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Abstract: Little is known about the early pathogenic events by which mutant superoxide dismutase
1 (SOD1) causes amyotrophic lateral sclerosis (ALS). This lack of mechanistic understanding is a
major barrier to the development and evaluation of efficient therapies. Although protein aggregation
is known to be involved, it is not understood how mutant SOD1 causes degeneration of motoneu-
rons (MNs). Previous research has relied heavily on the overexpression of mutant SOD1, but the
clinical relevance of SOD1 overexpression models remains questionable. We used a human induced
pluripotent stem cell (iPSC) model of spinal MNs and three different endogenous ALS-associated
SOD1 mutations (D90Ahom, R115Ghet or A4Vhet) to investigate early cellular disturbances in MNs.
Although enhanced misfolding and aggregation of SOD1 was induced by proteasome inhibition,
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it was not affected by activation of the stress granule pathway. Interestingly, we identified loss of
mitochondrial, but not lysosomal, integrity as the earliest common pathological phenotype, which
preceded elevated levels of insoluble, aggregated SOD1. A super-elongated mitochondrial morphol-
ogy with impaired inner mitochondrial membrane potential was a unifying feature in mutant SOD1
iPSC-derived MNs. Impaired mitochondrial integrity was most prominent in mutant D90Ahom MNs,
whereas both soluble disordered and detergent-resistant misfolded SOD1 was more prominent in
R115Ghet and A4Vhet mutant lines. Taking advantage of patient-specific models of SOD1-ALS in vitro,
our data suggest that mitochondrial dysfunction is one of the first crucial steps in the pathogenic
cascade that leads to SOD1-ALS and also highlights the need for individualized medical approaches
for SOD1-ALS.

Keywords: SOD1; ALS1; mitochondria; live cell imaging; axonal trafficking

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a heterogeneous but fatal progressive neurode-
generative disease, typically with an adult-onset that strikes in the prime of life. The
hallmark of ALS is an initial focal onset of the progressive loss of motor neurons (MNs)
and their associated tracts, resulting in paresis and muscle atrophy. The patient inevitably
expires when respiratory muscles become severely affected and the median survival time
is 3–4 years from symptom onset. Only two drugs, Riluzole and Edaravone, have shown
limited therapeutic benefits, and the basic mechanisms that underlie disease pathogenesis
are unknown, acting as a barrier to the development of effective therapies.

In 1993, mutations in the gene encoding copper zinc superoxide dismutase 1 (SOD1)
were the first to be identified as a cause of ALS and are responsible for up to 20% of cases
of familial ALS [1]. Approximately 220 different mutations in the SOD1 gene have been re-
ported in ALS patients [2]. With the exception of a few recessively inherited mutations, such
as D90A, the majority of ALS-causing mutations are inherited as a dominant Mendelian
trait. SOD1-ALS shows extensive phenotypic heterogeneity, which is unexplained [3].
While the mean age of onset in D90A and A4V cases is similar (47 years), the median
survival time from the onset of paresis is 14 years for D90Ahom but only 1.1 years for
A4Vhet, and these two mutations may be considered as being located at opposing ends of
the clinical ALS spectrum [4,5]. The A4V mutation is associated with a variable site of onset
(i.e., spinal or bulbar) but always shows a predominant effect on the lower motor neuron
system [3,6]. In contrast, the D90A mutation can cause ALS as a homozygous or, rarely, as
a heterozygous trait. In the prevalent D90Ahom form, ALS is associated with the insidious
onset of a slowly progressing phenotype with early clinical and neurophysiological signs
of upper motor neuron and long tract involvement [7]. A mutation with a more typical
ALS phenotype is R115G, the most prevalent mutation in Central Europe.

SOD1 is a ubiquitously expressed enzyme catalyzing the dismutation of the superox-
ide radical 2O2

− + 2H+ → H2O2 + O2. Superoxide and H2O2 are reactive oxygen species
(ROS), which are generated as by-products of mitochondrial oxidative phosphorylation [8].
Excessive ROS can result in oxidative stress, and this is one of the commonly proposed
mechanisms in the pathogenesis of ALS [9,10]. ROS react indiscriminately with proteins,
lipids, polysaccharides and nucleic acids and thereby can interfere with multiple cellular
processes, induce inflammatory pathways, excitotoxicity, protein aggregation, organelle
stress and eventually cell death [9,11]. Increased ROS levels have been identified in dif-
ferent SOD1 mutant cell lines [12,13]. Because of their high energetic/metabolic demand
for oxygen, together with their life-long postmitotic state, neurons are thought to be par-
ticularly vulnerable to oxidative stress. Hence, ROS are a therapeutic target for ALS, and
Edaravone (an antioxidant) was approved in 2017 by the FDA [14]. However, a reduction
in the antioxidant activity of SOD1 is not the only pathogenic pathway involved in ALS,
since at least 7 ALS-associated SOD1 mutations have preserved enzymatic activity [5,15].
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Interestingly, a complete loss of SOD1 enzymatic activity does not lead to ALS but to
a severe, progressive, infantile-onset motor neuron disease in humans [16], presumably
due to a perturbation of the signaling function of superoxide/H2O2 [8,17]. However, it is
unknown if dysregulated mitochondrial metabolism acting as a source of perturbed ROS is
a key event in the pathogenesis of SOD1-ALS.

Mitochondria are essential for the maintenance of the very long axons of MNs and
may be key sites of MN vulnerability in ALS. Apart from maintaining ROS homeostasis,
mitochondria are the primary site of ATP production and also important for calcium home-
ostasis. Mitochondrial transport is perturbed in MNs cultured from SOD1 overexpressing
mouse models of ALS and in cortical neurons transfected with mutant SOD1 [18]. In
mutant SOD1 mouse models, a noticeable change in mitochondrial morphology has been
observed. Depending on the type of mutation, disease duration and cell compartment,
highly elongated or fragmented mitochondria have been found [19]. Fusion and fission
processes retain the mitochondrial network in a healthy state. Fusion requires the merging
of the inner as well as the outer membranes of two mitochondria. This mechanism can
compensate for minor mitochondrial defects, or mitigate the effects of environmental dam-
age by sharing mitochondrial components, and can increase oxidative capacity in response
to stress [20]. Fission serves as the initial step of mitophagy, an event required to maintain
the mitochondrial network by removing crippled mitochondria and to counterbalance
excessive mitochondrial elongation [20,21]. Changes in mitochondrial morphology, such
as swelling or enlargement, can block their transport in axons [22] and were found in
motor nerve terminals in tissue from ALS patients [23,24]. Mitochondrial dysfunction is
not limited to SOD1-ALS, but was reported for other ALS causing mutations as well [25].
As in other proteinopathies (Alzheimer’s disease, Parkinson’s disease, Huntington’s dis-
ease), a key histological hallmark of ALS is the occurrence of inclusion bodies in affected
neurons [26–29]. Remarkably, inoculation of SOD1 aggregates, prepared from spinal cords
of transgenic mice as well as humans carrying mutant SOD1s, was recently shown to
transmit both SOD1 aggregation and fatal motor neuron disease to transgenic mice [30,31].
These findings suggest that prion-like effects of mutant SOD1 aggregates are significant
contributors to SOD1-ALS, but it remains unknown whether or not prion-like mechanisms
are an initiating event in ALS or are perhaps a downstream consequence of pathogenic
protein aggregation.

DNA damage is also a pathogenic hallmark of ALS, as well as other neurodegenerative
diseases [25,32]. Genomic instability due to loss of function of nuclear SOD1, along with
augmented ROS have been proposed as a pathogenic mechanism contributing to ALS [33].
Recent evidence has proposed a nuclear function for SOD1 under oxidative stress by
regulating the activation of pathways required for enhanced resilience towards oxidative
DNA damage [34]. However, it remains unclear whether DNA damage occurs as an
upstream causative event, or as a downstream consequence in the pathophysiology of
SOD1-ALS (e.g., due to increased ROS levels) [33].

Many studies of the mechanisms of SOD1-ALS have been based on cell and animal
models overexpressing mutant SOD1. More clinically relevant disease models with en-
dogenous levels of SOD1 expression are necessary in order to accurately define the role
of SOD1 in the pathogenesis of ALS, especially in the context of protein aggregation. We
recently identified hypoexcitability, attenuated sodium channel expression, elevated en-
doplasmic reticulum stress and increased MN cell death as phenotypes in patient-derived
iPSC MNs from SOD1 ALS patients [35]. However, the mechanism(s) underlying these
phenotypes remains unclear. To better define the pathophysiological cascade of SOD1-ALS,
we have now investigated the degree of SOD1 disorder and aggregation together with
mitochondrial integrity, components of the axonal transport machinery and DNA damage
in iPSC-derived MNs from patients with three different pathogenic SOD1 mutations. MNs
were compartmentalized in microfluidic chambers (MFCs) that enable the study of aligned
axons projecting within the microgroove channels with defined retro- vs. anterograde
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directionality [25,36]. This setup recapitulates the retrograde “dying-back” of spinal ALS
MNs in vitro and is a novel method to study early ALS pathogenesis [25].

2. Materials and Methods
2.1. Patient Characteristics

We studied iPSC-derived spinal MN cultures from ALS patients with the following
pathogenic SOD1 mutations: A4Vhet (p.Ala5Val), D90Ahom (p.Asp91Ala) and R115Ghet

(p.Arg116Gly), and compared them to MNs carrying human SOD1 wild type (SOD1 Wt)
in four cell lines from healthy volunteers and one gene-corrected isogenic control line of
D90Ahom (SOD1 D90A igc). All cell lines were obtained from skin biopsies of patients or
healthy volunteers and have been described before [25,35,37,38] (Table 1). The performed
procedures were in accordance with the Declaration of Helsinki (WMA, 1964) and approved
by the Ethical Committee of the Technische Universität Dresden, Germany (EK 393122012
and EK 45022009) and the University of Umeå, Sweden (14-137-31M). Written informed
consent was obtained from all participants including for publication of any research results.

Table 1. Patient/proband characteristics.

SOD1 Line Sex Age at
Biopsy Mutation Primarily

Characterized in

Wt Ctrl1 Female 48 - [39]
Wt Ctrl2 Female 43 - [40]
Wt Ctrl3 Female 49 - [40]
Wt Ctrl4 Male 34 - [41]
IGC SOD1 D90A igc Female 46 - [37]
Mt SOD1 D90A Female 46 D90A [35]
Mt SOD1 R115G Male 59 R115G [35]
Mt SOD1 A4V Female 73 A4V

2.2. Karyotyping

SOD1 iPSC and control cell lines were karyotyped using the HumanCytoSNP-12 v2.1
BeadChip Kit (Illumina Inc., San Diego, CA, USA). All clones showing pathological SNPs
were excluded prior to the study.

2.3. Genotyping

DNA from the cell lines D90Ahom (p.Asp91Ala) and R115Ghet (p.Arg116Gly) were
genotyped by a diagnostic human genetic laboratory (CEGAT, Tübingen, Germany)
and the A4Vhet (p.Ala5Val) cell lines at Umeå University, Sweden. Control lines were
also genotyped and verified as SOD1 wild type and also lacking C9ORF72, FUS or
TDP43 mutations.

2.4. Mycoplasma Testing

All fibroblast lines were checked for Mycoplasma sp. prior to and after reprogram-
ming and afterwards, and routine checks for Mycoplasma were conducted every three to
six months. We used the Venor® GeM Classic mycoplasma detection kit according to man-
ufacturer’s instructions (Cat. No. 11–1025, Minerva Biolabs GmbH, Berlin, Germany).

2.5. Generation, Gene Editing and Differentiation of Human iPSC Cell Lines to MNs in
Microfluidic Chambers (MFCs)

The generation and expansion of iPSC lines from healthy control and familial ALS
patients with defined mutations in the SOD1 gene (Table 1) were recently described [35,37].
The gene corrected isogenic control to the homozygous mutant SOD1 D90Ahom (SOD1
D90Ahom igc, Table 1) was generated by CRISPR-Cas9n-mediated gene editing and was
fully characterized [37]. The subsequent differentiation to neuronal progenitor cells (NPC)
and further maturation to spinal MNs was described previously [25,42]. The coating
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and assembly of MFCs (Xona Microfluidics RD900) to prepare for the seeding of MNs
was performed as described [25,36,38]. MNs were seeded for maturation into one side
of an MFC to obtain a fully compartmentalized culture with proximal somas and their
dendrites being physically separated from their distal axons, as only the latter type of
neurite was capable to grow from the proximal seeding site through a microgroove barrier
of 900 µm-long microchannels to the distal site (shown in details in [43]). All subsequent
imaging in MFCs was performed at day (D)21 of axonal growth and MN maturation
(D0 = day of seeding into MFCs).

2.6. Live Imaging in MFCs

Time-lapse movie acquisition was performed as described [25,36]. In brief, to track
lysosomes and mitochondria, cells were double-labelled with Lysotracker Red DND-99
(Molecular Probes Cat. No. L-7528) and Mitotracker Deep Red FM (Molecular Probes Cat.
No. M22426) at 50 nM each. Trackers were added directly to culture supernatants and
incubated for 1 h at 37 ◦C prior to live imaging.

2.7. Organelle Tracking and Shape Analysis

Recently, we have published a comprehensive description of the automated analytical
pipeline starting from object recognition in raw movie data to final parametrization of
organelle motility and morphology [36]. In brief, organelle recognition and tracking was
performed with the FIJI Track Mate plugin, organelle shape analysis with our custom-
tailored FIJI Morphology macro that is based on the FIJI particle analyzer. Both Track
Mate and particle analyzer tools returned the mean speed and track displacement for each
organelle type (mito- versus lysotracker-labeled) along with the length of mitochondria
and area of lysosomes. Subsequent data mining of individual per-movie result files was
performed in KNIME to assemble final results files with annotated per-organelle parameters,
thereby allowing all data from each experimental condition to be pooled (e.g., all data for
mitotracker or lysotracker for a given cell line). In addition, the percentage of moving
tracks, defined as the percentage of all tracks with a minimum track displacement of 1.2 µm
as an arbitrary threshold for moving as opposed to stationary organelles, was calculated as
a post-processing parameter in KNIME. Data were either displayed as bar histogram and
scatter dot plot of individual organelles (e.g., mitochondria length) pooled from at least
three independent experiments or data were averaged per experiment and displayed as
box plot (i.e., each data point presents the mean of one independent experiment).

Analysis of mitochondrial membrane potential with Mitotracker JC-1 (Molecular
Probes Cat. No. M34152) was performed as described [25]. In brief, object segmentation
was performed with the channel of higher intensity (most often red emission) to generate
a selection limited to mitochondria using a custom-tailored FIJI macro. The resulting
selection was saved as a region of interest (ROI) and applied to both channels to reveal the
total integral intensity and area of mitochondria and background in both channels using
the “Measure” command. After area normalization and background subtraction, ratios of
integral red/green intensity were taken as mean membrane potential per movie (first frame
only) and batch-analyzed in KNIME as for the tracking analysis (see above). The resultant
ratios were averaged per experiment and displayed as box plots on a log scale.

2.8. Stress Granule Induction and Protein Aggregation

Induction of stress granules and stimulation of protein aggregation was initiated by
different treatments: (i) a short term induction of stress granules by incubation with 200 µM
sodium arsenite (Cat. No. S7400, Sigma-Aldrich, St. Louis, MO, USA)) for 1 h [44], (ii) a
long term treatment (24 h) with a combination of 2.5 mg/mL of the polysome inhibitor
puromycin (Cat. No. 58-58-2, InvivoGen Europe, Toulouse, France) and 40 µM of the Hsp70
inhibitor VER155088 (Cat. No. SML0271, Sigma-Aldrich, St. Louis, MO, USA), which
blocks stress granule disassembly and chaperone mediated autophagy [44,45], and (iii)
heat stress (43 ◦C for 2 h) in combination with 40 µM VER155088 [46]. For induction and
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detection of aggresome formation, we used the PROTEOSTAT® Protein aggregation assay
kit (Cat. No. ENZ-51035-0025, Enzo Life Sciences, Inc., Farmingdale, NY, USA), which
included incubation with 10 µM MG-132 (Cat. No. BML-PI102-0005, Enzo Life Sciences,
Inc.), a proteasome inhibitor, for 18 h [45].

2.9. DNA Damage

Double strand breaks (DSB) were induced by incubation with 2 µM etoposide (Cat.
No. E1383, Sigma-Aldrich, St. Louis, MO, USA) for 1 h. Cells were immediately fixed after-
wards and immunocytochemistry was performed. Anti-γH2A.X (1:500, Cat. No. 05-636,
Sigma-Aldrich, St. Louis, MO, USA) and anti-53BP1 (1:1000, Cat. No. NB100-304, Novus
Biologicals, Centennial, CO, USA) double-positive intranuclear punctae were counted
as DSBs. Cells were counted as viable if no signs of nuclear blebbing or fragmentation
were detected by Hoechst 33342 (Cat. No. 62249, ThermoFisher Scientific, Waltham, MA,
USA) staining as an indication of apoptosis. Ratio of vital cell count before and after 2 µM
etoposide treatment was used as a survival readout. For DSB recovery experiments, an
induction with 5 µM etoposide for 1 h was performed, followed by a washing step with
maturation medium and exchange with fresh maturation medium that did not contain
etoposide. After 24 h, cells were fixed and stained for the above mentioned antibodies.
Induction of DSBs by X-ray irradiation (Yxlon Maxishot 200 Y.TU/320-D03, Yxlon Int.
GmbH, Hamburg, Germany; 200 kV, 20 mA; 0.5 mm Cu filter; dose rate 1 Gy/min) was
carried out in a 6-well format. Following irradiation, cells were detached with Accutase
(Cat. No. A6964, Sigma-Aldrich, St. Louis, MO, USA) and stained for DNA DSBs with the
anti-histone yH2A.X antibody, and yH2A.X-positive cells in irradiated samples relative to
untreated control cells were analyzed by flow cytometry (FACSCanto™ II Clinical Flow
Cytometry System, BD Bioscience, Franklin Lakes, NJ, USA).

2.10. Immunofluorescence Stainings

For immunofluorescence staining, classical protocols were used. Primary antibodies
were incubated overnight at 4 ◦C, except for the γH2A.X antibody (2 h at room temperature).
The following primary antibodies were used: to detect stress granules we used the antibody
anti-EIF3η (1:1000, Cat. No. sc-16377, Santa Cruz Biotechnology Inc., Dallas, TX, USA);
natively folded SOD1 was detected with the anti-SOD1 (1:300, Cat. No. CB14379, Cell
Applications Inc, San Diego, CA, USA) antibody; to detect aggregates of misfolded SOD1
we used an anti-SOD1 peptide sequence antibody raised against amino acid 58 to 72 (SOD1
aa 58–72, 1:500, Cat. No. AS13 2644, Agrisera, Vännäs, Sweden). To test the specificity
of the peptide sequence antibody, we used a previously established HeLa cell model
overexpressing a green fluorescence protein-tagged SOD1 mutant [46]. To detect DSBs we
used anti-histone γH2A.X (1:500, Cat. No. 05-636, Sigma-Aldrich, St. Louis, MO, USA)
and anti-53BP1 (1:1000, Cat. No. NB100-304, Novus Biologicals, Centennial, CO, USA).
Nuclei were counter stained using Hoechst 33342 (Cat. No. 62249, ThermoFisher Scientific,
Waltham, MA, USA).

2.11. Image Quantification

For immunofluorescence, a minimum of 3 independent experiments based on 3 sepa-
rate differentiation pipelines were performed. Twenty images per experiment of mature
MNs at D21 after seeding into MFCs, or of uncompartmentalized NPCs, were analyzed
as described above. For movie analysis of MFCs (organelle tracking and shape, mitochon-
drial membrane potential), at least ten movies were acquired of each MFC (=one technical
replicate) with three MFCs per experiment and at least 4 independent experiments (=MN
differentiation pipeline) per cell line.
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2.12. Measurements of ATP in MNs

Measurements of relative ATP concentration using an A-team sensor and FLIM imag-
ing are described in detail in Zimyanin et al. (submitted). Briefly, MNs grown in microflu-
idic chambers were infected with lentivirus that carry either WT or mutant (R122K, R126K)
non-sensing A-team ATP-FRET sensors (Imamura et al., 2009). MNs were infected with
carrier lentivirus during maturation stage at the last re-plating or 1 day after re-plating.
Cells expressing full constructs were detected by sensor fluorescence in both CFP and
YFP channels. For FLIM imaging we used an inverted laser scanning confocal microscope
(Zeiss LSM 780/FLIM microscope) in the imaging facility of BIOTEC in Dresden with a
temperature and CO2 controlled chamber.

The microscope was equipped with a Becker & Hickl dual channel FLIM unit and
used a 440 nm pulsed diode laser. For A-team imaging, a CFP/YFP double filter cube set
F46-001 and 40×/1.2 LD LCI Plan-Apochromat lens was used. FLIM data fitting is based
on the B&H handbook and software. The offset and scattering were set to 0. Shift was
optimized to make sure that Chi2 was close to 1 (between 0.7 and 2).

FLIM processing and analysis was performed following [47]. ImageJ/FIJI custom
plugin described in [47] was used for cell segmentation to create single pixel locations by
X-Y coordinates, specific for cytosolic or axonal regions in MNs, excluding the nucleus,
background and noise measurements. Those locations were then applied to the FLIM data
to extract FLIM parameters for each pixel. A custom Python code was used to analyze
different data combinations to produce ratios, means, medians, and histograms, further
charted and statistically analyzed in GraphPad Prism.

For mitochondrial inhibitor treatments, oligomycin A 10 µM (10 mM stock) and CCCP
10 µM (10 mM stock) were added into the cell culture medium 1 h prior to imaging.

2.13. Cell Extracts SOD1 Analysis

Cell pellets were thawed rapidly in a water bath at 25 ◦C for 1 min and then lysed
in ice-cold PBS containing Complete EDTA-free protease inhibitor cocktail (Cat. No.
11 873 580 001, Sigma-Aldrich, St. Louis, MO, USA), 40 mM iodoacetamide (IAM, Cat.
No. I1149, Sigma-Aldrich, St. Louis, MO, USA) and 0.5% (v/v) Nonidet P-40 (NP-40, Cat.
No. 11754599001, Sigma-Aldrich, St. Louis, MO, USA) using a Sonifier Cell Disrupter
(Branson, Danbury, CT, USA). Lysates were centrifuged at 20,000× g for 30 min at 4 ◦C
and the protein content of the cell lysate supernatant was determined using the Pierce™
BCA Protein Assay Kit (Cat. No. 23225,ThermoFisher Scientific, Waltham, MA, USA).
Disordered SOD1 was quantified in freshly prepared extracts by misELISA (see below).
Pellets were snap frozen on dry ice and stored at −80 ◦C for analysis of SOD1 in the
detergent-insoluble fraction (see below).

2.14. Quantification of Disordered and Total SOD1 by ELISA

Disordered and total SOD1 were quantified in cell extracts using sandwich ELISAs
described previously. This method has been extensively validated in both patient-derived
fibroblasts and iPSC-derived MNs [48–50].

2.15. Quantification of SOD1 in Detergent-Insoluble Aggregates

The amount of full length SOD1 in the detergent-insoluble fraction was quantified
by western blotting as described previously [48]. The amount of aggregated SOD1 in the
detergent insoluble fraction was expressed as a percentage of soluble SOD1 present in the
corresponding cell extract, determined by total SOD1 ELISA [48].
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2.16. Statistical Analyses of ELISA and Western Blotting

Statistical analyses were performed using GraphPad Prism version 5.01 (Graphpad
Software Inc, San Diego, CA, USA) and Statistica 13.2 (StatSoft Europe GmbH, Hamburg,
Germany). To test for significance between multiple groups, one-way ANOVA followed
by Bonferroni’s multiple comparisons test was used. Alpha < 0.05 was used as the cut
off for significance (* p < 0.05, ** p < 0.005, *** p < 0.001, **** p < 0.0001). All values are
given as mean ± SD.

3. Results
3.1. Aggregates of SOD1 Are Not Detected in iPSC-Derived MNs from SOD1-ALS Patients

A pathological hallmark of ALS is the presence of intracellular inclusion bodies
containing insoluble protein aggregates. We first investigated whether or not insol-
uble aggregates of SOD1 are present in ALS patient-derived MN models that do not
overexpress mutant SOD1. Wild-type SOD1 was ubiquitously distributed and could
be detected in the cytosol, dendrites and axons and to a lesser extent in the nucleus
(Figure 1A). We did not find any inclusions that immunostained positively for disor-
dered SOD1 in unstressed MN cell cultures. Stress granules are recognized precursors of
aggregate formation, especially for TDP-43 and FUS mutant ALS [51]. Although SOD1
has been reported to interact with stress granule components in SOD1 overexpressing
cell cultures and to colocalize with SOD1-positive inclusions in the spinal cord of SOD1
mouse models, SOD1 does not appear to be an RNA-binding protein [52,53]. To inves-
tigate a possible link between stress granules and SOD1 in patient-derived MNs, we
induced stress granule formation with arsenic acid, heat stress or puromycin (Puro) in
combination with heat shock protein 70 (Hsp70) inhibition (VER155088, Ver) (Figure 1A).
MG132, a proteasome inhibitor, was used to induce aggresome formation (Figure 1B).
We investigated inclusion formation using an antibody raised against the folded SOD1
protein (totalSOD1) as well as with a SOD1 peptide sequence antibody (SOD1, raised
against amino acids 58–72), which exclusively binds to the disordered apo SOD1 protein,
but not to holo SOD1 [54]. All tested conditions showed either stress granules (by ElF3n
marker) or aggresome formation, but both formations were negative for total or disor-
dered/misfolded SOD1 (Figure 1A,B), thereby indicating that our immunostaining did
not detect SOD1-positive inclusions upon stress. As a positive control for SOD1 aggrega-
tion, we transfected HeLa cells with GFP-tagged A4V mutant SOD1 [46] and induced
SOD1 aggregation with heat stress in combination with Hsp70 inhibition (Figure 1C),
or with MG132 (Figure 1D). We found strong colocalization of cytoplasmic SOD1-GFP
inclusions and disordered SOD1 antibody staining. In contrast, the totalSOD1 antibody
showed no specific staining of cytoplasmic SOD1-GFP inclusions. Taken together, our
results show that patient-derived spinal MNs with endogenous levels of mutant SOD1
expression did not exhibit visible SOD1 aggregation.
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Figure 1. Distinct stress response of endogenous versus overexpressed mutant SOD1. Immunostain-
ing of patient-derived MNs (A,B) and HeLa cells (C), SOD1 WT: MNs from healthy control probands,
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representative examples from Ctrl1 (Table 1), SOD1 Mt: MNs from mutant SOD1 ALS patients,
representative examples from R115G (Table 1). (A) Stress granules (eIF3η) could be induced in human
MNs with arsenic acid, heat stress and by Ver/Puromycin treatment (Hsp70 and polysome inhibition),
but accumulation of natively folded (SOD1 total) and disordered SOD1 (SOD1 aa58–72) was not
detected in these stress granules. (B) Proteasome inhibition (MG132) led to aggresome formation
(Aggresome kit) but not to accumulation of natively folded or misfolded SOD1. (C) In contrast, stress
granules in a HeLa cell model with human SOD1 Mt overexpression (CMV-promoter-SOD1 4AV-GFP-
tagged transfected HeLa cells) were both positive for either the GFP-tag and the peptide antibody
reacting with disordered/misfolded SOD1 (SOD1 amino acids 58–72). (D) Likewise, proteasome
inhibition led to formation of large aggregates of mutant SOD1 in the HeLa overexpression model,
which were negative for natively folded SOD1 but strongly reacted with the SOD1 amino acid 58–72
peptide antibody. Scale bars = 10 µm. This experiment served as a positive control in the HeLa cell
model, validating the specificity of the SOD1 amino acid 58–72 peptide antibody and verifying the
absence of significant amounts of disordered SOD1 in human MNs.

3.2. Augmented Levels of Disordered SOD1 upon Stress in SOD1 Mutant MNs

Native SOD1 is a rigidly folded homodimer and this conformation is essential for
enzymatic function. Polyclonal anti-peptide antibodies that specifically recognize epi-
topes that are exposed in human SOD1 when the native conformation is lost have been
developed and used in an ELISA format for quantification of even minute amounts of
disordered SOD1 [49,55,56], as well as in extracts from patient-derived fibroblasts [57]
and iPSC-derived MNs and astrocytes [48]. Disordered SOD1 occurs under physiological
conditions but the amount is marginal compared to the native counterpart due to refolding,
or to rapid degradation by the proteasome [48]. However, mutations in SOD1 and stress
responses, i.e., the occurrence of aggresomes and stress granules, can lead to increased
accumulation of disordered SOD1 as a pathological hallmark [48,49]. Thus, we wished
to investigate whether increased occurrence of disordered SOD1 could be detected as an
early event in SOD1-ALS by the more sensitive misELISA method. In order to distinguish
between soluble and aggregated SOD1, we prepared soluble and detergent-insoluble frac-
tions from cell lysates. First, we determined the total amounts of soluble SOD1 in all lines
using antibodies that recognizes all SOD1 species, irrespective of conformational state.
We found reduced levels of soluble total SOD1 in all untreated mutant lines (D90A, A4V,
R115G) compared to isogenic and healthy controls (D90A igc, Ctrl, Figure 2A, blue bars).
Neither induction of stress granule formation with Ver and Puro (Figure 2A, compare blue
vs. green bars) nor inhibition of proteasome function using MG132 (Figure 2A, compare
blue vs. red bars) led to alterations in soluble total SOD1 in any line. In contrast, we found
elevated levels of disordered SOD1 in the soluble fraction in untreated samples carrying
unstable SOD1 A4V and R115G mutations as compared to control MNs, but not in the line
carrying the stable SOD1 D90Ahom variant (Figure 2B, blue bars). Combined treatment
using Ver + Puro did not impact on disordered SOD1 in any line except Ctrl1 (Figure 2B,
compare blue vs. green bars), but MG132 led to a further increase in A4V and R115G
(Figure 2B, compare blue vs. red bars). When analyzing the detergent-insoluble fraction
by western blotting, we detected low but very similar amounts of aggregated SOD1 in
all untreated lines (Figure 2C). Upon treatment with MG132, aggregated disordered (mis-
folded) SOD1 exhibited augmented levels in A4V and R115G (Figure 2C,D) but not in D90A.
Consistent with observations in the soluble fraction, stress granule induction (Ver + Puro)
did not impact on SOD1 aggregation in the detergent-insoluble fraction (Figure 2C,D). In
summary, aggregated SOD1 was undetectable in unstressed mutant SOD1 MNs, while
soluble disordered SOD1 was increased in MNs carrying the unstable A4V and R115G
mutants (Figure 2B). A4V and R115G SOD1 mutants showed increased aggregation upon
proteasome inhibition (Figure 2C,D). Importantly, we found no evidence for SOD1 being
recruited to SG (Figure 1A,B) or that stress granule induction (VER + Puro) led to increased
soluble disordered (Figure 2B) or detergent-resistant SOD1 (Figure 2D).
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Figure 2. SOD1 misfolding is induced by proteome inhibition but not stress granule assembly in
SOD1 mutant MNs. (A) Levels of total soluble SOD1 in supernatants of spinal MN extracts by
ELISA performed with an antibody recognizing all natively folded and misfolded SOD1 species.
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Neither VER + Puro (stress granule induction, in green) nor MG132 (proteasome inhibition, in red)
treatment altered levels of total SOD1 in any line (significances “ns” in green and red with respect
to the untreated line in blue). Levels of total SOD1 were significantly reduced in untreated (in blue)
SOD1 Mt D90A, A4V and R115G cells compared to untreated (in blue) SOD1 WT including isogenic
gene-corrected control D90A igc cells (significances “**” in blue on top with respect to D90A igc).
(B) Levels of disordered soluble SOD1 in supernatants of spinal MN extracts by ELISA performed
with the peptide antibody against amino acids 24–39 recognizing this epitope only in disordered
SOD1. Disordered SOD1 was significantly increased in SOD1 Mt A4V and R115G, but not D90A,
after MG132 treatment (in red) but not induced with VER + Puro (in green) as compared to untreated
cells (in blue). Both the A4V and R115G, but not D90A, exhibited increased levels of disordered
SOD1 already in the untreated state (in blue; significances “**”, “****” in blue on top with respect to
untreated D90A igc). (C) Western blot analysis of detergent-insoluble pellet fraction of spinal MN
extracts performed with antibody against amino acids 24–39 for specific detection of disordered SOD1
in untreated (−) versus MG132-treated (+) cells. All untreated lines exhibited similar minute levels of
disordered SOD1. Both the A4V and R115G, but not D90A, exhibited increased levels of disordered
SOD1 upon MG132 treatment. (D) Quantification of (C). MG132 treatment (in red) of A4V and
R115G, but not D90, increased the amount of disordered SOD1 in the pellets whereas VER + Puro (in
green) did not. Five independent biological replicates for each cell line and each condition. Asterisks:
significant alteration with respect to untreated reference in blue by two-way ANOVA with Bonferroni
post test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns not significant.

3.3. No Signs of Elevated DNA Damage or Impaired DNA Repair in SOD1 Mutant MNs

DNA stability is an important aspect of the pathophysiology of ALS [25]. Genomic
instability, due to loss of functional SOD1 in the nucleus along with increased levels of
ROS, was recently described [33], which led to the activation of genes crucial for en-
hanced resilience towards oxidative DNA damage [34]. Thus, we studied the appear-
ance of spontaneous DNA-damage in SOD1 mutant MNs as well as their ability to deal
with DNA damaging events. Neither basal levels of DNA double strand breaks (DSBs)
(Figure 3A,B), nor induction and recovery after induction of DSBs through etoposide treat-
ment (Figure 3A,C), nor induction of DNA damage after X-ray irradiation (Figure 3D,E)
significantly differed between SOD1 mutants and SOD1 wildtypes. Furthermore, survival
of MN after DNA damage in SOD1 mutants was indistinguishable from wild type controls
(Figure 3F). These data argue against DNA damage as a principal mechanism for SOD1
mediated-ALS, but this does not exclude them as later secondary events downstream in
the pathophysiological cascade.

3.4. Elongated Mitochondrial Morphology in SOD1 Mutant MNs

We recently demonstrated increased cell death in iPSC-derived MNs carrying mutant
SOD1 [35]. Mitochondrial homeostasis is necessary for the vitality and viability of neu-
ronal cells. Furthermore, genome wide analysis of SOD1 MNs mainly revealed alterations
in the metabolic pathways and neuroactive-ligand–receptor interactions [58]. Thus, we
hypothesized that an impairment of mitochondrial homeostasis plays a major role in the
pathogenesis of SOD1-ALS. We first analyzed the morphology of mitochondria in the
different SOD1 Mt lines in comparison to SOD1 Wt including an isogenic control (D90A igc)
of the homozygous SOD1 D90A mutant (D90A). In total, over 50,000 mitochondria were an-
alyzed semi automatically for their morphology in images acquired from axons of live MNs
cultured in compartmentalized MFCs (Figure 4A,B). We verified that the merging of data
from the distal and proximal readout positions in MFCs on the one hand and the pooling
of all SOD Wt control lines (pooled Ctrl: Ctrl1, Ctrl2, D90A igc, Table 1) on the other hand
was a valid approach (Supplementary Materials Figure S1), as data obtained under these
conditions were statistically indistinguishable from each other. Mean mitochondrial length
was significantly increased in SOD1 Mt (pooled SOD1 Mt, 2.07 ± 0.44 µm) as compared to
SOD1 Wt (pooled Ctrl, 1.55 ± 0.13 µm) (Figure 4C). SOD1 R115G (2.10 ± 0.41 µm, p < 0.01)
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and SOD1 D90A (2.15 ± 0.48 µm, p < 0.0001) had significantly longer mitochondria in
comparison to SOD1 Wt (pooled Ctrl), whereas SOD1 A4V (1.75 ± 0.11, p = 0.33) showed
no significant difference in mean mitochondrial length in comparison to SOD1 Wt (pooled
Ctrl, Figure 4D). The D90Ahom line was significantly different to its D90Aigc counterpart
(p < 0.01), with increased mean length of mitochondria (Figure 4D,G), thereby confirming
that the observed mitochondrial phenotypes were induced by the underlying SOD1 mu-
tation and were not due to genetic background variation. Analyzing the distribution of
single mitochondrion length revealed, in addition to the increased mean length, a fraction
of super elongated mitochondria in SOD1 D90A and R115G (Figure 4E–G, boxed in red).
Importantly, this mitochondrial elongation was not observed in neural precursor cells from
the same lines (NPCs) (Figures 4A and S2).

Figure 3. DNA damage is not increased in SOD1 Mt MNs. DNA double strand breaks (DSBs)
detected with anti-γH2AX and anti-53BP1 were indistinguishable in unstressed SOD Wt versus
Mt (A row 1–2, B) or neither after induction of DSBs through 1 h treatment with 2 µM etoposide
(A row 3–4, C) nor after 24 h-recovery after DSB induction with 5 µM etoposide (A row 5–6, C) in
MAP2—positive human MNs. Similar results were observed using FACS analysis of γH2AX in MNs
without stress and after DSB induction by X-ray irradiation with 2 Gy (D,E). Cell survival (F) was
not affected by DNA damage induction with 2 µM etoposide in neither SOD1 Wt nor SOD1 Mt.
SOD1 WT in image galleries (A): shown are representative examples of Ctrl1 (Table 1). SOD1 Mt in
image galleries (A): shown are representative examples of D90A (Table 1). SOD WT pooled: data
from Ctrl1 and Ctrl2 (B,C,F) or Ctrl2, Ctrl3 and Ctrl4 (D) were pooled (Table 1), SOD Mt pooled: data
from R115G, A4V and D90A (B–D,F) (Table 1). Three (B,C,F) and four (D) independent biological
replicates for each cell line and each condition. N.s.: no significant change in unpaired two-tailed
Student’s t-test. Scale bar = 20 µm, in inlet = 5 µm.
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Figure 4. Increased elongation of mitochondria in mutant SOD1 spinal MNs. (A) Scheme of the
differentiation pipeline to obtain iPSC-derived spinal motoneurons from patients, starting from
cryopreservable neuronal precursor cells (NPCs). PMA: phorbol-12-myristate-13-acetate, RA: retinoic
acid, BDNF: brain-derived neurotrophic factor, cAMP: cyclic adenosine monophosphate, GDNF: glia
cell line-derived neurotrophic factor. (B) Cartoon of the live setup of MNs in microfluidic chambers
(MFCs). The central microgroove of channels formed a physical barrier between the distal (left) and
proximal (right) site where the somata were seeded. Only axons, not dendrites, could penetrate the
microchannels. (C,D) Box plots of mean mitochondrial length values per experiment (black dots) for
each respective line with 25–75% interquartile range (box), median (horizontal line) and non-outlier
range (1.5-fold interquartile range added above and below to box, whiskers). SOD Wt pooled (C,D,F):
data from all SOD Wt lines including D90A igc (n = 6) were pooled (n = 13) as listed in Table 1. SOD
Mt pooled (C): data from D90A (n = 13), R115G (n = 4), and A4V (n = 4) (Table 1) were pooled (n = 21).
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Asterisks: highly significant increase in pairwise comparison of control cells (in blue) with each
mutant line (in red), respectively, unpaired two-tailed Student’s t-test (C) or one-way ANOVA with
Bonferroni post-hoc test (D). * p < 0.05, ** p < 0.01, *** p < 0.001, ns not significant. (C) Mitochondrial
length was increased in mutant lines (SOD1 Mt) compared to wild type control cells (Ctrl). (D) Post
hoc comparisons showed significantly longer mitochondria in mutant D90A and R115G but not in
A4V. Comparison of D90A versus its isogenic gene-corrected control (D90A igc,) proved that this
effect was due to the SOD1 mutation. (E) Length distribution of single mitochondria displayed as bar
histogram in D90A (in red) compared to D90A igc (in blue), bin width 2µm. Note, the super-elongated
fraction in D90A beyond 25 µm (red box) that was absent in D90A igc. (F) Length distribution of
single mitochondria displayed as scatter dot plot (i.e., each dot presents one mitochondrion) for
individual lines as in (D). Note, the super-elongated fraction present in D90A, R115G, and, to a lesser
extent, A4V beyond 25 µm (red box) that were absent in both control conditions (pooled Ctrl, D90 igc).
Center lines: medians, error bars: standard deviations. (G) Corresponding raw images obtained with
mitotracker (yellow) showing representative examples of super-elongated mitochondria in D90A
(red boxes) that were absent in D90A igc. Scale bar = 10 µm.

3.5. Mitochondrial but Not Lysosomal Trafficking Phenotypes in SOD1 MNs

Mitochondrial integrity depends on shuttling within the axon, including proper retro-
grade transport to perinuclear spaces to fuse for rejuvenation, or autophagic clearance [59].
To test whether the super-elongated mitochondria in mutant SOD1 MNs (Figure 4) occurred
concomitantly with perturbed trafficking we analyzed the motility of axonal mitochondria
in MFCs. Moreover, to address whether such perturbed trafficking events were specific for
mitochondria, or also affected other organelle types, we analyzed lysosomes as well. Of
note, there was no difference between the distal and proximal axonal readout positions in
MFCs and no significant clone to clone differences were observed; thus, we pooled data
from proximal and distal positions as well as from all SOD Wt lines for further analysis
(pooled Ctrl: Ctrl1, Ctrl2, D90A igc, Table 1) (Figures S3 and S4). Automated tracking
analysis in MFCs revealed a significantly increased mean proportion of moving mitochon-
dria in the SOD1 Mt (pooled SOD1 Mt, 17.4 ± 6.5%, p < 0.05) as compared to SOD1 Wt
(pooled Ctrl, Figure 5A). In detail, SOD1 D90A (17.8 ± 6.4%, p < 0.05) and SOD1 R115G
(21.3 ± 4.9%, p < 0.01) had a significantly higher mean proportion of moving mitochon-
dria as compared to SOD1 Wt (Figure 5B) (pooled Ctrl, 12.9 ± 3.4%), whereas SOD1 A4V
(10.96 ± 4.4, p = 0.5) was not different (Figure 5B). Mitochondrial mean speed (pooled
Ctrl: 0.54 ± 0.05 µm/s; pooled SOD1 Mt: 0.58 ± 0.05 µm/s; p < 0.05) was moderately but
significantly increased in a group comparison (Figure 5C) but not in the individual SOD1
Mt line comparison (Figure 5D). Mean mitochondria track displacement (pooled Ctrl: 2.60
± 0.55 µm; pooled SOD1 Mt: 2.56± 0.34 µm; p = 0.7) and the mean fraction of mitochondria
moving anterogradly (pooled Ctrl: 50.37 ± 6.91%; pooled SOD1 Mt: 51.41 ± 4.57%; p = 0.6)
was not different between groups (Figures 5E,F and S3c,d), thereby excluding a directional
movement bias due to the underlying mutation.

Interestingly, neither lysosomal motility (Figure 6A–C,E) nor lysosomal size (Figure 6D)
was affected, thereby suggesting a specific impact on mitochondria, arguing against a
systemic alteration of cell organelle motility behavior including axon skeleton and/or
molecular motors.
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Figure 5. Altered motility of mitochondria in mutant SOD1 spinal MNs. (A–F) Box plots of various
tracking parameters deduced from moving mitochondria as mean values per experiment (black dots)
for each respective line with 25–75% interquartile range (box), median (horizontal line), non-outlier
range (1.5-fold interquartile range added above and below to box, whiskers) and outliers (grey dots
outside whiskers). SOD Wt pooled: data from all SOD Wt lines including D90A igc (n = 6) were
pooled (n = 13) as listed in Table 1. SOD Mt pooled: data from D90A (n = 13), R115G (n = 4), and A4V
(n = 4) (Table 1) were pooled (n = 21). Asterisks: highly significant increase in pairwise comparison of
control cells (in blue) with mutant lines (in red), respectively, unpaired two-tailed Student’s t-test
(A,C,E,F) or one-way ANOVA with Bonferroni post-hoc test (B,D). * p < 0.05, ** p < 0.01, n.s. not
significant. (A) The percentage of moving mitochondria was increased in SOD1 Mt compared to SOD
Wt pooled lines. (B) Comparison of single lines showed significantly higher percentages of moving
mitochondria in D90A and R115G, but not in A4V. (C) Mean speed was significantly increased in
pooled SOD1 Mt over Wt cells but single line comparisons (D) revealed no significant difference.
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(E) Track displacement of mitochondrial movement was not altered. (F) Percentage within the
moving fraction as shown in (A) moving in anterograde direction towards distal axonal ends. The
opposite retrograde direction towards somata results from the difference to 100%—anterograde
fraction. (G) Maximum intensity projections of movie frame stacks obtained with mitotracker to
illustrate mitochondria motility (yellow) in D90A igc versus D90A. Straight, processive movements
are marked by long trajectories. Scale bar = 10 µm.

Figure 6. Lysosomal size and motility was not altered in mutant SOD1 spinal MNs. (A–D) Box plots
of various tracking and morphological parameters deduced from moving lysosomes as mean values
per experiment (black dots) for each respective line with 25–75% interquartile range (box), median
(horizontal line) and non-outlier range (1.5-fold interquartile range added above and below to box,
whiskers). SOD wildtype pooled: data from all SOD wildtypes lines including D90A igc (n = 6)
were pooled (n = 13) as listed in Table 1. SOD mutants pooled: data from D90A (n = 13), R115G
(n = 4), and A4V (n = 4) (Table 1) were pooled (n = 21). Ns: no significant change in any pairwise
comparison of control cells (in blue) with mutant lines (in red), one-way ANOVA with Bonferroni
post-hoc test. * p < 0.05, n.s. not significant. (A) Percentage of moving lysosomes, (B) lysosome mean
speed, (C) track displacement, and (D) size in any SOD1 Mt lines was not altered compared to SOD1
WT cells including D90A igc. (E) Maximum intensity projections of movie frame stacks obtained
with lysotracker to illustrate lysosome motility (cyan) in D90A igc versus D90A. Straight, processive
movements are marked by long trajectories. Scale bar = 10 µm.
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3.6. Hypopolarization of Mitochondria in SOD1 Mt MNs

Mitochondrial fusion can compensate for minor mitochondrial defects, mitigate the
effects of environmental damage by sharing mitochondrial components and increase ox-
idative capacity in response to toxic stress [20]. Thus, we investigated whether or not the
inner membrane potential—known to be an important indicator of proper mitochondrial
function—is disturbed in lines carrying mutant SOD1s. To this end, we used JC-1 as a
marker for mitochondrial inner membrane potential relevant for mitochondrial integrity.
Both SOD1 Mt cell lines tested (D90A, A4V) (pooled ratio 2.02 ± 1.13) had a dramati-
cally reduced membrane potential in comparison to SOD1 Wt (pooled ratio 10.2 ± 0.81),
including a significant difference between the isogenic control and its respective D90A
mutant line (Figures 7 and S5). Once more, no difference between proximal and distal
axons was observed.

Figure 7. Reduced mitochondrial inner membrane potential in mutant SOD1 spinal MNs. (A,B) Box
plots of membrane potential (fluorescence intensity ratio of JC1 red/green channel), mean values
per experiment (black dots) for each respective line with 25–75% interquartile range (box), median
(horizontal line), and non-outlier range (1.5-fold interquartile range added above and below to
box, whiskers). SOD WT pooled: data from all SOD WT lines including D90A igc were pooled
(n = 7) as listed in Table 1. SOD Mt pooled: data from D90A (n = 8) and A4V (n = 3) (Table 1) were
pooled (n = 11). Asterisks: highly significant increase in pairwise comparison of control cells (in
blue) with each mutant line (in red), respectively, unpaired two-tailed Student’s t-test (A) or one-way
ANOVA with Bonferroni post test (B). **** p < 0.0001, n.s. not significant. (A) Membrane potential
of mitochondria was strongly decreased in SOD1 Mt compared to SOD WT cells. (B) SOD1 A4V
and D90A had both profoundly decreased mitochondrial membrane potentials. (C) Representative
images of D90A igc versus D90A. Scale bar = 10 µm.

3.7. SOD1 Mt MN Have Reduced Levels of ATP

Changes in shape, motility and hypopolarization of mitochondria in SOD1 mutant
MNs should disrupt their metabolic function significantly and lead to a reduction in cellular
ATP. We have used the Förster resonance energy transfer (FRET)-based ATP biosensor
A-team as recently described by [47,60] to establish a robust and efficient way to measure
relative changes in ATP concentration in individual neurons and their subcompartments.
In this approach, binding of ATP by the sensor leads to its conformational change and an
increase in FRET between donor (CFP) and acceptor (YFP) subunits. To avoid artifacts
associated with measurements of fluorescent intensity-based FRET, we utilized Fluores-
cence Lifetime Imaging (FLIM) approaches [47,60]. FLIM microscopy measures multiple
single-photon fluorescence events and allows the building of a histogram, and therefore an
estimation of fluorescence lifetime and amplitude (i.e., number of detected photons) for
each fluorophore. Since FRET decreases mean lifetime of the donor (Tm), one can quantify
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the extent to which FRET occurs, provided the donor lifetime without FRET is known, and
therefore estimate relative changes in ATP concentrations. Using this approach, we tested
whether SOD1 D90Ahom mutant motoneurons with the broadest mitochondrial phenotypes
also have a detectable reduction in ATP levels in their somata and axons (Figure 8).

Figure 8. A-team FLIM reveals lower levels of ATP in SOD1 mutant soma and distant axons. (A) Low
and higher magnification of the microfluidic chamber illustrating motoneurons lentivirally transfected
with A-team FRET sensor. Individual subunits of the sensor could be visualized via their fluorescence
in CFP and YFP channels. Low to moderate transfection efficiency allowed identifying single cells
and thereby measurements of individual soma, proximal and also distal axonal (i.e., growth cones)
compartments within each chamber. (B,C) Representative single images showing donor fluorescent
intensity of ATP FRET sensor A-team and its corresponding color-coded range of mean-lifetime FLIM
measurements within each cell. Images show different cell compartments, somata (B) and axons
(C) in WT and SOD1 mutant MN cells. Color-coded scales of mean-lifetime values are shown at
the bottom of the gallery. Scale bar is 10 µm. (D). Bar graphs comparing average mean lifetimes in
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untreated WT cells, WT cells treated with mitochondrial inhibitors CCCP (10 µM) and Oligomycin
A (10 µM), as well as cells transfected with mutant non-sensing A-team (R121K R126K). Oxphos
inhibition led to a significant increase in lifetime values (reduction in relative ATP concentration) in
MNs. (E,F) Comparison of A-team mean lifetime values between WT and SOD1 showed a significant
reduction of relative ATP concentration in both somata (E) and axons (F) of SOD1 mutant MN cells.
Statistics unpaired two-tailed Student t-test, ** p < 0.01, **** p < 0.0001.

As our baseline, we used lifetime of the CFP donor in a R122K/R126K mutant isoform
of ATeam1.03 that has no detectable ATP binding and therefore no ATP-dependent FRET
events. Mutant A-team isoform has much higher lifetime values in comparison to fully
functional A-team sensor in wildtype motoneurons (Tm

WT soma = 1379 ± 30.18 ps (SEM),
n = 35 versus Tm

WT ATeam1.03 R122K/R126K = 1732 ± 23.24 ps, n = 26, p < 0.0001) and thus
provides a relative range of ATP concentration measurements in our cells. Inhibition of
oxidative phosphorylation with two commonly used and well characterized mitochondrial
inhibitors CCCP and Oligomycin A also significantly increased the mean lifetime of the
CFP donor of the functional sensor (Tm CCCP = 1578 ± 28.79 ps, n = 24, p < 0.0001 and
Tm Oligom = 1575 ± 36.48 ps, n = 11, p = 0.0014). These changes indicate that the increase
in mean lifetime (Tm) of the CFP donor in our measurements is due to the reduction of
ATP levels in the cytoplasm, suggesting a validity of this approach to estimate relative ATP
concentrations in living cells and their subcompartments (Figure 8B,D).

We then compared mean lifetime of CFP-donor in wt and SOD1 D90A mutant MNs and
detected a significant increase in both somata (Figure 8B,E) (Tm

WT soma =1379 ± 30.18 ps
(SEM), n = 35 versus Tm

SOD1 soma = 1545 ± 49.21 ps, n = 34, p = 0.004) and axons
(Figure 8C,F) (Tm

WT axons = 1522 ± 35.3 ps, n = 16 versus Tm
SOD1 axons = 1693 ± 40.68 ps,

n = 21, p = 0.0044). These measurements would strongly support our hypothesis that
changes in mitochondrial dynamics, morphology and polarization in SOD1 mutant MNs
lead to a significant reduction of ATP levels, thereby imposing detrimental metabolic
consequences for the affected MNs.

4. Discussion

After almost three decades following the discovery of the contribution of SOD1 muta-
tion to ALS, the pathogenic mechanisms of mutant SOD1 toxicity are not clearly resolved
and identification of the crucial initiating pathways remains elusive. Although gene thera-
pies to reduce mutant SOD1 expression using anti-sense approaches are under development
and show promising beneficial effects, a long term therapeutic effect without mitochondrial
damage needs to be demonstrated in patients with different SOD1 mutations, each impact-
ing distinctly on the biophysical properties of the SOD1 protein [61]. The data presented
here suggest that there are widely different effects on mitochondrial homeostasis in neurons
derived from patients with SOD1 mutations with distinct properties.

To shed further light on the early pathological aspects of SOD1-ALS disease, we
performed a systematic study analyzing commonly proposed pathomechanistic aspects
of SOD1 ALS, namely SOD1 misfolding and aggregation, DNA damage, mitochondrial
morphological and functional integrity and axonal transport. We utilized human iPSC-
derived spinal MNs expressing endogenous levels of three different paradigmatic SOD1
mutations. We identified altered mitochondrial integrity in SOD1 mutants as the first
and most prominent pathophysiological change, while systemic axon trafficking seemed
not to be perturbed, and augmented DNA damage, as well as large alterations in protein
aggregation, were absent. MNs expressing SOD1 R115G and most prominently SOD1
D90A had elongated mitochondria (Figure 4), a higher fraction of moving mitochondria
(Figure 5A), a strongly reduced membrane potential compared to SOD1 Wt (Figure 7) and
reduced intracellular ATP levels (Figure 8). SOD1 A4V did not show these morphological
and motility alterations of mitochondria, although its membrane potential was also strongly
reduced (summary Table 2). Thus, the overarching common phenotype in SOD1 mutant
MNs is mitochondrial damage.
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Table 2. Summary of common phenotypes. (*): Revealed by GFP-A4V-SOD1 expression, not by
immunostaining. (**): No Mock control with DMSO was required here because water was serving as
stock solvent for arsenite, Ver und Pur. (↑): increase, (↓): decrease.

Human Spinal Motor Neurons, DIV 30 (Endogenous SOD1
Expression Level)

R115G D90A 4AV

Mitochondrial elongation (Figure 4D–F) ↑ ↑ -

Mitochondrial moving fraction (Figure 5B) ↑ ↑ -

Mitochondrial inner membrane potential (Figure 7B) n.d. ↓ ↓
Lysosomal size (Figure 6D) - - -

Lysosomal moving fraction (Figure 6A) - - ↓
DNA damage (Figure 3)

Mock (DMSO) - - -
Etoposide - - -

X-ray irradiation - - -

Total SOD1 in SG (Figure 1A,D *)
Untreated ** - - -

Arsenite - - -
Heat stress - - -
Ver + Puro

Misfolded SOD1 in SG (Figure 1A,C *)
Untreated ** - - -

Arsenite - - -
Heat stress - - -
Ver & Pur - - -

Total SOD1 in aggresome (Figure 1B)
Mock (DMSO) - - -

0 - - -

Misfolded SOD1 in aggresome (Figure 1B)
Mock (DMSO) - - -

0 - - -

Soluble total SOD1 (ELISA, Figure 2A)
Untreated ↓ ↓ ↓

Additional Ver & Pur - - -
Additional MG132 - - -

Soluble misfolded SOD1 (ELISA, Figure 2B)
Untreated ↑ - ↑

Additional Ver & Pur - - -
Additional MG132 ↑ - ↑

Detergent-resistant SOD1 (WB, Figure 2C,D)
Untreated - - -

Additional Ver & Pur - - -
Additional MG132 ↑ - ↑

DNA damage was recently reported to be a key player in neurodegeneration of ALS,
and some of the genes (FUS, TARDBP, ANG, TAF15) causing familial forms of ALS are
involved in DSB DNA repair [62]. Neurons are susceptible to ROS-induced DNA damage,
and SOD1 is the major scavenger for superoxide radicals and, therefore, might prevent cells
from ROS-induced DNA damage. Moreover, a non-canonical nuclear function of SOD1
in regulating the expression of oxidative resistance and DNA damage repair genes under
oxidative stress conditions was recently described [34]. In contrast to this, despite mito-
chondrial shape and motility alterations (Figures 4 and 5), nuclear DNA damage was not
increased and DNA repair capacity in SOD1 Mt was not compromised (Figure 3), despite
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a reduction of SOD1 protein levels in all mutant lines (Figure 2A). We recently reported
DNA damage as an upstream event in the pathophysiology of FUS-ALS iPSC-derived MNs,
in which DNA damage induction phenocopies mutant FUS mitochondrial phenotypes
(depolarization, severe hypomotility mainly in distal axons, lysosomal motility mirrored
mitochondrial phenotypes). However, these phenotypes were significantly different from
the mitochondrial/axonal phenotypes identified here in SOD1 mutant MNs (elongated
mitochondria, hypermotility, lysosomes not affected, no region-specific alterations). This
suggests that mitochondrial alterations in mutant SOD1 MNs are not downstream of DNA
damage or impaired DNA repair. Consistently, DNA damage was not identified in a recent
study in a SOD1 mouse model of ALS [63].

Protein instability and increased aggregation rate correlated with decreased survival
time of ALS patients [64,65]. Protein aggregation and its clearance is one proposed upstream
mechanism in SOD1-ALS [66,67]. However, the majority of previously reported studies
addressing protein misfolding and aggregation were performed with cell lines or animal
models overexpressing human mutant SOD1 [68,69]. Furthermore, a recent study showed
that large SOD1 aggregates do not impact cell viability, suggesting aggregation may be
a protective mechanism [70]. In our human iPSC-derived spinal MNs with a patient-
specific genetic background that presumably better reflects the background of human
disease, we could not detect large, insoluble aggregates of SOD1 in the human spinal
MNs even under stress conditions (Figures 1A,B and 2C,D). However, soluble disordered
(‘misfolded’) SOD1 could be detected in the A4V and R115G mutant even without stress,
and levels further increased after proteasome inhibition with MG132 using sensitive ELISA-
based quantification (Figure 2B). Notably, the D90A mutant, which showed the most
prominent mitochondrial morphology changes, did not show significantly increased levels
of insoluble or soluble disordered SOD1 protein even after MG132 treatment (Figure 2B–D).
Additionally, in untreated conditions, we did not find significantly increased levels of
disordered SOD1, which is consistent with the near Wt stability of SOD1 D90A protein.

Of note is the fact that different groups have found that inoculation of SOD1 aggre-
gates prepared from spinal cord not only from transgenic mice overexpressing mutant
SOD1s but also from SOD-ALS patients carrying mutant SOD1s expressed at endoge-
nous levels are able to transmit both SOD1 aggregation and fatal motor neuron disease
to transgenic mice [30,31]. It should also be mentioned that iPSC generation leads to reju-
venation of reprogrammed cells [71], which could explain different results as compared
to postmortem tissue. Nevertheless, iPSC model systems are particularly suited to detect
early pathophysiological events, arguing once more for mitochondrial damage as an early
event in SOD1-ALS, which might even precede SOD1 misfolding and aggregation. This
does not exclude a significant role of SOD1 misfolding and aggregation in disease spread
and progression.

Even though mitochondrial elongation was not present in A4V lines, A4V also showed
significantly decreased membrane potential in SOD1 mutant MN mitochondria, which was
as pronounced as in the D90A line. Mutation-dependent differences of disease severity
and disease onset are well known among different SOD1 mutants in ALS [65]. Differences
in mutation position have a strong effect on the level and properties of the mutant SOD1
protein and cellular compensatory homeostatic mechanisms. Mitofusion and mitofission
are in a dynamic balance that maintains mitochondrial function and enables fast responses
to environmental cues. Mitofusion or hyperfusion can protect dysfunctional mitochon-
dria from mitofission and macroautophagy by diffusion and sharing of components [20],
which could explain the mitochondrial elongation in SOD1 D90A and R115G. Interestingly,
treatment with a mitochondrial fission inhibitor and a fusion promoter led to elongated
mitochondria and also increased mitochondrial motility, however this was without signs of
hypopolarization [36]. Further studies are needed to unravel the cause of mitochondrial
elongation in our patient-derived iPSC lines as well as the dispersion of SOD1 misfolding
and mitochondrial damage phenotypes.
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5. Conclusions

Our data suggest mitochondria to be among the first crucial organelles that suffer from
and have to compensate for mutant SOD1 in MNs. These phenotypes were abundant before
aggregate formation or detergent-resistant SOD1 could be found. SOD1 was neither found
in SG nor further disordered after SG induction, whereas the latter was clearly the case
when proteasome function was inhibited (Figure 2B–D). Therefore, further investigations
are necessary to clarify how mitochondrial integrity and dynamics (i.e., mitofusion and
mitofission) can serve as therapeutic intervention targets in mutant SOD1 ALS and how
these are connected to SOD1 protein misfolding and aggregate spreading. Finally, our
data clearly show distinct mutation-dependent biophysical properties of the SOD1 protein,
indicating a potential need for individualized therapeutic strategies along with sustained
long term reductions of mutant SOD1 levels, whereas any impairment of mitochondrial
function must be avoided.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11071246/s1, Figure S1: Increased elongation of mitochondria
in mutant SOD1 spinal MNs.; Figure S2: SOD mutant neuronal progenitor cells (NPCs) did not
exhibit increased mitochondria elongation prior to differentiation to spinal MNs.; Figure S3: Altered
motility of mitochondria in mutant SOD1 spinal MNs. Figure S4: Lysosomal size and motility was not
altered in mutant SOD1 spinal MNs. Figure S5: Reduced mitochondrial inner membrane potential in
mutant SOD1 spinal MNs.
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