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Abstract: Danger to rubber trees (Hevea brasiliensis) from South American leaf blight fungus imperils
the world’s source of natural latex for essential rubber products. Avoiding latex allergies also requires
a non-Hevea latex source. The present methods for removing latex entrapped in the individual cells
of guayule plants require environmentally hazardous chemicals. This study proposes a new method
for latex extraction from guayule using various ionic liquids (ILs) to dissolve cell walls and release
latex, as substantiated by Fourier transform infrared spectroscopy (FTIR) data.
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1. Introduction

Rubber is an essential part of modern economies. Rubber from natural sources is
superior in tensile strength and other properties to synthetic rubber and also is not derived
from fossil fuels [1,2]. Rubber trees (Hevea brasiliensis) originated in the Amazon basin in
South America but have been planted in many tropical regions beginning in 1876. However,
South American leaf blight (Microcyclus ulei), caused by a fungus, has devastated rubber
trees in South America, so that there is presently no commercial-scale natural rubber
production there. This fungus has the potential to be distributed in other areas where
rubber trees are grown, eventually causing a worldwide shortage of natural rubber latex.
Other leaf blights threaten Southeast Asia rubber trees, as well [3]. Non-rubber tree latex-
containing plants, such as guayule (Parthenium argentatum), are a possible substitute for
latex from Hevea brasiliensis if such a crisis should occur. Guayule latex, in particular, also
has advantages over rubber tree latex in that it is non-allergenic [4,5]. Other plants, such as
Taraxacum kok-saghyz (Russian dandelion), can also be used to produce rubber, but guayule
has an advantage in that it thrives in an arid climate with marginal soil [6,7].

Latex rubber from non-rubber tree plants, such as guayule, is contained within the
plant cells, requiring the breaking of parenchyma cell walls to release the latex suspended
in the aqueous cytoplasm [8]. Typically, grinding/milling at a pH of 10 is employed to
break cell walls and release latex [9]. Alternatively, volatile organic solvents, both polar or
non-polar, may be used to release latex [10]. The process waste streams, which are either
high pH or comprised of volatile organic compounds, may be devastating when released
into the environment [9]. A more environmentally friendly process is vitally needed.

Ionic liquids (ILs) are defined as water-free organic salts with melting points at tem-
peratures below their decomposition temperature [11]. They have been reported to break
down cell walls in plants [12,13]. Their large cations cause the poor organization of cations
with anions, thus lowering these solvents’ melting points. As they are salts, ILs have
extremely low vapor pressures, which facilitates recycling and makes them “green” when
they are used in biomass pretreatment. Some ILs have been reported to be of low hazard to
the environment, such as 1-ethyl-3-methylimidazolium acetate (Emim Ac), a low toxicity
IL (LD50 > 2000 mg kg−1) [14]. If halogens and sulfur are avoided when synthesizing ILs,
then their decomposition products are reported to be relatively harmless [15]. Nevertheless,
full life cycle analyses need to be conducted even on these ILs [16]. Further advanced ionic
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liquids, such as deep eutectic solvents, may also be even more ecofriendly for biomass
deconstruction [17]. The present work investigates the effect of various ionic liquids on
the removal of latex from guayule stems. Our hypothesis is that a process using an envi-
ronmentally friendly IL can be found to release latex from guayule, as indicated by FTIR
analysis of the products obtained.

2. Materials and Methods
2.1. Materials

Guayule stems were collected from two-year-old plants of improved germplasm (CAL-
7), generously provided by Dr. Hussein Abdel-Haleem from the US Arid-Land Agricultural
Research Center at Maricopa Agricultural Center, Maricopa, AZ, USA. CAL-7 was devel-
oped by the University of California and released for its high rubber content [14,15]. It has a
rubber content of approximately 10% [16]. The stems were stored in the refrigerator prior to
use. Wire cutters were used to chop the stems; a blender (SharkNinja Operating LLC, Chino,
CA, USA) was used to grind the pieces. Lastly, the ground guayule was sieved between 14
and 20 count mesh sieves to obtain particles of approximately 1 mm in diameter. The ILs
1-ethyl-3-methylimidazolium acetate >95% (Emim Ac), 1-ethyl-3-methylimidazolium lac-
tate >98% (Emim Lact), 1,3-dimethylimidazolium dimethylphosphate >98% (Dmim Dmp),
and 1-ethyl-3-methylimidazolium diethylphosphate >98% (Emim Dep) were purchased
from IoLiTec, Inc. [18] and used as received. Recycling of ionic liquids was reported as a
means of re-using these materials [19,20]. Centrifuged Natural Latex Liquid Rubber for
comparison was purchased from Holden’s Latex Corporation (New York, NY, USA).

2.2. Methods

Guayule (2 g) was mixed with 20 g of the IL for a 1:10 mass ratio. The capped
glassware with the mixture was immersed in an oil bath at temperatures of 110, 125, or
140 ◦C with magnetic stirring. Samples were taken at 30, 60, 90, and 120 min. After
sampling, approximately 7 g of water was added to each sample in a tube. The tubes were
vortexed and then centrifuged for 10 min at about 1000 RPM. The layers obtained were
separated by pipetting prior to Fourier Transform Infrared (FTIR) spectroscopy. Latex
clumps were separated by vacuum filtration. Each sample was analyzed using a Nicolet
IR 100 FTIR-ATR (Thermo Scientific, Waltham, MA, USA) with a diamond crystal using
32 scans per sample and a resolution of 2.0 for frequencies of 700 to 4000 cm−1. Spectra
were obtained under ambient lab conditions (22 ◦C, 1 atm).

3. Results

The effect of ionic liquid expected on cell walls is shown in Figure 1. After pretreatment
with the various ionic liquids, and the addition of water, either two or three layers formed
and became even more distinct with centrifugation. All two or three layers were separately
characterized by FTIR. The top layer was observed to contain clumps, historically called
worms. The top layer would be expected to be rubber latex, since its density was measured
as 0.95 g/cm3, while the density of water was 1.0 g/cm3 and the density of Emim Ac was
measured at 1.1 g/cm3 [14]. Figure 2 shows a schematic of the layers observed. Samples
from the top layer after centrifugation showed the relevant vibrations but varied in intensity
with reaction conditions. Lower layers after centrifugation showed only peaks for the IL or
the original biomass.

The most relevant and characteristic IR vibrations for guayule latex were reported
to be near 740 cm−1, 830 cm−1, 1370 cm−1, 1440 cm−1, and 1655 cm−1 [21]. For natural
rubber, the 742 cm−1 vibration was attributed to a rocking –CH2– bond that would exist if
the latex bonds to an adjacent isoprene [22]. A vibration corresponding to the backbone
C–H out-of-plane mode (C=C–H) at 836 cm−1 shifted to 843 cm−1 when under strain, as
would exist with FTIR-ATR measurements [23].
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Figure 2. Schematic of Layers after Ionic Liquid Pretreatment.

A 1037 cm−1 vibration was assigned to a rocking –CH3 group, a 1245 cm−1 vibration
to a twisting –CH2– bond, a 1375 cm−1 vibration to a –CH3 deformation, and a 1447 cm−1

vibration to a –CH2– deformation or a rocking –CH3 group [22]. A 1654 cm−1 vibration
was assigned to C=C stretching [24]. The relevant vibrations and their assignments can be
seen in Table 1. Vibrations for latex that overlap with the IL, such as 1090 cm−1 (a twisting
–CH2–), were not analyzed or discussed since conclusions cannot be drawn from these data.

Table 1. Vibrations Common to Guayule Latex and Guayule Pretreated with Emim Ac.

Latex Wave-
Number (cm−1) 1654 1447 1375 1245 1037 843 742

Bond
Vibration C=C stretching –CH2– deformation/

rocking –CH3

–CH3
deformation

twisting
–CH2–

rocking
–CH3 group

backbone C–H
out-of-plane mode

rocking
–CH2–

110 ◦C/30 min 3 3 3 3 3

110 ◦C/60 min 3 3 3 3 3 3 3

110 ◦C/90 min 3 3 3 3 3

110 ◦C/120 min 3 3 3 3 3 3 3

125 ◦C/30 min 3 3 3

125 ◦C/60 min 3 3 3 3 3 3 3

125 ◦C/90 min 3 3 3 3 3 3

125 ◦C/120 min 3 3 3 3

140 ◦C/30 min 3 3 3 3 3

140 ◦C/60 min 3 3 3 3 3

140 ◦C/90 min 3 3 3 3 3

140 ◦C/120 min 3 3 3

The “worms” in the top layer after centrifugation showed the relevant vibrations,
although they varied in intensity with reaction conditions. Lower layers after centrifugation
showed only peaks for the IL or the original biomass. As seen in Figure 3 and Table 1 for
Emim Ac pretreatment, all latex vibrations exist for a 60 min pretreatment at 110 ◦C and
at 125 ◦C, but shorter or longer pretreatment times show weaker characteristic vibrations.
In these Emim Ac pretreated spectra in Figure 3, a sharp vibration was seen at 1170 cm−1,
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which reflects contamination with Emim Ac. At the highest temperature, 140 ◦C, the most
characteristic vibrations are seen at the shortest time of 30 min. These findings suggest
that the severity of IL pretreatment can affect the latex produced. Too long a time at high
temperature may cause degradation of the latex, while too short a time does not degrade
the cell wall enough to allow the latex to escape.
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Figure 3. FTIR spectra in the fingerprint region of commercial latex, guayule pretreated with Emim Ac at 110 ◦C for
60 min (EA 110 C 60 min), guayule pretreated with Emim Ac at 125 ◦C for 60 min (EA 125 C 60 min), Emim Ac, and
untreated guayule.

When guayule was pretreated with 1-ethyl-3-methylimidazolium lactate (Emim Lact),
all the latex vibrations that did not overlap with the Emim Lact spectra were observed at
the conditions 125 ◦C for 30 min, but longer times of 60 min, 90 min, and 120 min showed
fewer common vibrations. Again, higher pretreatment severity likely decomposed latex.

For 1-ethyl-3-methylimidazolium diethylphosphate (Emim Dep), pretreatment at
125 ◦C 30 min, 60 min, and 90 min showed latex vibrations, but not 120 min. For 1,3-
dimethylimidazolium dimethylphosphate (Dmim Dmp) pretreatment at 125 ◦C, 60 min
of pretreatment showed more latex vibrations compared to 30 min, 90 min, and 120 min,
showing 60 min to be the optimal time for pretreatment with this IL.

4. Discussion

Analyses of FTIR spectra from IL pretreatment of guayule suggest that cell walls are
broken, allowing the rubber latex inside to escape. The addition of water leads to the
formation of layers, with the lowest density top layer showing characteristic rubber latex
vibrations in the FTIR spectra. The bottom layers shows the spectral characteristics of IL or
biomass residue. Cellulose would be expected to remain in the residue in the lower layers,
since the ILs used tend to sparingly dissolve cellulose [25]. A more environmentally friendly
method for the separation of rubber latex from guayule may then be possible, permitting it
to become a backup source of natural rubber latex, should Hevea brasiliensis succumb to
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disease in Asia. Future studies of cell wall breakage of guayule and other rubber-containing
plants using advanced ionic liquids could allow for even more environmentally friendly
solutions to processing plants for rubber products. In addition, future work is needed to
compare this method to conventional methods and to find if latex rubber is contaminated
with IL, although Emim Ac has been reported to be harmless to aquatic life [26]. Future
work of a careful accounting of IL solvent and the ability to recycle it will be needed to
justify the economics of this method.
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