot_curve), and an axis range finding module (core

functions: autorange_bar_y and autorange_curve). For both statistical analysis and

data visualization modules, we have developed comprehensive workflows that

dynamically combine selected functions from the existing packages with new

functionalities specifically designed for the datasets obtained from the most popular lab

techniques in molecular biology and biochemistry. As a result, RBioplot conducts

statistical analysis and data visualization in a fully automated fashion with detailed reports

for statistical analysis and high quality image files as output files.

To minimize user intervention of the raw data and maintain consistency among the

modules, all the functions operate on an universal input data format (i.e., file type and

data points arrangement). Specifically, the input file is a data matrix (.csv) with rows for

the standard and independent variables (raw data, with biological replicates) and columns

for the dependent variable. All functions are also capable of properly processing datasets

with missing data points with no special action required from the user. Accordingly,

RBioplot is applicable to datasets obtained from a wide variety of molecular biology

and biochemistry lab techniques, including, but not limited to, western blotting, PCR

(both endpoint and quantitative PCRs), ELISA, as well as enzyme activity assays.

METHODS AND MODELS
Statistical analysis module
The core function for the stats module is rbiostats. The function utilizes Student’s t-test

and analysis of variance (ANOVA) with post-hoc tests (e.g., Tukey and Dunnett’s tests)

to test significance of changes for two- and multi- group comparisons (Tukey, 1949;

Shapiro & Wilk, 1965), respectively. Since both tests are based on normal distribution,
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Shapiro-Wilk test is used to test data normality for each data group (Dunnett, 1955).

Moreover, due to the fact that both Student’s t-test and the conventional ANOVA assume

equal variance between replicates among standard and independent variables, a variance

homogeneity test is needed. With the Shapiro-Wilk normality test in place, we use

Bartlett’s equal variance test for testing variance homogeneity, for which a normal

distribution is required (Bartlett, 1937). As such, for each dataset, the stats module tests

data normality and homogeneity prior to the significance tests by default.

The workflow of rbiostats function can be viewed in Fig. 1. It is worth noting that,

for the same intended statistical test, the function is able to accept data files with more

than one dependent variables and conduct the tests for each individual variable at the

same time. Such configuration enables the capacity of processing grouped data sets

according to certain criteria, e.g., grouping the data for genes from the same pathway.

Upon designating the data file, rbiostats first conducts Shapiro-Wilk test to evaluate if

the data for the replicates within the same independent variable follow a normal

distribution. Then the Bartlett’s test of variance homogeneity is carried out. Upon both

the normality and equal variance tests being performed, rbiostats function proceeds

with the user-set statistical test of interest. The results for all the tests are written into a

single results file (.txt) per input dataset.

We have also added independent variable detection and statistical test verification

functionalities to the stats module. Specially, rbiostats function detects the total

number of unique independent variables (without replicates, e.g., number of

experimental groups) and verifies if the statistical test of choice is valid. For example, an

error message and a suggestion of the correct tests will be written into the results file if

Student’s t-test is set for a multi-group comparison where ANOVAwith a post-hoc test is

appropriate.

Histogram module
Histograms are commonly used to visualize and compare data in molecular biology

and biochemistry lab techniques. Similar to the stats module, the histogram module is

capable of processing and plotting grouped bar graphs in a single figure per data file. The

popular R package ggplot2 serves as a foundation for the current module. Furthermore,

we have incorporated extensive modifications and new functionalities into ggplot2

and the associated syntax to realize high data interpretability and, if needed, user

customizability. The module is able to detect the number of dependent variables and

adjust the aesthetic of the plot accordingly, with dependent variable(s) as the discrete

value(s) for the x-axis. As a result, the core function rbioplot provides fully automated

data manipulation, significance notation assigning based on the integrated statistical

analysis, as well as interfaces for user-set graph title and axis labels. Figure 2A shows the

workflow of the function. The module outputs a high quality image file (.pdf format, for

size control) and a plot metrics file (.csv) as a reference.

For each dependent variable, the histogram module plots relative changes of the

mean of the replicates comparing to the standard (e.g., the control group), with error

bars representing either standard error of the mean (SEM) or standard deviation (SD)
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normalized against the mean of the standard (e.g., control group). Therefore, for each

dependent variable, the data manipulation step involves calculation of the two

aforementioned metrics, as well as fold changes relative to the standard. SEM is calculated

using the equation:

SEM ¼ standard deviationffiffiffi
n

p

where n is the number of replicates.

The automatic significance notation functionality is achieved by extracting p values

from integrated statistical analysis. In general, fold change with a p < 0.05 is considered

statistically significant, upon which a label appropriate to the statistical test of choice

Figure 1 Workflow of the statistical analysis module. The core function rbiostats features Shapiro-

Wilk normality test and Bartlett’s equal variance test as default analyses. Student’s t-test and ANOVA

(with Tukey or Dunnett’s test) are included in the module.

Figure 2 Workflow of the data visualization and axis range finding modules. (A) histogram module, and (B) joint-point curve module.
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is assigned to the corresponding bar in the histogram. Specifically, the asterisk is used

for both Student’s t-test and ANOVA with Dunnett’s test; whereas a lower case

Roman alphabet is used for ANOVA with Tukey’s test. For Tukey’s test, the function

multcompLetters from multcompView package is used to assign different letters to

the group exhibiting statistically significant difference (Graves et al., 2015). The

multcompLetter function automatically determines the letters based on the p values

for each comparison alphabetically to the standard and independent variables based on

the order of their appearance, i.e. the letter “a” is always given to the first variable in

the Tukey results report. However, Tukey’s test in R base outputs results in a format

optimized for easy interpretation. For example, “stress–control” will be written to the

results file when comparing the variable “stress” to “control” in Tukey’s test. In such

case, multcompLetter gives the letter “a” to “stress,” “b” to “control,” if the p value of

the comparison is less than 0.05. Such behavior is problematic when plotting since the

order of the letters is reversed in the histogram, for the layout of the bars representing

the standard and independent variables usually follows the same order presented in the

input data file, instead of the Tukey results report. To solve the issue, we have written a

function revsort that reverses the display order of the standard and independent

variables in a two-group comparison from Tukey’s test prior to executing

multcompLetter, e.g., “stress–control” becomes “control–stress” in the Tukey results

report after applying revsort function. Accordingly, the combination of revsort and

multcompLetter has enabled rbioplot to automatically assign significance notations

on the histogram for the Tukey’s test in the ideal order. Additionally, similar to

rbiostats, independent variable detection and statistical test detection are also

featured in the stats section of the histogram module.

Manipulation of right and left y-axis and minor tick functionalities are added to further

improve the readability of the histogram. Given that currently ggplot2 only offers left-side

y-axis, we incorporated custom-designed script to add the y-axis to the right-side of

the graph. Specifically, selected functions from packages grid (part of R base) and gtable

were used to copy and invert the mark position of the default left side y-axis to the

right side (R Core Team, 2016; Wickham, 2016). Furthermore, since on-axis minor tick is

unavailable in ggplot2 package, we have developed the following script as a workaround:

Ticks with only blank (invisible) labels are considered as minor ticks and added in

between the major ticks (i.e., ticks with visible labels). In the context of ggplot2 syntax,

the y-axis labels are set based on the results of the script. Moreover, the tick range (interval

of y-axis breaks) is calculated using following equation:

tick range ¼ major tick range

number of minor ticks � 1

Given that the histogram module plots fold change of the mean, the default major

tick range and number of minor ticks are set at 0.5 and 4. It is also worth noting that the

upper limit of the y-axis is automatically set at maximum mean + SEM/SD, with ample

space left for the inclusion of the significance notations. Furthermore, all the metrics

for y-axis are fully user customizable if needed (see axis range finding module section).
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The package also includes a heatmap module with which users are able to produce simple

heatmaps. The core function rbioplot_heatmap operates similarly as the histogram

module and takes the exact same input file layout, with most of the arguments carried

over from the core function rbioplot of the histogram module.

Joint-point curve module
Joint-point curve is commonly seen when visualizing data with dependent variables

representing a continuous relation, e.g., concentration series of an enzyme inhibitor.

We have developed a joint-point plotting module for such purpose. Built upon the

framework established in the histogram module, the core function of the current module

rbioplot_curve takes the input file in the same format as other functions in the

package. Instead of fold change, the function plots the mean with SEM/SD as the error bar

(when needed) for each independent variable against the continuous dependent variables

(i.e., x-axis values). Thus, SEM/SD values are not normalized based on the mean of the

standard (e.g., control). Unlike the histogram, statistical analysis is not featured in the

current module as significance notation is not required for the current purpose. The

workflow of the function is similar to rbioplot (Fig. 2B), but without the fold change

calculation, SEM/SD normalization or significance notation steps.

The rbioplot_curve function features default settings for major tick range and

minor tick number for both x- and y-axes, with the most carried over from the histogram

module. Specifically, major tick range and number of minor ticks for x-axis are set at

0.5 and 0 (no minor ticks), respectively; whereas the two metrics for y-axis are the same as

the default settings for the histogrammodule. However, due to lack of data normalization,

it is recommended to custom-set the values using the autorange_curve function from

the axis range finding module as a guideline (see axis range finding module section).

Similar to the histogram module, an image file (.pdf) and a plot metrics file (.csv) are

generated by the joint-point curve function. The module is also capable of evaluating

if the input data of interest requires manipulation (i.e., calculating mean and SEM/SD)

and/or error bar for plotting. Specifically constructed for visualising standard and one

or multiple independent variables, it is worth noting that only multi-curve plotting

(i.e., more than one variable) is supported for the joint-point curve module in the current

version (version 0.2.5).

Axis range finding module
Functions autorange_bar_y and autorange_curve are developed for user-

customizable axis range and tick setting functionalities for histogram and joint-point

modules, respectively. Both functions share the same range finding algorithm. A general

workflow for the range finding module is presented in Fig. 2A: Based on the user-set

intended major tick number (excluding the first tick), the function processes the input

data and generates the optimal major tick range with estimated lower and upper limit of

the axis, as well as all the available minor tick number options.

Regarding data processing, both functions feature the same process from their

counterparts in the plotting modules, i.e., autorange_bar_y calculates the fold change
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of the mean and normalized SEM/SD, whereas autorange_curve only focuses on mean

and raw SEM/SD (when needed). The optimal major tick range of an axis is calculated

using the equations below:

Let

raw major tick range ¼ max �min

intended major tick number

And

i ¼ ceiling log10 raw major tick rangeð Þ½ �:
Thus

optimal major tick range ¼ ceiling
raw major tick range=10i

0:05

� �
� 0:05 � 10i

Estimated upper limit of the axis is calculated using the equation:

upper limit ¼ optimal major tick range � ceiling
max

optimal major tick range

� �

And the estimated lower limit of the axis is calculated through the following equation,

if not using the default setting (zero):

lower limit ¼ optimal major tick range � floor
min

optimal major tick range

� �

For all the equations in the current section, max is the raw maximum value (fold

change + normalized SEM/SD, or mean + SEM/SD); and min is the raw minimum value

(the default is zero; otherwise, fold change—normalized SEM/SD, or mean—SEM/SD).

It is worth noting that both floor and ceiling calculations follow the rounding rules

specific to R. With the specific properties of raw data, the resulted upper and lower limits

from the axis ranging finding module are only a close estimation for reaching the intended

major tick number and may present slight discrepancies. As such, user can either use

the range finding results directly for plotting, or utilize them as a guideline for fine-tuning

when applying custom tick range settings in the plotting modules.

Furthermore, based on the rounded major tick range obtained above, we have

developed an algorithm to automatically calculate all the minor tick options. In general,

the following equation is used:

minor tick options ¼ rounded major tick range

divsors of rounded major tick range
� 1

As exhibited in the function above, the key step is to obtain all the divisors of

the calculated major tick range. While it is quite straightforward to automatically

determine all the divisors for an integer in R, doing so for decimal numbers requires a

more complex process. The basic principle is to scale the decimal number up by a

power of 10 to convert it to an integer, calculate the divisors, and then scale the results

back using the same scaling factor. We have written an intermediate function all_dvsr
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to achieve such goal. Furthermore, a second scaling factor is included in the function to

cope with the scenario where the maximum number of the potential minor ticks is

less than four. For example, even if an integer, the major tick range “1” is applied with a

scaling factor of 10 when calculating the divisor, so that decimal divisors are calculated

for it, e.g., 0.1, 0.2, 0.5, etc. The divisor finding functionality is integrated in the

autorange_bar_y and autorange_curve functions. Thus, no additional user input

is required to acquire minor tick options. Accordingly, with the input data file and

user-defined major tick numbers, both axis range finding functions output the

estimated upper and lower limits, major tick range, and all minor tick options for

the axis (or axes) of interest, which can be further used in their respective data

visualization modules.

Given the unique characteristics of histogram and joint-point plots, specific

adjustments are also made to the two functions in the current module. For example,

autorange_bar_y only focuses on y-axis since range finding is only applicable to the

y-axis for histogram; whereas autorange_curve operates on either or both axes as

joint-point curve contain continuous values for the axes.

Availability and installation
RBioplot is distributed under GPL-3 license through GitHub (https://github.com/

jzhangc/git_R_STATS_KBS.git).The R package devtools (Wickham& Chang, 2016) is used

to automatically install the package with all dependencies. After installing devtools

package, run the following command devtools::install_github ("jzhangc/git_

R_STATS_KBS/package/rbioplot") to install the package. An instruction, demo

datasets and sample output files are available at http://kenstoreylab.com/?page_id=2448.

RESULTS AND DISCUSSION
For all case studies featured in this section, a working directory was designated using the

R base function setwd. The input files were stored to the working directory prior to

the analysis. The directory also served as the destination for all the output files generated

by RBioplot.

Case study 1: proteomic expression analysis (Western blotting)
We use part of the data from a study by Zhang & Storey (2012) to demonstrate the usage of

the package for western blotting data analysis and visualization. In the study, western

blotting was used to investigate the protein levels of cell cycle regulators in the liver tissue

of wood frog (Rana sylvatica) under multiple stress conditions. Here we use RBioplot

package to generate Fig. 6 from the original study.

The raw data were obtained as enhanced chemiluminescence (ECL) signals and

Coomassie blue stained band intensities from the standardization protein bands.

The dataset contains the protein level of several key cyclins under dehydration—

rehydration cycle in the liver of the frogs. As such, the experimental conditions are

considered as independent variables, while the individual cyclin proteins are the

dependent variables. To prepare the input data file, we take the ratios of ECL and
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Coomassie intensities for all four cyclins tested for all animal groups, and then group

them into a single data matrix (.csv). Table 1 shows the layout of the input data file.

The first column is dedicated to the animal groups (independent variables), and the ratio

values for the cyclins are presented starting from the second column. As shown in the

same table, the input file contains the raw ratio values for all biological replicates. With the

uneven number of biological replicates (n = 3–4) due to removal of outliers, the current

dataset also demonstrates Rbioplot’s capability of automatically processing data files with

missing values without additional data manipulation steps required from the user.

Given that the current dataset contains a standard and two independent variables,

an ANOVAwith post-hoc test is appropriate. According to the original study, here we also

use the Tukey post-hoc test to assess the changes of cyclins between all animal groups.

To conduct statistical analysis, we use the following command: rbiostats

("casestudy1.csv", Tp = "Tukey"). An output file (.txt) is then generated containing

the all the stats results, i.e., Shapiro-Wilk normality test, Bartlett’s equal variance test,

ANOVA, and Tukey’s test. Figure 3 shows the cyclin A portion of the report as an example.

As seen in Fig. 3A, p values for both Shaprio-Wilk and Barlett’s tests are greater than 0.05,

indicating normal distribution and equal variance, thereby suggesting the results of the

upcoming ANOVA with Tukey’s test are valid. Figure 3B shows the error message when

Student’s t-test is chosen for a multi-group comparison.

Table 1 Input file layout (.csv). (A) Data layout for the histogram module (case study 1). The first

column is used for independent variables. Dependent variables start from the second column. The raw

data points with biological replicates are presented. The current dataset also features missing values.

(B) Data layout for the joint-point curve module (case study 2). A truncated version is shown due to the

space limitation. The current dataset contains only one set of values for each animal group (i.e., no

multiple replicates). The dependent variables (fraction number) show a continuous relation.

(A)

Groups Cyclin A Cyclin B1 Cyclin D1 Cyclin E

Control 1 1 1 1

Control 1.19604093 0.709922771 0.829852824 1.121621622

Control 0.701239343 1.043122829 1.198614911

Control 1.090447809 0.713018827 1.086762242

40% Dehydrated 0.653315462 0.243093923 0.159298618

40% Dehydrated 0.92430544 0.615747952 0.169557985 0.611308901

40% Dehydrated 0.805826152 0.253410348 0.315173675 0.676607642

40% Dehydrated 0.510693792 0.313817882 0.665111318

Rehydrated 1.103239032 0.819114471 0.566761364 0.674198593

Rehydrated 0.687641907 0.757135246

Rehydrated 1.272757148 0.874822064 0.769900287

Rehydrated 1.248098927 0.840052737 0.64319508 0.776602925

(B)

Groups 5 6 7 8

Control -0.031439236 -0.010101098 -0.005330851 0.113880783

40% Dehydration 0.016252368 -0.008646114 -0.008334101 -0.006418122
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To visualize the data in the same fashion as the original study, the histogram

module of the package is used with the following command: rbioplot("casestudy1.

csv", Tp = "Tukey", yLabel = "Relative Intensity"). As shown in Fig. 4A, the

resulting figure is consistent with the original study, only with different tick settings and

more informative significance notations. Since the significance notation is automatically

handled according to the imbedded stats function in the histogram module, we are able

to achieve both accuracy of the label assignment and precise positioning on the graph.

In addition to the image file, the function also generates a plot metrics file for

reference (Table 2).

While the default y-axis tick layout is adequate, custom-setting can also be achieved

with or without the help of the axis range finding module. As an example, we set the

Figure 3 Example of the output file (.txt) by the stats module showing the results for cyclin A from

case study 1 with the key sections highlighted. (A) The current file contains Shapiro-Wilk normality

test, Bartlett’s equal variance test, ANOVA, and Tukey post-hoc test. (B) An example of the error message

when setting Student’s t-test for a multi-group comparison.
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intended major tick number at five. With the command autorange_bar_y

("casestudy1.csv", nMajorTicks = 5), the estimated tick settings for reaching five

major ticks are generated. With the default lower limit (zero), range finding module shows

that the upper limit and major tick range of y-axis are 1.5 and 0.3, respectively. The results

also suggest that eight minor tick options (i.e., 0, 1, 2, 4, 5, 9, 14, and 29) are supported by

the current dataset with the custom tick settings. With these results, we can plot the

data using the command: rbioplot("casestudy1.csv", Tp = "Tukey", yLabel =

"Relative Intensity", y_custom_tick_range = TRUE, y_upper_limit = 2.8,

y_major_tick_range = 0.4, y_n_minor_ticks = 5) (Fig. 4B). Furthermore, custom

tick settings can be configured directly. For example, we can use the command rbioplot

("casestudy1.csv", Tp = "Tukey", yLabel = "Relative Intensity",

y_custom_tick_range = TRUE, y_lower_limit = 0, y_upper_limit = 1.4,

y_major_tick_range = 0.2, y_n_minor_ticks = 4) to match the tick setting exactly

as the original study, as shown in Fig. 4C.

Case study 2: elution profile
For demonstrating joint-point plot, we use part of the data from a study that assesses the

role of hexokinase in the dehydration tolerant African clawed frogs (Xenopus laevis)

Figure 4 Histograms plotted using the histogram module (case study 1). The figure shows both

(A) default and (B and C) custom tick settings, as well as automatic significance notation appropriate for

Tukey post-hoc test (i.e., lower case Roman letters).
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Table 2 Plot metrics for histogram. The file (.csv) is automatically generated upon running the

plotting modules. For case study 1, the file includes experimental groups (Condition), cyclin targets

(variable), normalized mean value using control as 1 (fold change) (NrmMean), normalized SEM

(NrmSEM), and significance notations for ANOVA with Tukey’s test (Lbl).

Id Condition variable NrmMean variableSEM NrmSEM variableLbl Lbl

1 Control Cyclin.A 1 Cyclin.ASEM 0.044782409 Cyclin.ALbl a

2 40% Dehydrated Cyclin.A 0.725225991 Cyclin.ASEM 0.062004168 Cyclin.ALbl b

3 Rehydrated Cyclin.A 1.102725551 Cyclin.ASEM 0.041801495 Cyclin.ALbl a

4 Control Cyclin.B1 1 Cyclin.B1SEM 0.09349969 Cyclin.B1Lbl a

5 40% Dehydrated Cyclin.B1 0.51947888 Cyclin.B1SEM 0.119637014 Cyclin.B1Lbl b

6 Rehydrated Cyclin.B1 1.081452203 Cyclin.B1SEM 0.018013365 Cyclin.B1Lbl a

7 Control Cyclin.D1 1 Cyclin.D1SEM 0.056794487 Cyclin.D1Lbl a

8 40% Dehydrated Cyclin.D1 0.241896859 Cyclin.D1SEM 0.043813224 Cyclin.D1Lbl b

9 Rehydrated Cyclin.D1 0.673655355 Cyclin.D1SEM 0.042886507 Cyclin.D1Lbl c

10 Control Cyclin.E 1 Cyclin.ESEM 0.045240584 Cyclin.ELbl a

11 40% Dehydrated Cyclin.E 0.588219496 Cyclin.ESEM 0.015748309 Cyclin.ELbl b

12 Rehydrated Cyclin.E 0.664993817 Cyclin.ESEM 0.024568233 Cyclin.ELbl b

Figure 5 Joint-point curve plot (case study 2). The plot is produced by using the joint-pint curve

module.
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(Childers & Storey, 2016). Specifically, the joint-point curve module of the package is used

to plot the data from Fig. 1 of the original study.

The original figure depicts the hexokinase elution profile in the skeletal muscle of

both control and ∼40% dehydrated frogs using DEAE+ Sephadex column. The dataset

contains hexokinase activity for 20 eluted fractions for both animal groups. We use

the function rbioplot_curve to re-create the figure. Table 1 shows a truncated version

of the input data file layout, with animal groups as independent variables and fractions

as dependent variables. As shown in the table, the current data file only features a

typical set of values for each animal group. In such case, joint-point curve module

automatically detects and determines that the data can be plotted without error bar.

By using the command rbioplot_curve("casestudy2.csv",

x_custom_tick_range = TRUE, x_lower_limit = 1, x_upper_limit = 24,

x_major_tick_range = 1, x_n_minor_ticks = 0, y_custom_tick_range = TRUE,

y_lower_limit = -0.2, y_upper_limit = 1.2, y_major_tick_range = 0.2,

y_n_minor_ticks = 4), the figure created from Rbioplot includes the same major tick

range and lower/upper limits (0.2 and -0.2/1.2, respectively) of the original figure

(Fig. 5). The resulted figure also includes both-side y-axis with minor ticks.

Alternatively, axis range finding module can be used to further customize tick settings.

CONCLUSION
The present work describes an R pipeline designed for comprehensive statistical analysis

and data visualization. By dynamically integrating new functionalities and customizations

to existing packages, RBioplot represents a fully automated and versatile data processing

solution for molecular biology and biochemistry.

ACKNOWLEDGEMENTS
We thank C.L. Childers for editorial review of the manuscript. K.B.S. holds the Canada

Research Chair in Molecular Physiology.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The present study is supported by a Discovery grant from the Natural Sciences and

Engineering Research Council of Canada (NSERC) to K.B.S (grant number: 6793).

The funders had no role in study design, data collection and analysis, decision to publish,

or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Discovery grant from the Natural Sciences and Engineering Research Council of Canada

(NSERC): 6793.

Competing Interests
Kenneth Storey is an Academic Editor for PeerJ.

Zhang and Storey (2016), PeerJ, DOI 10.7717/peerj.2436 13/14

http://dx.doi.org/10.7717/peerj.2436
https://peerj.com/


Author Contributions
� Jing Zhang conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,

prepared figures and/or tables, reviewed drafts of the paper.

� Kenneth B. Storey reviewed drafts of the paper.

Data Deposition
The following information was supplied regarding data availability:

GitHub: https://github.com/jzhangc/git_R_STATS_KBS.git.

REFERENCES
Bartlett MS. 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal

Society of London A: Mathematical and Physical Sciences 160(901):268–282

DOI 10.1098/rspa.1937.0109.

Childers CL, Storey KB. 2016. Post-translational regulation of hexokinase function and

protein stability in the aestivating frog Xenopus laevis. Protein Journal 35(1):61–71

DOI 10.1007/s10930-016-9647-0.

Dunnett CW. 1955. A multiple comparison procedure for comparing several treatments

with a control. Journal of the American Statistical Association 50(272):1096–1121

DOI 10.1080/01621459.1955.10501294.

Graves S, Piepho H-P, Selzer L, with help from Dorai-Raj S. 2015.multcompView: visualizations

of paired comparisons. R Package Version 0.1-7. Available at https://CRAN.R-project.org/

package=multcompView.

Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models.

Biometrical Journal 50(3):346–363 DOI 10.1002/bimj.200810425.

R Core Team. 2016. R: a language and environment for statistical computing. Vienna: R Foundation

for Statistical Computing. Available at https://www.R-project.org/.

Shapiro SS, Wilk MB. 1965. An analysis of variance test for normality (complete samples).

Biometrika 52(3–4):591–611 DOI 10.2307/2333709.

Tukey JW. 1949. Comparing individual means in the analysis of variance. Biometrics 5(2):99–114

DOI 10.2307/3001913.

Wickham H. 2009. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.

Wickham H. 2016. gtable: arrange ‘Grobs’ in tables. R Package Version 0.2.0. Available at https://

CRAN.R-project.org/package=gtable.

Wickham H, Chang W. 2016. devtools: tools to make developing R packages easier. R Package

Version 1.11.1. Available at https://CRAN.R-project.org/package=devtools.

Zhang J, Storey KB. 2012. Cell cycle regulation in the freeze tolerant wood frog, Rana sylvatica.

Cell Cycle 11(9):1727–1742 DOI 10.4161/cc.19880.

Zhang and Storey (2016), PeerJ, DOI 10.7717/peerj.2436 14/14

https://github.com/jzhangc/git_R_STATS_KBS.git
http://dx.doi.org/10.1098/rspa.1937.0109
http://dx.doi.org/10.1007/s10930-016-9647-0
http://dx.doi.org/10.1080/01621459.1955.10501294
https://CRAN.R-project.org/package=multcompView
https://CRAN.R-project.org/package=multcompView
http://dx.doi.org/10.1002/bimj.200810425
https://www.R-project.org/
http://dx.doi.org/10.2307/2333709
http://dx.doi.org/10.2307/3001913
https://CRAN.R-project.org/package=gtable
https://CRAN.R-project.org/package=gtable
https://CRAN.R-project.org/package=devtools
http://dx.doi.org/10.4161/cc.19880
http://dx.doi.org/10.7717/peerj.2436
https://peerj.com/

	RBioplot: an easy-to-use R pipeline for automated statistical analysis and data visualization in molecular biology and biochemistry ...
	Introduction
	Methods and Models
	Results and Discussion
	Conclusion
	flink5
	References


