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Abstract

Summary: Metabolite analogues (MAs) mimic the structure of native metabolites, can competi-

tively inhibit their utilization in enzymatic reactions, and are commonly used as selection tools for

isolating desirable mutants of industrial microorganisms. Genome-scale metabolic models repre-

senting all biochemical reactions in an organism can be used to predict effects of MAs on cellular

phenotypes. Here, we present the metabolite analogues for rational strain improvement (MARSI)

framework. MARSI provides a rational approach to strain improvement by searching for metabol-

ites as targets instead of genes or reactions. The designs found by MARSI can be implemented by

supplying MAs in the culture media, enabling metabolic rewiring without the use of recombinant

DNA technologies that cannot always be used due to regulations. To facilitate experimental imple-

mentation, MARSI provides tools to identify candidate MAs to a target metabolite from a database

of known drugs and analogues.

Availability and implementation: The code is freely available at https://github.com/biosustain/

marsi under the Apache License V2. MARSI is implemented in Python.

Contact: DKAHZE@chr-hansen.com or herrgard@biosustain.dtu.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-scale metabolic models (GEMs) describe the biochemical reac-

tions in an organism and their relation to the proteome and genome

(McCloskey et al., 2013). These models comprehensively represent nat-

ural metabolism and they are useful for predicting the effect of metabolite

analogues (MAs) as therapeutics (Agren et al., 2014; Kim et al., 2014).

Non-rational strategies such as mutagenesis and selection or la-

boratory evolution can be used to develop industrial strains when the

use of recombinant DNA technology is not allowed due to regulations

(Derkx et al., 2014; Hansen et al., 2017). MAs, inhibiting the enzym-

atic conversion of the target metabolite, act as metabolite knockouts

and can be used as the selective pressure in non-rational strategies to

shape the metabolism of microorganisms (Sørensen et al., 2016).

Here, we present software that implements workflows to identify

metabolite knockouts instead of gene or reaction knockouts

(Figure 1A). We also provide a pipeline to identify structural ana-

logues for those targets.

2 Materials and methods

The first workflow consists of systematically replacing reaction knock-

outs (identified by other strain design methods) by metabolite knock-

outs, until we can find metabolite targets that result in a similar flux

distribution. The second workflow consists of searching for metabolite

targets using heuristic optimization, without the need to specify reac-

tion knockouts a priori. A metabolite knockout consists of blocking

all reactions consuming a given metabolite, excluding transporters.

After identifying the metabolite targets, we search for MAs simi-

lar to them. We compiled a database of potential MAs from publicly

available sources (see Supplementary Material). We use OpenBabel

(O’Boyle et al., 2011) and RDKit (2017) (http://www.rdkit.org) to
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calculate the features used to compare candidate MAs to the target

metabolite: number of atoms/bonds/rings, MACCs fingerprints,

Tanimoto coefficient (TC) and structural similarity score (SS).

3 Results

We implemented a software package containing algorithms to gen-

erate strain design strategies using MAs. Our software could gener-

ate metabolite targets for a published knockout-based design

(Harder et al., 2016). We also provide the tools to identify candidate

MAs that could be used for implementation of the designs.

3.1 Identification of replacement targets
We used an experimentally validated strain design for itaconic acid

production in Escherichia coli (Harder et al., 2016) and the E.coli

GEM iJO1366 (Orth et al., 2014) to demonstrate the use of MARSI.

MARSI identified acetyl-phosphate as a metabolite knockout target

that can replace the Phosphotransacetylase (PTAr) reaction knock-

out and sustain the same flux for itaconic acid production (Table 1).

Using a SS cut-off of 0.5 (see Supplementary Material), we found

182 MAs for acetyl-phosphate (Supplementary Table S1 shows the

top 10 hits). More examples of replacement targets in other E.coli

strain designs can be found in Supplementary Material.

3.2 Query calibration with known MAs
In order to validate the ability of MARSI to find known analogues

for a target metabolite, we selected 42 known metabolite-MA pairs

from the literature (Supplementary Table S3). We compared the

structural features between the MAs and their target metabolites

(Supplementary Fig. S1). We used a distance of 4 for the number of

atoms, 3 for the number of bonds and 2 for the number of rings as

our query cut-off. The TC cut-off changes dynamically with the size

of the metabolites (see Supplementary Material). In Figure 1B, we

show the SS and TC for different targets and their known analogues

as well as the best hit analogue in the database. For most targets

MARSI found candidate MAs that showed higher structural similar-

ity to the target metabolite than the known analogue.
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Table 1. Knockout replacements for the strain design

Non-replaced knockouts Replaced reaction Metabolite Original fitness New fitness

PTA2, ICL, ALDD2x, PYK, SUCOAS, GGGABADr PTAr Acetyl-P 0.001 0.001

We use Biomass Product Coupled Yield (Patil et al., 2005) as fitness measure. Reaction Ids: Phosphate acetyltransferase (PTA), Isocitrate lyase (ICL), Aldehyde

dehydrogenase (ALDD2x), Pyruvate kinase (PK), Succinyl-CoA synthetase (SUCOAS) and Gamma-glutamyl-gamma aminobutyric acid dehydrogenase

(GGGABADr).
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Fig. 1. Metabolite target identification workflow and examples of MA targets. (A) The workflow for identifying for metabolite knockouts and candidate MAs. (B)

Comparison between the known MAs (columns 1 and 2) and the best MARSI hits (columns 3 and 4) used to calibrate the search parameters. We show the TC and

the SS. We highlighted rows where the best MARSI hit and the known MA are the same
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