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Overexpression of Aurora-C interferes with the spindle
checkpoint by promoting the degradation of Aurora-B

B-W Lin1,8, Y-C Wang2,8, P-Y Chang-Liao2,8, Y-J Lin3, S-T Yang2, J-H Tsou2,9, K-C Chang4, Y-W Liu5, JT Tseng2, C-T Lee4,
J-C Lee*,1 and L-Y Hung*,2,3,6,7

The chromosomal passenger complex (CPC) plays a pivotal role in controlling accurate chromosome segregation and
cytokinesis during cell division. Aurora-B, one of the chromosomal passenger proteins, is important for the mitotic spindle
assembly checkpoint (SAC). Previous reports noted that Aurora-C is predominantly expressed in male germ cells and has the
same subcellular localization as Aurora-B. Increasing evidence indicates that Aurora-C is overexpressed in many somatic
cancers, although its function is uncertain. Our previous study showed that the aberrant expression of Aurora-C increases the
tumorigenicity of cancer cells. Here, we demonstrate that overexpressed Aurora-C displaces the centromeric localization of
CPCs, including INCENP, survivin, and Aurora-B. When cells were treated with nocodazole to turn on SAC, both the Aurora-B
protein stability and kinase activity were affected by overexpressed Aurora-C. As a result, the activation of spindle checkpoint
protein, BubR1, and phosphorylation of histone H3 and MCAK were also eliminated in Aurora-C-overexpressing cells. Thus, our
results suggest that aberrantly expressed Aurora-C in somatic cancer cells may impair SAC by displacing the centromeric
localization of CPCs.
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The chromosomal passenger complex (CPC), which includes
INCENP, survivin, borealin, and Aurora-B, moves from the
centromere to the spindle midzone during cell division.1,2 The
CPC has multiple functions during cell division, including
correcting errors in chromosome segregation, regulating the
mitotic ckeckpoint and cytokinesis, and ultimately maintaining
genomic stability.2 Activation of the CPC depends on Aurora-
B activity. Aurora-B is the only protein within the CPC that has
enzymatic activity. Interactions between Aurora-B and other
CPC components are required for the localization and function
of the CPC and are also necessary for the activation of
Aurora-B.3–5 Aurora-B binds to the C-terminal IN box of
INCENP, and subsequently phosphorylates the conserved
threonine–serine–serine (TSS) domain near the C-terminus
of INCENP that results in the activation of Aurora-B.4

Activated Aurora-B phosphorylates its substrates for their
functions during cell division. To date, more than 50 proteins
have been identified as Aurora-B substrates, including the
CPC components, histone H3, and MCAK.2 Dysregulation of

Aurora-B results in cytokinesis failure and polyploidy, and
ultimately leads to chromosome instability, a hallmark of
tumorigenesis.6

Aurora-C is the third member to be identified in the Aurora
kinase family. It is highly similar to Aurora-B, both in the
nucleotide sequence and subcellular localization.7–9 It was
originally reported that Aurora-C is a testes-specific protein.9

However, increasing evidence indicates that Aurora-C is also
overexpressed in numerous somatic cancer tissues and
hematologic cancers.10–13 Our previous report indicated that
overexpressed Aurora-C can promote the tumorigenicity of
cancer cells.14 The aberrant expression of Aurora-C is
positively correlated with tumor progression in human cervical
cancer and colorectal cancer. Aurora-C and Aurora-B are
oppositely expressed in human colorectal cancer tissues.
Overexpressed Aurora-C displaces the centromeric localiza-
tion of Aurora-B in cancer cells.14 However, the mechanism by
which Aurora-C disrupts the localization and decreases the
expression of Aurora-B remains unclear.
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In this study we found that overexpressed Aurora-C
reduced the expression and displaced the centromeric
localization of the CPC components independent of its kinase
activity, thereby interfering with Aurora-B kinase activity.
Aurora-B protein stability was maintained during spindle
assembly checkpoint (SAC) activation, but the overexpres-
sion of Aurora-C resulted in increased degradation of the
Aurora-B protein even after SAC activation. The centromeric
substitution of Aurora-C resulted in an inability to turn on the
mitotic checkpoint by checking the phosphorylation and
subcellular localization of BubR1. Thus, overexpressed
Aurora-C promotes tumorigenesis by increasing cell survival,
migration, and invasiveness, and also by the avoidance of
apoptosis.

Results

Overexpressed Aurora-C-GFP localizes at the centro-
meric region and reduces the expression levels of
the CPC components. Several reports indicated that
overexpressed Aurora-C is present in numerous somatic
cancer cells,10–14 although the physiological role of over-
expressed Aurora-C in tumorigenesis remains uncertain. To
address this, the Aurora-C-GFP was ectopically expressed in
HeLa cells and its subcellular localization subsequently
analyzed by immunofluorescence (IF) assay. The results
showed that some overexpressed Aurora-C-GFP, but not all,
can localize to the interphase centrosomal region (data not
shown). When cells entered mitosis, Aurora-C-GFP was
located at the centromeric region and had the same
subcellular localization as Aurora-B (Figure 1a). The cen-
tromeric localization of Aurora-C-GFP was independent of its
kinase activity, as the overexpressed Aurora-C-GFP kinase
hyperactive (KA) and kinase-dead (KD) mutants (Figure 1b,
details in Materials and Methods) had the same subcellular
localization as the Aurora-C-GFP wild type (WT) (Figure 1c).
Overexpressed Aurora-C-GFP/WT, KA, and KD displaced
the centromeric localization of the endogenous CPC pro-
teins, Aurora-B, INCENP, and survivin (Figures 1c and d and
Supplementary Figure 1).

We hypothesize that the centromeric displacement of
Aurora-B and CPC proteins by overexpressed Aurora-C
could result from decreased expression levels of CPC
proteins. To address this, we used immunoblot (IB) analysis
to determine the expression levels of Aurora-B and CPC
proteins in the presence of Aurora-C-GFP. When cells were
treated with nocodazole, a microtubule disrupter, to turn on
the SAC, the expressions of the CPC proteins increased
(Figure 2a, compare lanes 4 and 5). However, in cells with
overexpressed Aurora-C-GFP/WT, KA, or KD, the levels of
Aurora-B and CPC proteins decreased (Figure 2a, lanes 1–3).
The reduced expression of CPC proteins due to over-
expressed Aurora-C-GFP was found to be kinase activity
independent and showed a dose-dependent manner,
whereas the vector control had no effect (Supplementary
Figure 2). The expression levels of Aurora-B mRNA under the
same conditions were confirmed using Q-PCR. These results
showed that overexpressed Aurora-C did not alter the level of
Aurora-B mRNA (Supplementary Figure 3). Importantly, the
opposite expression patterns of Aurora-B and Aurora-C were

confirmed in human clinical colorectal cancer tissues by
immunohistochemistry (IHC) assay (Figure 2b)14 and IB
analysis (Figure 2c).

Aurora-C-GFP interferes with the SAC by weakening
Aurora-B kinase activity. We note that overexpressed
Aurora-C-GFP not only resulted in a decreased expression
of Aurora-B, but also reduced its phosphorylation level
(Figure 2a, compare lanes 1–3 and 4). To determine whether
the reduced phosphorylation level resulted in lower Aurora-B
kinase activity, we used IB analysis to evaluate the
phosphorylation status of MCAK, a known Aurora-B sub-
strate. As shown in Figure 2a, the phosphorylation levels of
MCAK decreased because of overexpressed Aurora-C in a
kinase-independent manner (Figure 2a, lanes 1–3) and a
dose-dependent manner (Supplementary Figure 2). In
addition, it is also known that phosphorylation of histone
H3/Serine 10 (H3/S10) by Aurora-B is important for chromo-
some condensation during cell division.15 Using IF assay and
IB analysis, the phosphorylation levels of H3/S10 were
greatly reduced in Aurora-C-GFP/WT, KA, or KD over-
expressed cells (Figure 3 and Supplementary Figure 4).

Bub1, BubR1, and Bub3 are SAC proteins that are required
for kinetochore–microtubule attachment.16 During prophase,
SAC proteins are targeted to kinetochores to aid in
proper kinetochore–microtubule interactions (Supplementary
Figure 5).16 Aurora-B plays an important role in SAC activation
by phosphorylating and targeting SAC proteins to the
kinetochore region.17 Our results indicate that overexpressed
Aurora-C-GFP decreases the expression level of Aurora-B as
well as its kinase activity (Figures 2a and 3). Therefore, we
evaluated the status of SAC in cells overexpressing Aurora-C-
GFP. As shown in Figure 4a, the kinetochore localization of
BubR1 was lost in cells with overexpressed Aurora-C-GFP
independently of its kinase activity. In addition, nocodazole-
induced phosphotylation of BubR1 was also reduced because
of overexpressed Aurora-C-GFP (Figure 4b, compare lanes
3–5 with 2). However, cells having only vector expression did
not affect the phosphorylation level of BubR1 (Figure 4c).
These results suggest that overexpressed Aurora-C inter-
feres with SAC by reducing the protein expression level and
kinase activity of Aurora-B. As with the results described
above, the status of Aurora-C kinase activity appeared not to
affect its interference with SAC activity (Figure 4b).

Aurora-B and INCENP interaction is disturbed by over-
expressed Aurora-C-GFP. Our results described above
suggest that overexpressed Aurora-C interferes with Aurora-
B-mediated spindle checkpoint activation. To further inves-
tigate the underlying mechanism, cells with or without
overexpressed Aurora-C were harvested to analyze the
interactions between those CPC components. The immuno-
precipitation (IP) assay showed that the overexpression of
Aurora-C-Myc weakened the interaction between INCENP
and Aurora-B (Figure 5a). According to a previous report,
Aurora-C can form a complex with INCENP.8 Here, we
confirm the interaction between overexpressed Aurora-C and
INCENP using IP assay. The results show that Aurora-C-
Myc forms a complex with INCENP (Figure 5b). This implies
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that, through its interaction with the CPC components,
Aurora-C displaces the centromeric localization of Aurora-B
and thereby decreases Aurora-B kinase activity and Aurora-
B-mediated SAC activation.

Nocodazole-induced Aurora-B protein stability is dis-
rupted by overexpressed Aurora-C. Aurora-B is activated
when SAC is turned on, and hence we evaluated the protein
stability of Aurora-B under that condition. The data show that

the half-life of Aurora-B is B4 h and that Aurora-B protein
stability is maintained when cells were treated with nocoda-
zole to turn on SAC (Figure 6a). This suggests that Aurora-B
protein stability increases when SAC is activated that could
be advantageous to its function of correcting aberrant
kinetochore–microtubule attachment. The protein stability of
Aurora-C did not change after nocodazole treatment
(Figure 6b). In fact, its responses were to the opposite,
implying that the role of Aurora-C during the SAC response
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Figure 1 Aurora-C-GFP abolishes the centromeric localization of CPC components. (a) HeLa cells were transiently transfected with Aurora-C-GFP and stained with
CENP-A (red, upper panel) or Aurora-B (red, lower panel). Insets show enlarged images of the dot circles. (b) HeLa cells transfected with the vector control (V), Aurora-C-GFP/
WT, KA, or KD were collected for IB analysis to detect the expression and phosphorylation status of Aurora-C-GFP. GAPDH was used as a loading control. (c) Aurora-C-GFP/WT-,
KA-, KD-, or vector control-transfected HeLa cells (green) were treated with nocodazole (45 ng/ml) for 16 h to synchronized cells at prometaphase and then stained with
Aurora-B (red). DAPI is a specific DNA dye (blue). (d) Cells with Aurora-C-GFP/WT, KA, or KD expression were stained with INCENP (red) as described above. The
centromeric localization of Aurora-B or INCENP was quite limited in Aurora-C-GFP-overexpressed cells
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may be different from Aurora-B. Because the expression
level of Aurora-B was decreased due to overexpressed
Aurora-C, we next evaluated the protein stability of Aurora-B
in the presence of Aurora-C. Nocodazole-induced Aurora-B
protein stability was eliminated in cells overexpressing
Aurora-C independently of kinase activity (Figure 6c). In
addition, the half-life of Aurora-B protein in cells over-
expressing Aurora-C was lower than in control cells (B4 h
in Figure 6a and 2 h in Figure 6c). To further investigate the
molecular mechanism of Aurora-C-induced degradation of
Aurora-B protein, the expression level of Chd1, the activator
of the anaphase-promoting complex/cyclosome (APC/C),
was checked by IB analysis.18 The data show that over-
expression of Aurora-C-GFP does not alter the level of Cdh1

(Supplementary Figure 6). The overexpression of Aurora-C-
GFP increased the protein ubiquitination levels of Aurora-B,
and this was independent of Aurora-C kinase activity
(Figure 6d). These results are consistent with our previous
results of overexpressed Aurora-C decreasing the expres-
sion of Aurora-B (Figure 2a).

Overexpression of Aurora-C increases cell proliferation,
migration, invasiveness, and survival. Our previous
report showed that the augmented expression and increased
kinase activity of Aurora-C can promote cell proliferation and
migration abilities.14 To further confirm the role of Aurora-C
in tumorigenesis, we used transwell migration and invasive-
ness assays. The results show that cells overexpressing
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Figure 2 The overexpression of Aurora-C reduces the expression of chromosomal passenger components and Aurora-B kinase activity. (a) Cells with or without Aurora-
C-Myc expression were treated with 45 ng/ml nocodazole for 4 h to turn on the mitotic checkpoint. The expression of the chromosomal passenger complex, INCENP, survivin,
borealin, and Aurora-B, and the phosphorylation status of Aurora-B and MCAK were determined using IB analysis. a-Tubulin was used as a loading control. The relative
expression levels of individual proteins are displayed as ratios. (b) Human colorectal cancer tissues were assessed for the expression of Aurora-B and Aurora-C using
immunohistochemistry (IHC) analysis. Two representative cases are shown. (c) Inverse expression of Aurora-B and Aurora-C in human colorectal tissues. (Left) Eight
representative specimens showed the reverse expression of Aurora-B and Aurora-C in human colorectal cancer tissues. Equal amounts of total lysates from paired human
colorectal cancer tissue were used to check the expression levels of Aurora-C and Aurora-B by IB analysis. GAPDH was used as a loading control. (Middle) Cases 1–4 are
specimens with Aurora-C overexpression; cases 5–8 are specimens without Aurora-C overexpression. The expression levels of Aurora-C in tumor tissues (T) were compared
with normal tissues (N). (Right) The ratios between Aurora-B and Aurora-C in different individuals are shown. *Po0.05
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Aurora-C-GFP/KA had greater migration and invasion
capabilities than Aurora-C-GFP/WT-expressing cells,
whereas Aurora-C-GFP/KD-transfected cells showed no
significant differences when compared with vector-trans-
fected cells (Figures 7a and b). In addition, IB analysis
demonstrated that overexpressed Aurora-C/KA results in the

predominant expression of vimentin, which plays an impor-
tant role in promoting cancer cell metastasis,19 as compared
with Aurora-C/WT and Aurora-C/KD (Figure 7c).

In our previous report, the expression of Aurora-C/KD did
not promote tumor formation in a xenograft animal model.14

Furthermore, cell proliferation assay showed that cells with
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Aurora-C/KD expression have lower proliferative activity
(Supplementary Figure 7). Here, we analyzed the activation
status of Akt, a major regulator of cell proliferation and
survival, in Aurora-C-transfected cells. The results show that
Aurora-C-Myc/WT- or KA-transfected cells, but not Aurora-C/
KD-transfected cells, had more activated Akt than vector-
transfected cells (Figure 7d). TUNEL (terminal deoxynucleo-
tidyl transferase dUTP nick end labeling) assay and flow
cytometry also show that the expression of Aurora-C/KD
results in an increased population of apoptotic cells
(Figures 7e and f).

Discussion

Genomic instability is a hallmark of cancer development.6 One
of the major devices for maintaining chromosome stability

during cell division is the CPC. Loss or disruption of CPC
functions results in aneuploidy, chromosome imbalances, and
ultimately cancer development.20 When incorrect kinetochore–
microtubule attachments occur during cell division, the SAC will
be turned on to correct the error.21 In mammals, Aurora-B is
activated to correct kinetochore–microtubule attachments
when the SAC is turned on.22 Our results show that over-
expressed Aurora-C can localize at the centromeric region and
replace the localization and decrease the expression of CPC
components. Importantly, using the kinase-active mutant of
Aurora-C, we establish that the centromeric localization of
Aurora-C interferes with the SAC by promoting the degradation
of Aurora-B protein. Our results suggest that Aurora-C is not a
compensatory partner of Aurora-B.

Several studies have reported that Aurora-C plays impor-
tant roles in early development.23–25 They demonstrated that
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Figure 4 Aurora-C expression reduces BubR1 activation. (a) Aurora-C-GFP/WT-, KA-, or KD-transfected HeLa cells were treated with nocodazole for 4 h to turn on the
spindle checkpoint. The kinetochore localization of BubR1 (red) was detected by IF analysis. DAPI is a DNA-specific dye. (b) Cells from (a) were used to examine BubR1
activation status using IB analysis. The expressions of Aurora-C-Myc/WT, KA, or KD are shown. GAPDH was used as a loading control. (c) HeLa cells transfected with vector
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Aurora-C activity is essential for cell division during early
mammalian development. The roles of Aurora-C in this stage
are involved in CPC functions (i.e., SAC activation and
cytokinesis), which are similar to those of Aurora-B. Although
their observations seem to be opposite to ours, this may be
because of different biological functions. Furthermore, other
reports proposed that Aurora-B and Aurora-C play different
roles in spermatogenesis and oogenesis.26,27 In order to
further evaluate whether overexpressed Aurora-C has oppo-
site effects with overexpressed Aurora-B in somatic cancer
cells, we checked the expression levels of CPC proteins
(Supplementary Figure 8), phospho-H3/S10 (Supplementary
Figure 9), and phospho-BubR1 (Supplementary Figure 10) in
Aurora-B overexpressed cells. The results indicated that
Aurora-B and Aurora-C have different effects (Supplementary
Figures 8–10). Taken together, the results suggest that
Aurora-B and Aurora-C in different biological situations may
have different roles.

An increasing number of reports indicate that Aurora-C is
aberrantly expressed in cancer tissues.7,28 Two recent reports
suggest that overexpressed Aurora-C promotes the tumor-
igenicity of somatic cancer cells.14,29 However, its interaction
and/or its correlation with Aurora-B, particularly for regulating
the SAC, remain uncertain. Most previous studies used
Aurora-C KD mutant to demonstrate the roles of Aurora-C in
cancer cells and suggest that Aurora-C in somatic cancer cells
has functions similar to those of Aurora-B.30–32 Our present
results suggest that the overexpression of Aurora-C
decreases the phosphorylation levels of MCAK and histone
H3/S10, both of which are known substrates of Aurora-B
(Figures 2a and 3). Furthermore, the overexpression of
Aurora-C reduced the phosphorylation of BubR1, a marker
for the activated SAC (Figure 4). All of these results were
independent of Aurora-C kinase activity, as the same effects
were found with Aurora-C/WT, KA, and KD for replacing the
centromeric localization of Aurora-B. Importantly, Aurora-C/
KA expression did not increase the phosphorylation levels of

histone H3 and BubR1. These data again imply that Aurora-C
has roles that are different from Aurora-B.

Our results demonstrate that the protein stability of Aurora-
B is maintained when the SAC is turned on (Figure 6a).
Nevertheless, the protein stability of Aurora-C did not change
upon SAC activation (Figure 6b). This is additional evidence
that the physiological role of Aurora-C is different from
Aurora-B, in particular for regulating the SAC. Furthermore,
overexpressed Aurora-C enhanced the degree of protein
degradation in Aurora-B even in the presence of nocodazole
(Figures 6c and d). This could explain the phenomena
demonstrated in Figure 2a that overexpressed Aurora-C
decreased the expression of Aurora-B as well as of other CPC
components. Moreover, it is consistent with our previous
observations in which the overexpression of Aurora-C was
opposite to the expression of Aurora-B in human colorectal
cancer tissues (Figures 2b and c).14 Based on these results,
we propose that the centromeric replacement of Aurora-B by
overexpressed Aurora-C in a kinase activity-independent
manner may expose a specific recognition domain of Aurora-
B to the ubiquitination machinery. Besides, our results
indicate that after the centromeric localization of Aurora-B
and INCENP is delocalized, overexpressed Aurora-C still
maintains its centromeric localization (Figure 1). This may
because of an interaction between Aurora-C and other
centromeric proteins, such as CENP-A, HP1, and shu-
goshins.33,34 However, the details of these molecular
mechanisms require additional investigation.

Using a xenograft animal model, our previous report
indicated that the overexpression of Aurora-C/KA strongly
promoted tumorigenicity, whereas the overexpression of
Aurora-C/KD induced almost no tumor formation.14,29 In the
present study, an increased phosphorylation level of Akt was
found in cells expressing Aurora-C/KA or WT but not in cells
expressing Aurora-C/KD (Figure 7d). Cells with Aurora-C/KD
expression had an increased proportion of apoptotic cells
(Figures 7e and f). An obvious augmented expression of
vimentin was found in cells overexpressing Aurora-C/KA
(Figure 7c). Whether the expression of Aurora-C plays a role
in the epithelial–mesenchyal transition during carcinogenesis
remains uncertain, and is currently under investigation.

Materials and Methods
Plasmid construction. Human Aurora-C cDNA was cloned from HeLa cells
by RT-PCR, and then subcloned into pCDNA3.1-Myc/His (Invitrogen, Carlsbad,
CA, USA) or pEGFP-N1 (Clontech, Mountain View, CA, USA) using EcoRI and
BamHI sites, respectively. Primers used for Aurora-C cloning are: forward, 50-CGG
AATTCTAATGAGCTCCCCCAGAGCTG-30; reverse, 50-GTGGATCCTCGGAAGC
CATCTGAGCACAG-30. The Aurora-C mutants kinase-hyperactive (KA/T191D)
and kinase-dead (KD/T202D) were created using a QuickChange site-directed
mutagenesis kit (Stratagene, La Jolla, CA, USA). Primers used for Aurora-C/KA
are: forward, 50-GGCTGGTCTGTGCACGCCCCCTCCCTGAGGAGG-30; reverse,
50-CCTCCTCAGGGAGGGGGCGTGCACAGACCAGCC-30. Primers used for
Aurora-C/KD are: forward, 50-GGCTGGTCTGTGCACGACCCCTCCCTGAGG
AGG-30; reverse, 50-CCTCCTCAGGGAGGGGTCGTGCACAGACCAGCC-30.

Cell culture and transfection. Human cervical adenocarcinoma HeLa cells
were cultured in Dulbecco’s modified Eagle’s medium (Sigma, St. Louis, MO, USA)
supplemented with 10% fetal bovine serum, 100mg/ml streptomycin, and 100 U/ml
penicillin. Cells were grown at 371C under 5% CO2. Transfection was performed by
Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. In
general, cells grown in 60 mm dishes were transiently transfected with 4mg of plasmid.
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Figure 5 Aurora-C expression interferes with the interaction between Aurora-B
and INCENP. (a) Aurora-C-Myc/WT-, KA-, or KD-transfected HeLa cells were lysed
and immunoprecipitated (IP) using anti-Aurora-B antibody, followed by IB analysis
using anti-INCENP antibody. (b) Cell lysates from cells overexpressing Aurora-C-
Myc/WT, KA, or KD were prepared for IP using anti-INCENP antibody, followed by
IB analysis using anti-Myc antibody
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Total cell lysate preparation and IB analysis. For total cell lysates,
cells were lysed in RIPA buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% NP-40,
0.5% sodium deoxycholate, 1 mM EDTA, and 2 mM EGTA) containing 1 mM sodium
orthovanadate, 50 mM glycerol-2-phosphate, 100� phosphatase inhibitor cocktail
(Sigma), 1mM okadaic acid, and 25� protease inhibitor. For IB assay, 30mg of total
lysate was separated using 10% polyacrylamide gel electrophoresis-sodium dodecyl
sulfate (PAGE-SDS) and analyzed for the specific antibodies indicated in figure
legends. Anti-GAPDH, anti-INCENP, anti-phospho-histone H3/S10, anti-histone H3,

and anti-CENP-A antibodies were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA, USA); anti-Aurora-B and anti-a-tubulin antibodies were purchased from
Sigma; anti-phospho-MCAK/S95 and anti-phospho-Aurora-B/T232 were purchased
from Abcam (Cambridge, MA, USA); anti-MCAK was purchased from Bethyl
(Montgomery, TX, USA); anti-BubR1 antibody was obtained from BD Biosciences
(San Jose, CA, USA); anti-Myc antibody was purchased from Upstate (Lake Placid,
NY, USA); anti-survivin antibody was purchased from Cell Signaling (Danvers, MA,
USA); and anti-Aurora-C antibody was purchased from Zymed (San Francisco, CA,
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Figure 6 Aurora-B protein stability is enhanced upon SAC activation and is reduced in cells overexpressing Aurora-C. (a) HeLa cells with or without nocodazole treatment
were further incubated with cyclohexamide (CHX) at different time points. Total lysates were prepared for IB analysis using anti-Aurora-B. The expression levels of Aurora-B
were normalized by a-tubulin. The quantitative results of three independent experiments are shown below. (b) Cells expressing Aurora-C/WT, KA, or KD were treated as
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Aurora-B in cells expressing Aurora-C/WT, KA, or KD expression were determined by IB analysis and normalized by a-tubulin. All cells were treated with nocodazole, followed
by CHX as described above. Quantitative results are shown. (d) Cells were co-transfected with Aurora-C-GFP/WT, KA or KD, and Myc-Ubi. Equal amounts of total lysates
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USA). Specific protein signals were detected using horseradish peroxidase-
conjugated secondary antibodies and revealed by an enhanced chemiluminescence
(ECL) Western blot system (PIERCE, Rockford, IL, USA).

IF assay. Cells were incubated with 0.06 M KCl for 30 min at room
temperature, fixed with 3.7% formaldehyde, and permeabilized using 0.1%

Tween-20/PBS for 10 min. Cells were probed with the specific antibodies
indicated in figure legends and followed by incubation with Alexa 568
(Molecular Probes, Cincinnati, OH, USA). After mounting with ProLong
Gold antifade reagent (Invitrogen) containing 4,6-diamidino-2-phenylindole
(DAPI), images were acquired using a laser scanning confocal system
(FV1000, Olympus, Center Valley, PA, USA).
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Figure 7 Aurora-C-GFP enhances cell migration, invasiveness, and survival in a kinase-dependent manner. (a and b) Equal numbers of cells that expressed Aurora-C-
GFP/WT, KA, or KD were seeded onto collagen-coated (a) or matrigel-coated (b) transwell inserts. Invasive or migrated cells were counted after 24 h of incubation and
subsequent staining with DAPI. The quantitative results of three independent experiments are shown. *Po0.05; **Po0.01; ***Po0.001. NS, not significant. (c) HeLa cells
expressing Aurora-C-Myc/WT, KA, or KD were used for IB. The expression levels of vimentin, Aurora-C, and phospho-Aurora-C are shown. Vector (V)-transfected cells were
used as a background control. (d) Total lysates of HeLa cells with Aurora-C-Myc/WT, KA or KD expression were prepared to determine the expression levels of phospho-AKT
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used for the TUNEL assay. Red signal indicates apoptotic cells. DAPI was used as a DNA-specific dye. Representative images are shown. (f) HeLa cells that stably expressed
Aurora-C-Myc/KD or vector control were used to assess cell cycle distributions by flow cytometry. Quantitative results are shown
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IP assay. Cells were lysed with IP buffer (0.5% sodium deoxycholate, 0.5%
Nonidet P-40, 25X protease inhibitor, 1 mM Na3VO4, 50 mM glycerol-2-phosphate,
100� phosphatase inhibitor cocktail, and 1 mM okadaic acid) and incubated with
anti-Aurora-B or anti-INCENP antibodies at 41C for 2 h. Protein-A/G agarose
beads were added to the mixture and incubated at 41C for an additional 1 h. After
washing the beads three times with immunoprecipitation washing buffer (PBS with
0.1% sodium deoxycholate, 0.1% Nonidet P-40), the immunoprecipitated
complexes were resolved by immunoblot analysis.

Protein degradation assay. Cells were treated with or without 45 ng/ml of
nocodazole (Sigma) for 4 h, followed by the addition of 200mg/ml of
cycloheximide, a de novo protein synthesis inhibitor, for the indicated time
periods. Total cell lysates were prepared for immunoblot analysis.

TUNEL assay. TUNEL assay was performed with an In Situ Cell Death
Detection kit according to the manufacturer’s instructions (Roche, Basel,
Switzerland). In brief, cells were fixed with 4% paraformaldehyde for 1 h at room
temperature and then incubated with freshly prepared permeabilization solution
(0.1% Triton X-100 in 0.1% sodium citrate) for 2 min at 41C. After incubation with
the TUNEL reaction mixture for 1 h in the dark, cells were washed with PBS,
stained with DAPI, and mounted. Apoptotic cells were observed using an Olympus
BX51 immunofluoresence microscope.

Flow cytometry. Cells were fixed using 80% cold ethanol for 2 h at � 201C
and then incubated along with a staining solution (0.1% Triton X-100, 200mg/ml of
RNAse A, and 20mg/ml of propidium iodide (PI)) for 30 min in the dark. Cell cycle
populations were analyzed using a Cell Lab Quanta SC High Resolution Flow
Cytometer (BECKMAN COULTER, Brea, CA, USA).

Transwell assay. Cells were seeded onto the transwell insert (pore size of
3.0mm, Millipore, Bedford, MA, USA), which had been precoated with 5mg/cm2 of
collagen gel or 0.5 mg/ml of matrigel (BD Biosciences), and cultured in a serum-
free medium. Transwell inserts were placed in a 24-well plate containing growth
medium with 10% FBS. After 24 h of incubation, transwell filters were fixed with
3.7% formaldehyde and subsequently mounted with ProLong Gold antifade
reagent with DAPI. Cells on the filters were counted using an Olympus BX51
immunofluorescence microscope.

Aurora-B ubiquitination assay. Cells co-transfected with Aurora-C and
Myc-Ubiquitine were treated with 25 mM MG132 for 6 h and then lysed with IP
buffer containing 10 mM N-ethylmaleimide (NEM). Equal amounts of total lysates
were immunoprecipitated using anti-Aurora-B antibody followed by IB analysis
using anti-Myc antibody.
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