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Abstract: A major citrus postharvest pathogen, Penicillium italicum (P. italicum), causes substantial
economic losses in citrus. In this study, a citral nanoemulsion containing polymethoxylated flavonoids
(PMFs), the antimicrobial compounds from citrus, was prepared. The antifungal activity and potential
antifungal mechanisms of the nanoemulsion against P. italicum were evaluated. The results showed
that the growth of P. italicum was effectively inhibited by the nanoemulsion, with a minimum
inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 62.5 and 250 mg L−1,
respectively. The nanoemulsion significantly inhibited spore germination and mycelial growth, and
it altered the morphology of P. italicum. In addition, the permeability of the cell membrane increased
with increasing nanoemulsion concentrations, as evidenced by a rapid rise in extracellular electric
conductivity and stronger red fluorescence from mycelia (propidium iodide staining). Compared
with the control, the nanoemulsion treatment induced a decrease in total lipid and ergosterol contents
in P. italicum cells by 64.61% and 60.58%, respectively, demonstrating that membrane integrity had
been disrupted. The results indicated that the PMFs-loaded nanoemulsion exerted antifungal activity
against P. italicum by disrupting cell membrane integrity and permeability; such a nanoemulsion may
be used as a potential fungicide substitute for preservation in citrus fruits.

Keywords: antifungal mechanism; citrus blue mold; membrane integrity; membrane permeability;
P. italicum

1. Introduction

Citrus is among the most important fruit crops, whose producing area in the world
extends approximately 40◦ north in latitude to 40◦ south in latitude from the equator [1,2].
According to the Food and Agriculture Organization (FAO), more than 140 million tons
of citrus was harvested in 2019 [3]. However, pathogens such as Penicillium, Geotrichum
citriaurantii, and Alternaria alternata damage citrus crops severely, causing postharvest losses
of massive proportions [4,5]. In China, Penicillium italicum one of the most prominent causes
of blue mold disease on citrus fruit, causing a postharvest loss of 20%–50% [6]. As a result,
synthetic fungicides such as imazalil, prochloraz, or thiabendazole have been widely used
on citrus fruits to prevent blue mold disease [7]. However, there are concerns with the use of
synthetic fungicides because they may cause public health issues by leaving toxic residues
in fruits and the environment [8,9]. On the basis of the above issues, numerous studies have
explored natural phytochemicals that have antifungal properties and no negative effects.

Polymethoxylated flavones (PMFs) are a group of flavonoids mainly derived from
citrus peel and have numerous strong biological activities, including anti-inflammatory [10],
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antioxidant [11], antimicrobial [12], and anticancer [13]. Citral, an aldehyde mixture of
geranial and neral, is widely found in many citrus essential oils and has been shown to
have strong antifungal activity against the pathogens Fusarium, Botrytis, Penicillium, and
Aspergillus [14–16], which are generally recognized as safe (GRAS) for human health and
the environment [17]. Researchers have documented that PMFs and citral have the ability
to inhibit fungal growth and could be used as antifungal agents in the food industry [18,19].
In addition, the potential antifungal mechanisms of PMFs and citral both exhibit the direct
inhibition of pathogens such as through inhibiting mycelial growth, destroying the integrity
and permeability of cell membranes, and releasing cellular components [18,20]. However,
the high volatility of citral and the poor water solubility of PMFs are the main limiting
factors for maximizing their antifungal effects in practice. Herein, we focused on using
nanotechnology to enhance their characteristics and further broaden their applications. In
this study, we selected an oil-in-water nanoemulsion system for the encapsulation of PMFs
and citral to solve the aforementioned problems.

Combining antimicrobials enhances antimicrobial activity and reduces the emergence
of resistant strains and the amount of fungicide required [21,22]. Research has shown that
the combined effects of certain EOs can increase fungistatic activity, reducing the ability
of pathogens to develop resistance to multiple EOs [23,24]. In addition, combinations of
volatiles and nonvolatile antimicrobial components enhanced the antimicrobial efficacy
and maintained the long-term potency of antimicrobial agents of most pathogens [25–27].
Considering that the volatility of citral remains a limitation to the antifungal activity
of a citral nanoemulsion when used in citrus fruit storage under standard conditions,
we attempted to create novel antifungal agents against P. italicum by adding nonvolatile
constituents, PMFs, to a citral nanoemulsion.

Although the antifungal activities of citral and PMFs have been widely studied, the
combination of PMFs with citral and their combined effect on P. italicum has not been inves-
tigated. Thus, this study aimed to develop a novel nanoemulsion containing PMFs and
citral by combining the positive effects of these two compounds and to evaluate the antifun-
gal activities and potential antifungal mechanisms of PMFs-loaded citral nanoemulsions
against P. italicum.

2. Materials and Methods
2.1. Fungi and Chemicals

Isolation and purification of P. italicum were performed at the Key Laboratory College
of Horticulture and Landscape Architecture, Southwest University (Chongqing, China).
The fungi were inoculated on PDA and incubated at 28 ◦C for 3 days before use.

PMFs were purchased from Shaanxi Huike Plant Development Co., Ltd (Shaanxi,
China). Citral was purchased from Aladdin Reagent Database Co. (Shanghai, China).
Caprylic/capric triglyceride (GTCC) was supplied by Shanghai Yuanye Biotechnology
Co., Ltd (Shanghai, China). Tween 80 (TW80) was obtained from Kelon Chemical Reagent
Factory (Chengdu, China). The fluorescent probe propidium iodide (PI) was obtained from
Sangon Biotech Co., Ltd. (Shanghai, China).

2.2. Analysis of the Components of PMFs Dissolved in Citral by UPLC–PDA

The chemical profile of the PMFs dissolved in citral was analyzed by UPLC–PDA
(Waters, Milford, MA, USA) [28]. Firstly, 30 mg of PMFs was weighed and dissolved in 1
g of citral, filtered with 0.22 µm organic membrane, and diluted with methanol 30 times
before UPLC–PDA analysis (Waters Corporation, MA, USA). The determination of PMFs
dissolved in citral was based on a UPLC BEH C18 column (2.10 × 100 mm, 1.70 µm)
at a column temperature of 40 ◦C and a flow rate of 0.4 mL/min. The mobile phase
included solvent A (water containing 0.01% formic acid) and solvent B (methanol), and the
absorption wavelength was set to 330 nm for PMFs.
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2.3. Nanoemulsion Preparation

With some alterations to a previously reported method [29], nanoemulsions were
prepared. Initially, 30 mg PMFs were dissolved in 1 g citral and then mixed with 0.5 g
GTCC and 3 g TW 80 after filtration through a 0.22 µm organic membrane. Then, after
the mixture was stirred in a magnetic stirrer (DF-II, Jintan Youlian Instrument Research
Institute, China) at a speed of 2600 r/min for 30 min, distilled water was added dropwise
with continuous stirring. After that, the obtained emulsions were ultrasonicated for 5 min
at 60 amplitude with an ultrasonicator (KQ-500DE; Kunshan Ultrasound Instrument Co.,
Ltd., Shanghai, China) to reduce the droplet size. The same technique was used to prepare
nanoemulsions without PMFs. All nanoemulsions were then stored at 4 ◦C for subsequent
analysis. For convenience, the citral nanoemulsion and PMFs-loaded citral nanoemulsion
were labelled as the CT and PCT nanoemulsions, respectively. According to the initially
prepared PCT nanoemulsion calculations, the citral concentration in the nanoemulsion was
20 g L−1 and the PMF concentration was 0.38 g L−1.

2.4. Characterization of Nanoemulsions: Particle Size, Polydispersity Index (PDI), and
Zeta Potential

The zeta potential and particle size of nanoemulsions were determined with a dynamic-
light-scattering Zetasizer (Malvern Instruments, Worcestershire, UK). Additionally, we
evaluated the polydispersity index (PDI), which represented the particle size distribution
of the nanoemulsion. All measurements were performed at room temperature (25 ◦C). The
averages were based on 3 measurements per sample and 100 runs per measurement [30].

2.5. Determination of Minimal Inhibitory Concentration (MIC) and Minimum Fungicidal
Concentration (MFC)

The MIC and MFC of the nanoemulsions against P. italicum were evaluated by a
modified dilution method on 96-well plates [31]. Briefly, 100 µL of the mixture containing
CT or PCT nanoemulsion and PDB was prepared, making the final citral concentrations
range from 2000 to 62.5 mg L−1. Next, to each well, we added 100 µL of spore suspension
(105 CFU·mL−1), and they thoroughly mixed to obtain a citral concentration ranging from
1000 to 31.25 mg L−1. Afterwards, the sealed and cultured 96-well plates were incubated
for 72 h at 28 ◦C. The positive control consisted of PDB mixed with the conidial suspension,
and the negative control included only PDB. After incubation for 72 h, the MIC was defined
as the minimum concentration without growth of P. italicum. Then, 100 µL mixture was
removed from the wells in which no fungus grew and transferred to PDA for another 72
h of incubation. The MFC was defined as the minimum concentration without growth of
P. italicum on the PDA plate.

2.6. Effect of Nanoemulsion on Spore Germination

The effect on spore germination by nanoemulsions in P. italicum was examined by
microscopy observation [32]. Briefly, 2 mL of the mixture containing freshly prepared
conidial suspension (107 CFU mL−1) and PCT nanoemulsion was prepared in a glass tube,
making a final citral concentration of 0, 1/2 MIC, MIC, and 2 MIC. Then, the sealed mixture
was cultured at 28 ◦C. After 5, 12, and 24 h, 100 µL of each mixture was taken and placed
in glass depression slides to observe spore germination under a microscope (OLYMPUS
TH4-200, Olympus Optical Co., Ltd., Tokyo, Japan). When the length of a germ tube was
longer than its length, the conidium was considered to have germinated.

2.7. Effect of Nanoemulsion on Mycelial Growth

An Oxford cup method [33] with some alterations was used to determine the effect
of nanoemulsions on the mycelia growth of P. italicum. Briefly, a certain volume of PCT
nanoemulsion was added to the sterilized PDA medium to make the final citral concentra-
tions of 0, 1/2 MIC, MIC, and 2 MIC. After medium solidification, sterilized Oxford cups
(ϕ 6 mm) were placed in the middle of each Petri dish (50 mm in diameter) and filled with
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100 µL conidial suspension. Then, all sealed plates were incubated at 28 ◦C for one week.
After 3 days of incubation, we began to measure and record the colony diameters of each
group. On the basis of the following equation, the inhibitory rate of mycelial growth was
calculated:

Inhibition rate of mycelial growth (%) =
Dc− Dt
Dc− Di

× 100

In the equation, Dc (mm) means colony diameter of control groups, Dt (mm) means
colony diameter of treatment groups, and Di (mm) means the diameter of the Oxford Cup.

2.8. Determination of cell Membrane Integrity and Permeability
2.8.1. Morphological Observation

Scanning electron microscopy (SEM) was used to observe the effect of nanoemulsion
treatment on the micromorphology and ultrastructure of P. italicum. Briefly, fungal cultures
grown on the PDA plates for 5 days after treatment with various PCT concentrations (0, 1/2
MIC, MIC, and 2 MIC) were cut into segments of ~2 mm3 and fixed with a glutaraldehyde
solution of 2.5% overnight at 4 ◦C. Then, the segments were washed three times with 0.1
mol L−1 phosphate buffer (pH = 7.2) for 15 min each and dehydrated with graded ethanol
series (30, 50, 75, 85, and 100%) for 15 min. After drying, the tissues were vacuum plated
with gold (10 KV, 220 s) and observed with a scanning electron microscope (Hitachi SU8020,
Tokyo, Japan) [34].

2.8.2. Propidium iodide (PI) Staining

PI staining used in [35] with some alterations was used to assess the damage of PCT
nanoemulsion treatment on the cell membrane of P. italicum. Firstly, a mixture containing a
certain volume of PCT and sterilized PDA was prepared, making the final concentration
of citral reach 0, 1/2 MIC, MIC, and 2 MIC. Then, the mixture was poured into the Petri
dish (50 mm in diameter). After cooling, 20 µL of spore suspension (106 CFU mL−1) was
spread on the surface of the PDA medium, and cover glass was inserted in the middle
of the PDA medium at an oblique angle. After incubating at 28 ◦C for 3 days, the cover
glass was transferred to a glass slide and 10 µL PI reagent was added for staining. After
15 min of darkness, the excess dye on the sample was removed with sterile water. Then,
the samples were observed under a microscope (OLYMPUS TH4-200, Olympus Optical Co,
Ltd., Tokyo, Japan).

2.8.3. Extracellular Electric Conductivity

The extracellular conductivities of P. italicum mycelia treated with different concen-
trations of PCT (0, 1/2 MIC, MIC, and 2 MIC) were measured by an electric conductivity
meter (Century Ark Technology Co. Ltd., Chengdu, China), according to the method
previously described by Li et al. [25] with minor alterations. The electric conductivity was
determined after incubation for 4, 8, 12, 24, 36, and 48 h, and the extracellular conductivity
was expressed as the relative electric conductivity (REC, %).

Relative electric conductivity (REC, %) =
Rt − R0

Rk − R0
× 100

In the formula, R0 is the electric conductivity of pure water (25 ◦C), Rt is the electric
conductivity of different treatments at different incubation times, and Rk is the electric
conductivity of the mycelia after boiling.

2.8.4. Malondialdehyde (MDA)

The measurement of MDA content was carried out using the thiobarbituric acid (TBA)
method previously described by Li et al. [36] with some alterations. Firstly, a mixture
containing PCT nanoemulsion and sterilized PDA medium was prepared, making the final
concentration of citral reach 0, 1/2 MIC, MIC, and 2 MIC. Then, the medium was poured
into a Petri dish (90 mm in diameter). After medium solidification, a layer of cellophane
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was placed on it. Then, 100 µL of freshly prepared spore suspension (106 CFU mL−1) was
spread evenly on the cellophane, and it was incubated at 28 ◦C for 5 days. Following
that, 0.1 g of mycelium cultured on cellophane was weighed and ground with 4 mL of 5%
trichloroacetic acid (TCA) solution; after being centrifuged at 10,000× g for 10 min, 1 mL
of the supernatant was mixed with 1 mL of 0.67% thiobarbituric acid (TBA) and boiled
at 100 ◦C for 30 min. After cooling, the sample was centrifuged at 10,000× g for 10 min.
Next, the OD values of the supernatants were measured at 450, 532, and 600 nm. The MDA
content was calculated using the following equation:

MDA content (nmol/g = [6.45× (OD532 −OD600)− 0.56×OD450]× k× Vt

m

In the equation, Vt (mL) is the volume of the total extract solution, k is the dilution
factor, and m (g) is the mass of fresh mycelia.

2.8.5. Total Lipids and Ergosterol

The phosphoric acid–vanillin method was used to determine the total lipid content of
P. italicum treated with different concentrations of PCT with minor alterations [37]. Using
triglyceride as a standard, the lipid content (g kg−1) of the mycelium was determined on
the basis of the calibration curve. The total ergosterol content of P. italicum cell membrane
treated with different concentrations of PCT was determined using the HPLC method
optimized and reported by Li et al. [38]. The results were expressed as g kg−1 mycelia dry
weight. Each treatment was repeated three times.

2.9. Statistical Analysis

All data were analyzed and processed using the SPSS 25.0 statistical software. Analysis
of variance was performed to analyze the significance among the different groups using
Duncan’s multiple range test (p < 0.05) following one-way ANOVA.

3. Results
3.1. Analysis of the Components of PMFs Dissolved in Citral by UPLC–PDA

The components of PMFs dissolved in citral were analyzed (Table 1) by UPLC–PDA.
Five PMF monomers were detected, among which nobiletin and tangeretin were the most
prominent, accounting for more than 95% of the total.

Table 1. Major chemical compounds of PMFs dissolved in citral.

Compounds Retention Time (min) Concentration (g kg−1)

1 Isosinensetin 5.46 0.265
2 Sinensetin 5.60 0.571
3 3′,4′,5,7-Tetrathoxyflavone 5.78 0.067
4 Nobiletin 6.11 9.635
5 Tangeretin 6.45 8.488

Total 19.026

3.2. Characterization of the Nanoemulsions

As shown in Table 2, during the 20-day storage at room temperature, the PCT size
increased significantly from 17.08 to 26.86 nm. The PDI value (0.215) of the PCT in this
study represented a narrow size distribution, indicating a good distribution of the PCT. Zeta
potential is an important parameter for analyzing the stability of encapsulation systems. A
high zeta potential creates a repelling force between particles, which increases the stability
of nanoemulsions. In this study, the zeta potential of PCT went from a highly negative value
(22.20 mV) to a moderately negative value (11.05 mV). Therefore, the PCT was assumed to
have relatively good stability.
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Table 2. Characterization of nanoemulsions with different storage times at room temperature:
evaluation of particle size, PDI, and zeta potential of nanoemulsions.

Storage Time (Days) Particle Size (nm) PDI Zeta Potential (mV)

Fresh 17.08 ± 0.18 a 0.215 ± 0.016 a −22.20 ± 0.80 a

5 19.55 ± 0.25 b 0.240 ± 0.021 a −15.15 ± 0.45 b

10 20.71 ± 0.28 c 0.219 ± 0.012 a −11.23 ± 1.27 c

20 26.86 ± 0.96 d 0.309 ± 0.003 b −11.05 ± 0.75 c

Data are presented as means ± SDs. The room temperature was 25 ◦C. Different letters (a through d) indicate
significant differences (p < 0.05) between values within the same column.

3.3. MIC and MFC of the CT and PCT Nanoemulsions against P. italicum

The determination of the MIC and MFC of the nanoemulsions against P. italicum
were based on observations of P. italicum growth on 96-well plates (Table 3). After 72 h of
incubation, it was observed that, for mycelial growth, the maximum concentration of the
CT group was 62.5 mg L−1 and that of the PCT group was 31.25 mg L−1. After transferring
the mixture from the 96-well plates to the PDA and culturing for another 72 h, mycelial
growth was inhibited by the CT and PCT nanoemulsions of 250 mg L−1. Based on the
definitions, the MFCs of both the CT and PCT nanoemulsions were 250 mg L−1, while
the MIC of the CT nanoemulsion was 125 mg L−1 and that of the PCT nanoemulsion was
62.5 mg L−1. The results indicated that the PCT nanoemulsion showed more effective
antifungal activity than the CT nanoemulsion.

Table 3. MIC and MFC of CT and PCT nanoemulsions against P. italicum.

Group Concentration a Mycelial Growth
in PDB (3rd Day)

Mycelial Growth
in PDB (6th Day) MIC MFC

CT

500 - -

125 250
250 - -
125 - +
62.5 + +

31.25 + +

PCT

500 - -

62.5 250
250 - -
125 - +
62.5 - +

31.25 + +
PDB + Stain 0 + +

PDB 0 - -
In the table, “+” represents visual mycelial growth and “-” represents no visual mycelial growth. a Concentration
is expressed as mg L−1.

3.4. Effect on Spore Germination

The inhibition effect of PCT on the spore germination of P. italicum in PDB was
investigated. At 5, 12, and 24 h, the spore germination rates of CK were 4.91%, 53.45%,
and 91.69%, respectively (Table 4). However, the percentages of germinated spore in the
1/2 MIC and MIC groups were significantly reduced. Furthermore, there was almost no
spore germination in the 2 MIC group. This suggested that PCT significantly inhibited
spore germination in a dose-dependent manner.
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Table 4. Effect of different concentrations of a PCT nanoemulsion on spore germination of P. italicum.

Treatment
Spore Germination Rates

5 h 12 h 24 h

CK 4.91 ± 1.25 a 53.45 ± 1.12 a 91.69 ± 2.16 a

1/2 MIC 0.93 ± 0.04 b 25.56 ± 2.20 b 48.09 ± 3.64 b

MIC 0 c 3.19 ± 0.16 c 8.75 ± 0.40 c

2 MIC 0 d 0 d 0 d

Data are presented as means ± SDs. Different letters (a through d) indicate significant differences (p < 0.05)
between values within the same column.

3.5. Effect on Mycelial Growth

The mycelial growth of P. italicum was affected by the nanoemulsions, as shown in
Figure 1. Compared with the control group, the treatment group had significant differences.
On the same day, the diameter of the mycelial disk in the control group was larger than that
of the treatment group, and the treatment group decreased with increased PCT concentra-
tion. Groups treated with low concentrations (MIC and 1/2 MIC) showed lower inhibition
compared with those treated with high concentrations (2 MIC). The results indicated that
the mycelial growth of P. italicum was effectively inhibited by the PCT nanoemulsions in a
dose-dependent manner.
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3.6. Micromorphological Analysis by SEM

The morphological changes in spore germination in mycelia after being treated with
PCT at different concentrations (0, 1/2 MIC, MIC, and 2 MIC) are shown in Figure 2. The
mycelial disk of the control grown on PDA showed a blue color, with more mellow and
healthy spores, as well as homogenous mycelia with normal morphology and more fluff
(Figure 2A,E,I). By contrast, when exposed to PCT, the color of the mycelial disk, normal
mycelial morphology, and spore germination were conspicuously changed. In those treated
with PCT at 1/2 MIC and MIC, the color of the mycelial disk gradually changed from blue
to white, the shape of the spores became abnormal and the number gradually decreased,
and the mycelia gradually dried up (Figure 2B,C,F,G,J,K). When treated with PCT at 2 MIC,
the color of the disk became completely white; the number of spores was extremely low;
and the mycelia appeared shriveled, shrunken, and ruptured (Figure 2D,H,L). These results
indicated that the PCT nanoemulsion inhibited P. italicum by affecting spore germination
and destroying the structures of spores and mycelia.
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Figure 2. (A–D) Samples used for SEM observation. (E–L) Morphologies of the mycelia and conidia
of P. italicum were observed by SEM after treatments with 0 (E,I), 1/2 MIC (F,J), MIC (G,K), and
2 MIC PCT nanoemulsions (H,L). Scale bar, 200 and 20 µm.

3.7. Propidium iodide (PI) Staining

PI is expelled from living cells actively, and its uptake reflects the integrity and perme-
ability of the cell membrane during the late stages of apoptosis [35]. As shown in Figure 3,
P. italicum mycelia displayed different states in the four groups after 2 days of incubation.
Microscopic observations revealed that untreated mycelia had a visible linear shape and
septa. The treatment groups appeared to shrivel and invaginate. In addition, mycelia ex-
posed to nanoemulsions showed more red fluorescence under fluorescence irradiation, and
the intensity of that fluorescence increased with the concentration of the PCT nanoemulsion,
suggesting that the nanoemulsion profoundly damaged cell membranes.
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3.8. Extracellular Conductivity

The extracellular conductivity of P. italicum was evaluated at 4, 8, 12, 24, 36, and 48 h
after treatment with PCT nanoemulsions of different concentrations. As shown in Figure 4A,
with an increasing exposure time, REC gradually increased for P. italicum. Within the first
12 h following treatment with PCT nanoemulsions, the value quickly increased, and the
increase was noticeably greater than that of the control. From 12 to 36 h, although increasing
trends occurred in all four groups, the REC values of the treatment group remained higher
than that of the control group. After 36 h, the REC of the treatment group continued to
increase at a slower rate, while that of the control group noticeably increased at the late
stages, which may have been associated with the programmed cell death of P. italicum.
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3.9. Malondialdehyde (MDA)

As shown in Figure 4B, MDA content was evaluated in P. italicum mycelia exposed to
PCT at 0, MIC, 1/2 MIC, and 2 MIC for 5 days. MDA content was increased significantly
by increasing PCT concentration, especially in the 2 MIC treatment group. In comparison
with the control group (8.60 ± 0.77 nmol/g), the MDA contents of the 1/2 MIC, MIC, and
2 MIC PCT treatment groups were 15.31 ± 0.93, 18.15 ± 0.80, and 21.03 ± 0.94 nmol/g,
respectively. The results showed that PCT treatment caused lipid peroxidation of P. italicum.

3.10. Total Lipid Content

Lipids are crucial structural substances of fungal membranes and play an important
role in the bioactivity of cells [38]. As shown in Figure 4C, the total lipid content of P. italicum
was different among the four groups, and it significantly decreased with increased PCT
concentrations. The total lipid contents of P. italicum cells treated with 1/2 MIC, MIC, and
2 MIC of PCT were 279.7 ± 6.5, 178.67 ± 5.4, and 131.39 ± 8.6 g kg−1, respectively, and
were considerably lower than that of the control (371.3 ± 7.6 g kg−1). The results indicated
that P. italicum was strongly inhibited by PCT in the synthesis of cellular lipids.



J. Fungi 2022, 8, 388 10 of 14

3.11. Ergosterol Content

The fungus ergosterol regulates the enzymes involved in intracellular transport and
maintains the integrity and permeability of the plasma membrane [39]. As shown in
Figure 4D, the ergosterol content was dramatically reduced by adding PCT in a dose-
dependent manner. The mycelial ergosterol content in the control was 0.36 ± 0.02 g kg−1,
which was higher than that of the 1/2 MIC (0.27 ± 0.01 g kg−1), MIC (0.23 ± 0.02 g kg−1),
and 2 MIC (0.14 ± 0.01 g kg−1) treatments, showing the PCT nanoemulsions highly inhib-
ited the biosynthesis of fungal ergosterol.

4. Discussion

In previous studies, a large number of antimicrobial substances have been reported in
citrus, such as flavonoids, essential oils, phenolic acids, and limonoids [25,40,41]. Among
them, PMFs, a kind of flavonoid, widely exist in the citrus waste peel and have been
regarded as a promising natural antimicrobial active substance in the food industry [42,43].
However, PMFs have the ability to inhibit penicillium, and their application is limited due
to strong water insolubility and being less polar. In this study, PMFs and citral, two antimi-
crobial agents that are both derived from citrus, were encapsulated in a PCT nanoemulsion
using nanotechnology. The nanoemulsion exhibited noteworthy antifungal activity against
P. italicum by inhibiting mycelial growth and spore germination and destroying cell mem-
brane structure. This research serves as a reference for exploring the use of citrus waste
peel, understanding the potential antifungal mechanisms of fungicides, and developing
novel antifungal compounds through the utilization of natural materials.

As reported previously, various essential oils such as eugenol, cinnamaldehyde, and
thymol have the ability to inhibit fungal spore germination and mycelium growth [5,44],
which is in agreement with our findings. Our results are encouraging when compared with
those previously found by Tao et al. [45], who found the MIC value of free citral against
P. italicum was 0.5 mL L−1, which is considerably higher than the value in this study. It
is likely that PCT nanoemulsions have more effective antibacterial effects than lone citral
due to nanoemulsions having better solubility and lower volatility. Additionally, combi-
nations of volatile compounds and nonvolatile antimicrobial components may improve
the effectiveness of antimicrobial agents and maintain their effectiveness for prolonged
periods. In this study, adding PMFs increased the antibacterial activity of a citral emulsion;
the MIC of the PCT nanoemulsion was 62.5 mg L−1, which was lower than that of the CT
nanoemulsion. Our results are consistent with those reported by Li et al. [25], who found
that limonin, a nonvolatile antimicrobial component, enhanced eugenol emulsion antifun-
gal activity against P. italicum. In addition, a study on Salvia species also found that when
the volatile and nonvolatile constituents were combined, the efficacy was enhanced [46].

The antifungal effect of essential oils has been shown to be exerted by influencing
the integrity and permeability of the fungal cell membrane [47,48]. Therefore, we studied
P. italicum treated with PCT under an electron microscope. SEM images (Figure 2) clearly
showed that PCT resulted in abnormal appearances and a reduced number of spores
and the irregular shrinkage and collapse of mycelia. These effects are similar to those
of rosemary EO on Aspergillus flavus and tea tree EO on Monilinia fructicola [39,44]. The
morphological changes in mycelia may have been due to increased cell permeability,
which leads to the comprehensive leakage of intracellular substances, such as nucleic
acids, proteins, and ions, or intercellular contents. These consequences are usually used
to indicate severe and irreversible damage to the cell membrane [6,35]. As indicated by
our results, the extracellular conductivity of the P. italicum supernatant rapidly increased
after PCT treatment (Figure 4A). PI staining assays also demonstrated that the integrity
and permeability of the cell membrane were damaged by PCT, which led to dye molecules
entering the nucleus and emitting red fluorescence (Figure 3). These results are similar to
those of [14], where citral and eugenol synergistically inhibited Aspergillus Niger, suggesting
that the integrity and permeability of cell membranes had been impaired.
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In addition, the increased permeability of the P. italicum cell membrane may have
been due to lipid peroxidation, which accelerates cell apoptosis [49]. In this study, with
nanoemulsions acting on P. italicum biofilms, the degree of cell membrane lipid peroxidation
increased, resulting in an increase in the amount of MDA. This result is consistent with
those of recent studies that investigated the effectiveness of paeonol [36], antofine [50], and
zedoary turmeric oil [49] as antifungal agents against various fungal strains. This is also in
agreement with a previous study by Yan et al. [51], who demonstrated that the action of
antimicrobial components causes lipid peroxidation and structural damage within the cell
membranes of microorganisms. Thus, the underlying antifungal action mechanism of PCT
against P. italicum may have been a result of membrane lipid peroxidation, which changes
the integrity and permeability of the cell membrane.

Lipids are essential constituents of the fungal cell membrane and perform various
important biological functions [44,52]. In general, when lipid content decreases, mem-
brane stability tends to be impaired and permeability to water-soluble materials becomes
greater [53,54]. In this study, as a result of the addition of PCT, the lipid content of P. italicum
was significantly decreased (Figure 4C). This result indicated that PCT destroyed the cell
membrane structure and inhibited the growth of P. italicum. In addition, to ensure that
PCT was targeting the plasma membrane, the amount of ergosterol was detected after PCT
treatment. Ergosterol is an essential sterol for fungi and plays a crucial role in maintaining
cell structure and function [44,55]. Commercial fungicides, such as imazalil, can greatly
reduce the amount of ergosterol in fungal membranes by disrupting the normal sterol
biosynthesis pathway [56]. In this study, PCT substantially impaired the biosynthesis of
ergosterol in P. italicum cells (Figure 4D). These findings indicate that the plasma membrane
may be a potential antifungal target of PCT. Although these results are encouraging, there
are still many unknowns to be solved and explored, such as the low solubility of PMFs
in citral and the in-depth antifungal mechanism of PCT against P. italicum. In particular,
according to the results of this study, PCT exerts antifungal activity by disrupting the cell
membrane of P. italicum; hence, a further study focusing on specific targets of PCT on fungal
cell membranes may be carried out.

5. Conclusions

In this study, two antifungal ingredients, PMFs and citral, from citrus were prepared
into a nanoemulsion with good stability and excellent antifungal activity against P. italicum.
The potential antifungal mechanism was associated with the inhibition of fungal spore
germination and mycelial growth and the destruction of cell membrane integrity and
permeability. Therefore, this study lays a foundation for the development and utilization of
antifungal ingredients from citrus and the control of P. italicum in citrus fruits.
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