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Abstract: All-trans retinoic acid (RA), which is the dietary bioactive derivative obtained from animal
(retinol) and plant sources (beta-carotene), is a physiological lipid signal of both embryonic and
postembryonic development. During pregnancy, either RA deficiency or an excessive RA intake is
teratogenic. Too low or too high RA affects not only prenatal, but also postnatal, developmental
processes such as myelopoiesis and mammary gland morphogenesis. In this review, we mostly focus
on emerging RA-regulated epigenetic mechanisms involving RA receptor alpha (RARA) and Annexin
A8 (ANXA8), which is a member of the Annexin family, as well as ANXA8 regulatory microRNAs
(miRNAs). The first cancer showing ANXA8 upregulation was reported in acute promyelocytic
leukemia (APL), which induces the differentiation arrest of promyelocytes due to defective RA
signaling caused by RARA fusion genes as the PML-RARA gene. Over the years, ANXA8 has
also been found to be upregulated in other cancers, even in the absence of RARA fusion genes.
Mechanistic studies on human mammary cells and mammary glands of mice showed that ANXA8
upregulation is caused by genetic mutations affecting RARA functions. Although not all of the
underlying mechanisms of ANXA8 upregulation have been elucidated, the interdependence of
RA-RARA and ANXA8 seems to play a relevant role in some normal and tumorigenic settings.
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1. Introduction

Historically, Egyptians, the Greek scholar Hippocrates, and Chinese Medicine used liver to
treat night blindness for thousands of years. However, they did not know that liver is a source of
vitamin A [1]. Preformed vitamin A (retinol and its esterified form, retinyl esters) in foods from animal
sources and provitamin A (beta-carotene) in food from plant sources are metabolized intracellularly
into all-trans retinoic acid (RA), which is a morphogen and lipid signal that governs developmental
processes throughout a human’s life [2–6].

A proper dietary vitamin A (retinol) level is indispensable for embryonic and fetal development
and during one’s entire life [7]. However, vitamin A deficiency during infancy, childhood, pregnancy,
and lactation increases the risk of several diseases, including night blindness (xerophthalmia), anemia,
and gastrointestinal disorders [3,4,6,8–14]. Anomalies of embryonic and fetal development are also
induced by an excessive vitamin A intake. These observations were first found in a rat model by
Dr. Sidney Cohlan in 1953 [15].

The discovery of vitamin A’s teratogenicity was a breakthrough showing that an excess or
deficiency of dietary vitamin A in pregnant women adversely affected fetal development. Over the
years, Cohlan’s work prompted hundreds of other experiments examining how excessive vitamin A
and its metabolites, including RA, adversely impacted fetal development. Cohlan’s studies detected
over seventy types of birth defects that affected nearly every internal organ resulting from an excessive
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intake of vitamin A. Other scientists confirmed the effects of teratogenic and major birth defects due
to an excess of vitamin A in different animal models, as well as the detrimental intake of high levels
of vitamin A in the course of pregnancy [3–5,16]. For instance, the teratogenic effects of high RA
in the kidney were demonstrated to be due to a local reduction of the RA level consequent to the
downregulation of aldehyde dehydrogenases (ALDHs), which mediate RA synthesis, [17] as well
as the upregulation of cytochrome P450 CYP26 enzymes, which induce the metabolic inactivation
of RA [18]. These previously undescribed and unsuspected mechanisms provided insights into the
molecular basis of RA-induced teratogenesis [19]. Apparently, the effects of vitamin A deficiency or
toxicity are similar to symptoms induced by ethanol that, by affecting the physiological RA level [20],
induces embryonic malformations [21].

The effects of RA and its dietary precursors in embryonic and fetal development are paralleled
by the effects of RA and its dietary precursors in cancer. Chemoprevention trials in smokers, such as
the Beta-Carotene and Retinol Efficacy Trial (CARET), the Alpha-Tocopherol, Beta-Carotene (ATBC)
Cancer Prevention trial, and the Physicians’ Health Trial, showed that beta-carotene and retinol
(vitamin A), rather than preventing cancer, induced detrimental tumorigenic effects in smokers [22–25].
Overall, these chemoprevention cancer trials revealed that different sources of RA, rather than reducing
the incidence of cancer, promoted both cancer growth and invasion [26,27]. Similar studies performed
by the National Cancer Institute Breast and Prostate Cancer Cohort Consortium and the European
Prospective Investigation of Cancer (EPIC) on subjects with different cancer predisposing conditions
(e.g., obesity, diabetes, defective immunity, and aging) did not lead to firm conclusions [28–38].

With the advent of cancer differentiation therapy, RA again took center stage [39]. RA, alone
or in combination with arsenic trioxide (ATO), was shown to successfully treat acute promyelocytic
leukemia (APL), which is an aggressive and fatal leukemia characterized by the differentiation arrest
of promyelocytes, a very rapid downhill course, and severe bleeding caused by fibrinolysis. It is
noteworthy that APL was the first cancer showing the dysregulation of ANXA8, which is a member of
the Annexin family of calcium (Ca2+) and phospholipid binding proteins involved in several cellular
functions [40]. The focus of this review is on emerging RA-regulated mechanisms involving specific
annexins in APL and other cancers, with a special emphasis on cancers over-expressing ANXA8.

2. RA and Annexins in Myelopoiesis and Acute Promyelocytic Leukemia

RA is a potent morphogen of the hematopoietic development of human pluripotent stem cells.
Genetic factors interfering with the normal physiological RA-RARA signaling pathways prevent cells
from differentiating into mature promyelocytes [41–47]. More than forty years ago, the laboratory of
Dr. Janet Rowley detected chromosome translocation in acute promyelocytic leukemia (APL) cells [48].
Remarkably, about 98% of APL patients show the translocation t (15; 17) (q24; q21) that generates
an oncogenic fusion protein involving both RARA and a protein called PML, which is required for the
assembly of PML-nuclear bodies surrounded by the chromatin of the nucleus. The PML nuclear bodies
perform a number of regulatory cellular functions, including programmed cell death, genome stability,
and cell division [49,50]. PML-RARA epigenetically repressed the chromatin associated with RARA
target genes by recruiting corepressor complexes, including silencing mediator for retinoid and thyroid
receptors (SMRT) and Nuclear Co-Repressor (NCOR), as well as histone deacetylases (HDACs) and
DNA methyltransferases (DNMTs). Pharmacological RA, either alone or in combination with arsenic
trioxide (ATO), relieved the epigenetic gene repression and restored promyelocytic differentiation by
releasing corepressors and recruiting histone acetyl transferases (HATs) [51–58].

While the RA-induced differentiation of APL with PML-RARA was possible, other APLs did not
respond to RA treatment. Specifically, a small percentage of APL patients were characterized by other
RARA fusion proteins generated by different translocations. The t (11; 17) (q23; q21) that generates
PLZF-RARA (currently named the ZBTB16-RARA protein) occurred in 1% of APL. The ZBTB16
transcriptional factor, which is involved in the self-renewal and differentiation of stem cells, recruited
SMRT, NCOR, and HDACs that repressed RARA transcriptional target genes and blocked myeloid
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differentiation. The reciprocal protein RARA-ZBTB16 also contributed to leukemogenesis [59,60].
Notably, patients with ZBTB16-RARA were shown not to respond to either RA or arsenic trioxide
(ATO). Even if RA degraded ZBTB16-RARA, it did not induce promyelocytic differentiation [61].
Other APL translocations were demonstrated to generate rare X-RARA fusion proteins, including
NPM1-RARA [62], NUMA-RARA [63], and STAT5b-RARA [64]. The underlying molecular mechanisms
of clinical resistance to RA and/or ATO are not all well-known in different X-RARA fusion proteins [65].
Interestingly, other rare variant APL fusion proteins do not involve RARA, but other RAR receptors,
such as RA receptor beta (RARB) and RA receptor gamma (RARG) [66].

In classical APL, the PML-RARA fusion protein affected specific annexins, which are
proteins capable of binding negatively charged phospholipids in membranes in a Ca2+-dependent
manner [67] and are involved in major cellular processes (e.g., differentiation, proliferation, apoptosis,
angiogenesis, vesiculation, membrane dynamics, cell migration, invasion, and adhesion) [34,68–77].
While PML-RARA induced a high expression of ANXA8 in APL [40,78,79], RA-induced downregulation
of ANXA2 expression in myeloid leukemia cell lines was not confined to APL. Notably, high levels
of ANXA2 in hyperfibrinolysis could be corrected by RA or RA plus ATO therapy in patients with
APL [80–82].

Studies in mice showed that microRNAs (miRNAs) have a relevant role in hematopoiesis [83].
Human APL displayed a specific signature of miRNAs involved in regulatory loops of myeloid
differentiation. For instance, the RA-regulated let-7a-3/let7-b cluster could distinguish APL blasts
from normal promyelocytes [84]. One of the miRNAs upregulated by RA during APL differentiation
was miR-342 [85]. This miRNA emerged as a direct transcriptional target of the critical hematopoietic
transcription factor PU.1 and interferon regulatory factors IRF-1 and IRF-9. Apparently, IRF-1 maintains
miR-342 at low levels, whereas the binding of PU.1 and IRF-9 in the promoter region, following
RA-mediated differentiation, upregulated miR-342 expression. Moreover, the enforced expression
of miR-342 in APL, promoted RA-induced differentiation [86]. Development and tumorigenesis
are intimately connected. After the complex molecular networks and epigenetic mechanisms of
myelopoiesis involving RA, RA receptors, annexins, and regulatory RNAs, the mammary gland
represents another attractive developmental model.

3. RA and Annexins in Mammary Morphogenesis and Breast Cancer

3.1. Morphogenetic Effects of RA

Physiological RA is a major regulatory lipid signal and morphogen of mammary gland
development. The rudimentary embryonic ductal tree remains quiescent until puberty and undergoes
mammary gland branching morphogenesis under hormones’ stimulus. This is a unique model
employed to study key morphogenetic and physiological processes. During a woman’s lifetime,
the mammary gland also undergoes many changes in structure and function, including cyclic expansions
corresponding to the hormonal changes induced by the menstrual cycle, as well as major changes
during pregnancy, lactation, and involution. The dysregulation of signaling pathways of normal
mammary gland development is due not only to intrinsic genetic factors, but also microenvironmental
factors of the mammary gland extracellular matrix (ECM) and cell-cell interactions [87]. Physiological
RA regulates all developmental stages of the mouse mammary gland by signaling via nuclear receptors
with RA affinity.

Human normal mammary epithelial cells expressing wild type RARA seeded in basement
membrane culture providing physiological RA formed 3D acinar structures with a lumen lined by
apico-basal polarized cells. Factors affecting the functionality of the RA-RARA mechanism induced 3D
amorphous structures with a lumen filled with proliferating cells (Figure 1) [88]. The inhibition of
physiological RA signaling induced aberrant mammary morphogenesis in both mouse and human
mammary epithelial cell models and in mouse mammary glands [89–92].
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Figure 1. Physiological all-trans retinoic acid (RA) determines different cell fate decisions in normal 
and aberrant mammary epithelial cells. Blueprint of the three-module mechanism that integrates 
physiological RA and two RA receptor alpha (RARA) functions (center). In the course of normal 
human mammary epithelial cell morphogenesis (left scheme), physiological RA acts as the ancient 
two-faced Janus Bifrons god that regulates—in a spatiotemporal fashion—cell life (red) and cell death 
(green). Genetic factors affecting the RA-RARA mechanism induce 3D aberrant mammary 
morphogenesis (right scheme) [88]. 

RARA was found to be expressed in several breast cancer cell lines (e.g., the RARA-positive 
T47D breast cancer cell line) [93]. In vitro pharmacological RA treatment of T47D cells was shown to 
induce either an anticancer or cancer-promoting action, depending on the functional status of RARA 
[94]. Consistently, in vivo mouse studies showed that T47D cells expressing wild type RARA and 
T47D cells with a dominant negative RARA mutant (DN-RARA403), when grown in nude mice fed a 
control diet providing physiological RA, developed dorsal xenograft tumors of similar sizes. 
However, T47D cells grown in nude mice fed an RA-enriched diet formed xenograft tumors smaller 
than xenograft tumors of mice fed a normal diet. In contrast, xenograft tumors of T47D cells carrying 
a dominant-negative mutant (DN-RARA403) fed the RA-enriched diet were significantly bigger than 
xenograft tumors of T47D with normal RARA [88]. 

The opposite effects of RA were induced in breast cancer cells via other nuclear receptors with 
affinity for RA. For instance, RA was transported by the Fatty Acid Binding Protein 5 (FABP5) on the 
Peroxisome Proliferator-Activated Receptor beta delta (PPARβ/δ) [95,96]. Alternatively, the opposite 
effects of RA on breast cancer cell growth were induced by either RARA or RAR gamma (RARG) [97–
99]. 

3.2. The RA-RARA and ANXA8 Connection 

Human isogenic mammary epithelial cell models, such as the MCF10A [100–104] and HME1 [88] 
models, revealed a connection between RA-RARA and ANXA8 [105–110]. The MCF10A cell line 
derived from a fibrocystic disease of a 36-year-old female was characterized by RARA expression, 
basal/myoepithelial, luminal markers, and stem/progenitor markers, including aldehyde 
dehydrogenase isoforms that regulate RA synthesis [111–113]. The MCF10A-1H cell line derived 
from premalignant MCF10A cells stably transfected with the human RAS oncogene formed aberrant 
3D structures in vitro and tumors in mice. One of the mice tumors, which resembled a high grade 
subtype of human DCIS called comedocarcinoma, was later used to establish the MCF10A.com cell 
line (also MCF10A-DCIS.com) with features of comedocarcinoma in situ, representing a high grade 
subtype of human DCIS [100–104,114]. 

The isogenic MCF10A-1H and MCF10.com cell lines with altered RA signaling [115] are 
characterized by incremental ANXA8 protein expression relative to the MCF10A control line (Figure 
2). 

Figure 1. Physiological all-trans retinoic acid (RA) determines different cell fate decisions in normal
and aberrant mammary epithelial cells. Blueprint of the three-module mechanism that integrates
physiological RA and two RA receptor alpha (RARA) functions (center). In the course of normal human
mammary epithelial cell morphogenesis (left scheme), physiological RA acts as the ancient two-faced
Janus Bifrons god that regulates—in a spatiotemporal fashion—cell life (red) and cell death (green).
Genetic factors affecting the RA-RARA mechanism induce 3D aberrant mammary morphogenesis
(right scheme) [88].

RARA was found to be expressed in several breast cancer cell lines (e.g., the RARA-positive T47D
breast cancer cell line) [93]. In vitro pharmacological RA treatment of T47D cells was shown to induce
either an anticancer or cancer-promoting action, depending on the functional status of RARA [94].
Consistently, in vivo mouse studies showed that T47D cells expressing wild type RARA and T47D cells
with a dominant negative RARA mutant (DN-RARA403), when grown in nude mice fed a control diet
providing physiological RA, developed dorsal xenograft tumors of similar sizes. However, T47D cells
grown in nude mice fed an RA-enriched diet formed xenograft tumors smaller than xenograft tumors
of mice fed a normal diet. In contrast, xenograft tumors of T47D cells carrying a dominant-negative
mutant (DN-RARA403) fed the RA-enriched diet were significantly bigger than xenograft tumors of
T47D with normal RARA [88].

The opposite effects of RA were induced in breast cancer cells via other nuclear receptors with
affinity for RA. For instance, RA was transported by the Fatty Acid Binding Protein 5 (FABP5) on the
Peroxisome Proliferator-Activated Receptor beta delta (PPARβ/δ) [95,96]. Alternatively, the opposite
effects of RA on breast cancer cell growth were induced by either RARA or RAR gamma (RARG) [97–99].

3.2. The RA-RARA and ANXA8 Connection

Human isogenic mammary epithelial cell models, such as the MCF10A [100–104] and HME1 [88]
models, revealed a connection between RA-RARA and ANXA8 [105–110]. The MCF10A cell line
derived from a fibrocystic disease of a 36-year-old female was characterized by RARA expression,
basal/myoepithelial, luminal markers, and stem/progenitor markers, including aldehyde dehydrogenase
isoforms that regulate RA synthesis [111–113]. The MCF10A-1H cell line derived from premalignant
MCF10A cells stably transfected with the human RAS oncogene formed aberrant 3D structures in vitro
and tumors in mice. One of the mice tumors, which resembled a high grade subtype of human DCIS called
comedocarcinoma, was later used to establish the MCF10A.com cell line (also MCF10A-DCIS.com) with
features of comedocarcinoma in situ, representing a high grade subtype of human DCIS [100–104,114].

The isogenic MCF10A-1H and MCF10.com cell lines with altered RA signaling [115] are
characterized by incremental ANXA8 protein expression relative to the MCF10A control line (Figure 2).
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Figure 2. Evidence of increasing Annexin A8 (ANXA8) upregulation in isogenic MCF10A cell lines. 
(A) Immunofluorescence of MCF10A-Ctrl, MCF10A-1H, and MCF10A.com cell lines grown in two-
dimensional (2D) culture stained with both 4′,6-diamidino-2-phenylindole (DAPI) (blue) and ANXA8 
antibody (green) (scale bar 30 µm). (B) Western blotting (WB, top) and ANXA8 quantitative protein 
expression (bottom) in the three cell lines show an increasing ANXA8 level. (C) MCF10A-Ctrl, 
MCF10A-1H, and MCF10A.com cells grown in three-dimensional (3D) basement membrane culture 
(Matrigel) for 12 days were fixed and stained for DAPI and ANXA8 and imaged by confocal 
microscopy. MCF10A-Ctrl cells formed 3D acinar structures with a lumen lined by ANXA8-positive 
cells, while MCF10A-1H cells stably expressing the RAS oncogene developed morphologically 
aberrant acinar structures with ANXA8-positive cells in the luminal space. Comedocarcinoma 
MCF10A.com cells formed 3D ANXA8-positive “grape-like” morphologically aberrant structures 
(scale bar 30 µm). 
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Figure 2. Evidence of increasing Annexin A8 (ANXA8) upregulation in isogenic MCF10A cell
lines. (A) Immunofluorescence of MCF10A-Ctrl, MCF10A-1H, and MCF10A.com cell lines grown
in two-dimensional (2D) culture stained with both 4′,6-diamidino-2-phenylindole (DAPI) (blue) and
ANXA8 antibody (green) (scale bar 30 µm). (B) Western blotting (WB, top) and ANXA8 quantitative
protein expression (bottom) in the three cell lines show an increasing ANXA8 level. (C) MCF10A-Ctrl,
MCF10A-1H, and MCF10A.com cells grown in three-dimensional (3D) basement membrane culture
(Matrigel) for 12 days were fixed and stained for DAPI and ANXA8 and imaged by confocal
microscopy. MCF10A-Ctrl cells formed 3D acinar structures with a lumen lined by ANXA8-positive
cells, while MCF10A-1H cells stably expressing the RAS oncogene developed morphologically aberrant
acinar structures with ANXA8-positive cells in the luminal space. Comedocarcinoma MCF10A.com
cells formed 3D ANXA8-positive “grape-like” morphologically aberrant structures (scale bar 30 µm).

The human HME1 mammary epithelial cell line, which was created by the immortalization of
primary human mammary epithelial cultures with telomerase, was demonstrated to exhibit monolayer
growth in a cobblestone pattern characteristic of normal epithelial cells. HME1 cells with wild
type RARA and wild type PI3KCA-AKT/PAKT functions developed 3D morphologically normal
acinar structures with ANXA8-positive cells lining the luminal space in about 12 days (Figure 3A,
left column). In contrast, HME1 cells with mutations (e.g., the dominant negative RARA403 or
the mutant PI3KCAH1047R p110 subunit) that affect the physiological RA transcriptional signaling
developed 3D morphologically aberrant structures with a lumen filled with ANXA8-positive cells
(Figure 3A, middle and right columns) [109,110].

Consistently, mammary glands of 12-week-old normal FVB female mice showed normal ducts
lined by ANXA8-positive cells (Figure 3B, left column). In contrast, transgenic FVB female mice of the
same age, expressing either MMTV-RARA403 or MMTV-PI3KCAH1047R mutations, showed mammary
glands with ductal hyperplasia (DH) characterized by an enlarged lumen filled with ANXA8-positive
cells (Figure 3B, middle and right columns) similar to human breast DH [109].

As schematically shown in Figure 3C, the three-module RA-RARA mechanism of normal human
and mouse mammary epithelial cells generated 3D acinar structures with a lumen lined by cells
with baseline ANXA8 expression (left scheme). Endogenous ANXA8 overexpression induced by
genetic factors generated aberrant morphogenesis driven by a downward spiral RA-RARA-ANXA8
mechanism that feeds back into itself (right scheme).

Elegant studies were conducted to monitor ANXA8 upregulation during mouse mammary gland
development and involution [116], as well as in a large group of patients with breast cancer [117]
and in subpopulations with transiently quiescent c-kit positive luminal cells of the ductal mammary
epithelium [118]. Higher ANXA8 in ductal carcinoma in situ (DCIS) versus atypical ductal hyperplasia
(ADH) and normal breast tissue was detected in tissue microarrays. Moreover, ANXA8 was found
to be significantly overexpressed in Estrogen Receptor (ER)-negative versus ER-positive cases and
significantly correlated with tumor stage, grade, and positive lymph nodes [109].
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MMTV-RARA403 or MMTV-PI3KCAH1047R mutations showed ductal hyperplasia (DH) with ANXA8-
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expression generates normal morphogenesis (left scheme). In contrast, a defective RA-RARA 
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Figure 3. The RA-RARA-ANXA8 mechanism in normal and aberrant mammary morphogenesis.
(A) Confocal microscopy images (scale bar: 10 µm) showing that normal human mammary epithelial
(HME1) cells with normal RARA functions develop 3D acinar structures with a lumen lined by
ANXA8-positive cells (left column). HME1 cells with RARA403 or PI3KCAH1047R mutations develop
ANXA8-positive, morphologically aberrant 3D acinar structures (middle and right columns) [110].
(B) Microscopy images of the fourth mammary gland section of a 12-week-old FVB female
mouse with wild type RARA and wild type PI3KCA showing a duct lined by ANXA8-positive
cells (left column). In contrast, the fourth mammary gland of 12-week-old FVB female mice
expressing either MMTV-RARA403 or MMTV-PI3KCAH1047R mutations showed ductal hyperplasia
(DH) with ANXA8-positive cells in the luminal space (middle and right columns) (scale bar: 30 µm)
(our unpublished images). (C) The interdependence of a functional RA-RARA mechanism and baseline
ANXA8 expression generates normal morphogenesis (left scheme). In contrast, a defective RA-RARA
mechanism upregulating endogenous ANXA8 generates aberrant morphogenesis (right scheme).

Consistently, stable ectopic ANXA8 expression in HME1 and MCF10A cells induced 3D morphological
aberrant structures (Figure 4A). Apparently, ectopic ANXA8, by repressing the transcription of RARA-target
genes, generates a downward spiral mechanism of aberrant morphogenesis (Figure 4B) [108].
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Figure 4. Ectopic ANXA8 generates aberrant mammary morphogenesis. (A) Confocal images of
3D morphologically aberrant structures generated by HME1 and MCF10A cells expressing stable
ectopic ANXA8 (scale bar: 50 µm) (B) Scheme showing that ectopic ANXA8 is sufficient to induce
aberrant morphogenesis.

3.3. Mechanisms and Biomarkers Involving Regulatory microRNAs (miRNAs)

3.3.1. Regulatory miRNAs of ANXA2 and ANXA8

Recent studies have suggested that RA, via RARA, can regulate the expression of ANXA8 and
ANXA2 by direct transcriptional regulation and/or via microRNAs. Indeed, both the regulatory regions
of ANXA8 and ANXA2 genes, and the regulatory regions of miRNAs targeting ANXA8 and ANXA2
mRNAs, are characterized by RA-responsive elements (RARE) [109].

RA via RARA can induce baseline ANXA8 protein expression by regulating the transcription
of specific miRNAs targeting the ANXA8 mRNA 3′untranslated region (3′UTR), including miR-218
associated with breast DCIS and miR-342 associated with triple negative breast cancer (TNBC)
(Figure 5A) [109,119–121]. Factors (e.g., genetic mutations) that inhibit the RA-RARA transcriptional
regulation of these miRNAs upregulate the ANXA8 protein (Figure 5B).

Cancers 2020, 12, x 7 of 18 

 

 
Figure 4. Ectopic ANXA8 generates aberrant mammary morphogenesis. (A) Confocal images of 3D 
morphologically aberrant structures generated by HME1 and MCF10A cells expressing stable ectopic 
ANXA8 (scale bar: 50 µm) (B) Scheme showing that ectopic ANXA8 is sufficient to induce aberrant 
morphogenesis. 

3.3. Mechanisms and Biomarkers Involving Regulatory microRNAs (miRNAs) 

3.3.1. Regulatory miRNAs of ANXA2 and ANXA8 

Recent studies have suggested that RA, via RARA, can regulate the expression of ANXA8 and 
ANXA2 by direct transcriptional regulation and/or via microRNAs. Indeed, both the regulatory 
regions of ANXA8 and ANXA2 genes, and the regulatory regions of miRNAs targeting ANXA8 and 
ANXA2 mRNAs, are characterized by RA-responsive elements (RARE) [109]. 

RA via RARA can induce baseline ANXA8 protein expression by regulating the transcription of 
specific miRNAs targeting the ANXA8 mRNA 3′untranslated region (3′UTR), including miR-218 
associated with breast DCIS and miR-342 associated with triple negative breast cancer (TNBC) 
(Figure 5A) [109,119–121]. Factors (e.g., genetic mutations) that inhibit the RA-RARA transcriptional 
regulation of these miRNAs upregulate the ANXA8 protein (Figure 5B). 

 
Figure 5. ANXA8 overexpression due to RA-RARA downregulation of ANXA8-regulatory miRNAs. 
(A) RA via RARA regulates ANXA8 regulatory miRNAs targeting the 3′untranslated region 
(3′UTR) of ANXA8 mRNA. (B) Factors inhibiting the RA-RARA regulation of ANXA8-regulatory 
miRNAs induce ANXA8 protein upregulation. 

Figure 5. ANXA8 overexpression due to RA-RARA downregulation of ANXA8-regulatory miRNAs.
(A) RA via RARA regulates ANXA8 regulatory miRNAs targeting the 3′untranslated region (3′UTR) of
ANXA8 mRNA. (B) Factors inhibiting the RA-RARA regulation of ANXA8-regulatory miRNAs induce
ANXA8 protein upregulation.

Bioinformatics analysis identified several ANXA8-regulatory miRNAs (Figure 6A) [110], including
miRNAs (e.g., miR-342 shown in Figure 6B) that can be released in exosomes that are 50–140 nm
vesicles containing proteins, mRNA, and miRNAs, shed by normal and cancer cells [122–124] and
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can be potentially detected in non-invasive liquid biopsies. By using methods that can selectively
capture tumor-derived exosomes with antibodies against tumor-associated proteins and quantify
in situ tumor-associated RNAs, it will be possible to discriminate between normal and malignant
cells [125,126].
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Several years ago, epigenetic markers such as hypermethylated RARB2 [105,106,127–129] enabled
the detection of early stage breast cancer in ductal lavage fluid [130] and random periareolar fine needle
aspirates [131]. Even if hypermethylated RARB2 has been proven useful for detecting RA-resistant
breast cancer at pre-symptomatic stages, it has also shown some limitations (e.g., heterozygous RARB2
methylation may lead to false positives) [132]. Therefore, biomarkers such as RA-regulated miRNAs
targeting ANXA8 would have several advantages over hypermethylated markers of RA-resistant
breast cancer.

3.3.2. Long Non-Coding RNAs (LncRNAs)

LncRNAs play important roles in breast cancer. They are involved in chromatin remodeling,
as well as transcriptional and post-transcriptional regulation, through a variety of chromatin-based
mechanisms and via cross-talk with other RNA species. For instance, lncRNA MALATI was shown to
suppress breast cancer metastasis [133], while lncRNA DANCR was shown to upregulate PI3K/AKT
signaling through the activation of the serine phosphorylation of RXRA [134,135].

There is scanty evidence of regulatory lncRNAs involved with annexins. However, lncRNA
CCAT1, which is upregulated in breast cancer tissue and correlates with poor outcomes in breast cancer
patients, was shown to interact with miR-204/211, miR-148a/152, and ANXA2. These interactions
promoted the translocation of β-catenin to the nucleus, where it activated TCF4 that, in turn, activated
the wingless/integrated (WNT) signaling. TCF4 binding of the promoter of lncCCAT1 regulated
the lncCCAT1 transcription, and ultimately generated a positive feedback regulatory circuit of
lncCCAT1-TCF4-lncCCAT1 in breast cancer stem cells [136]. Notably, a recent study showed that
ANXA8 also regulates WNT signaling to maintain the phenotypic plasticity of retinal pigment epithelial
cells [137].

4. Emerging Mechanisms Involving ANXA2 and/or ANXA8 in Different Cancers

According to a systematic literature search, different cancers are characterized by ANXA2
dysregulation [138]. Recently, several studies detecting ANXA8 upregulation in different cancers have
been published. As shown hereafter, both ANXA2 and ANXA8 are not confined to acute promyelocytic
leukemia and breast cancer, but are also involved in other cancers.
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4.1. Prostate Cancer

Several published studies have suggested that the dysregulation of annexins plays a role in
prostate cancer (PCa) progression through distinct mechanisms [139]. For instance, ANXA2 was
found to be abundantly expressed in primary normal human prostate epithelial cells, but significantly
reduced or lost in prostate cancer cell lines. ANXA2 was distributed in both the cytosol and underneath
the plasma membrane in normal prostate epithelial cells, while prostate cancer cells showed reduced
or lost expression in prostate cancer development and progression. ANXA2 re-expression inhibited
prostate cancer cell migration [140,141]. In a recent large study, both ANXA8 and other markers were
significantly overexpressed in metastatic castration-resistant prostate squamous cancer [142].

4.2. Ovarian Cancer

Most women diagnosed with ovarian cancer do not have a family history of ovarian cancer.
However, women with a family member who has had ovarian and breast cancer have a higher risk.
The most significant risk factors for ovarian cancer are inherited genetic mutations of BRCA1 or BRCA2
genes that are responsible for about 10 to 15 percent of all ovarian cancers. A recent study [143] showed
that members of the Annexin family, including ANXA8, are involved in ovarian cancer tumorigenesis
and progression. ANXA8 seemed to be involved in cell migration, cell adhesion, vasculature, and the
regulation of PI3K-AKT. Immunocytochemistry showed that ANXA8 expression was higher in the
malignant tumor group relative to borderline, benign, and normal groups. Furthermore, a high
expression correlated with a poor prognosis. Based on a large study, ANXA8 might qualify as a novel
biomarker for the early diagnosis, immunotherapy, and prognostic assessment of ovarian cancer.
Notably, anticancer effects in ovarian serous cancer were induced by RA, which is not only a regulator
of ANXA8, but also an inhibitor of the ANXA2-S100A10 signaling pathway [144].

4.3. Pancreatic Cancer

The worst prognosis of major cancers is for pancreatic cancer, since patients have a low survival
rate [145]. ANXA8 expression was shown to be low or absent in normal pancreatic tissue, but was
upregulated in pancreatic cancer [146,147]. Both Claudin 18 and ANXA8 have emerged as new
markers of pancreatic cancer [148]. A pancreatic cancer study speculated that ANXA8 expression
was low in a normal pancreas due to CpG hypermethylation of the ANXA8 promoter-exon 1 region,
while demethylation of the ANXA8 promoter-exon 1 region induced ANXA8 upregulation in pancreatic
cancer that invaded the surrounding tissue and metastasized [149]. Increased ANXA8 expression
was associated with a poor prognosis [150]. Mechanistic studies showed that in pancreatic ductal
adenocarcinoma (PDAC), ANXA8 upregulation was induced by the zinc finger regulator ZIC2,
which is a member of the ZIC gene family that associates with GLI transcription factors of Hedgehog
signaling [148,149,151,152]. A recent study showed that the long non-coding NHG14 RNA potentiates
pancreatic cancer progression via ANXA2 modulation and acts as a competing endogenous RNA for
miR-613 [153].

4.4. Gastric Carcinoma

Gastric carcinoma (GC) is the world’s leading cause of cancer-related death, especially among
older males [154]. ANXA8 is notably elevated in GC tissues. A high expression of ANXA8 represents
a poor prognosis of overall survival and disease-free survival, and significantly correlates with the
TNM (T for the size of the tumor and any spread of cancer into nearby tissue, N for the spread
of cancer to nearby lymph nodes, and M for metastasis) staging system that was created by the
American Joint Committee on Cancer (AJCC) and the International Union Against Cancer (UICC).
Further experimental validations are still required to clarify the molecular mechanisms underlying the
role of ANXA8 in the course of GC progression [155].



Cancers 2020, 12, 2275 10 of 18

4.5. Cholangiocarcinoma

Human cholangiocarcinoma (CC) arises from the biliary tree, which is a series of gastrointestinal
ducts allowing newly synthesized bile from the liver to be concentrated and stored in the gallbladder
prior to release into the duodenum. The common hepatic duct, which runs alongside the hepatic vein,
descends and joins the cystic duct that combines and forms the common bile duct. Cholangiocarcinoma
has a high mortality rate and a poor prognosis. The sarcomatous change/epithelial mesenchymal
transition (EMT) of CC frequently leads to aggressive intrahepatic spread and metastasis. Two studies
showed that ANXA8; S100P, which is a member of the S100 family of proteins containing two EF-hand
calcium-binding motifs; and Glutathione Peroxidase 1 (GPX1) expression were decreased in CC
dedifferentiation. ANXA8 was transcriptionally downregulated by the epidermal growth factor (EGF),
which was correlated with morphological changes of the epithelial-mesenchymal transition (EMT).
Ectopic ANXA8 reversed the morphology of cells in association with focal adhesion kinase expression
and altered F-actin dynamics. The EGF receptor and its downstream targets PI3K kinase and AKT
phosphorylated FOXO4 led to ANXA8 inhibition [156–158].

4.6. Oral Squamous Cell Carcinoma

The gene expression profiles of metastatic lymph nodes from oral squamous cell carcinoma
(OSCC) patients relative to a control non-cancer cervical lymph node and heterotopic salivary gland
tissue identified over eleven thousand genes, and found genes encoding ANXA8, keratin 6C (KRT6C),
small proline-rich protein 1B (SPRR1B), and desmoglein 3 (DSG3) that were overexpressed in all
metastatic lymph nodes. ANXA8 mRNA was detected in lymph nodes in which metastases were not
identified histopathologically, but by the molecular RT-LAMP approach, which is more sensitive than
conventional routine histopathology [158].

5. Conclusions

This review focuses on cancers expressing well-known annexins [138], with a special emphasis on
ANXA8, which is an annexin that was found to be overexpressed for the first time in acute promyelocytic
leukemia (APL) carrying a fusion gene involving both PML and RARA [40,78,79]. Subsequently,
ANXA8 was extensively studied in the context of the mammary gland and breast cancer [116–118].
Consistently, ANXA8 upregulation was confirmed to be highly expressed in breast DCIS relative to
ADH and normal breast tissue, as well as in 3D human mammary epithelial cell models of ductal
carcinoma in situ (DCIS) [109,110].

More recently, ANXA8 was detected in several other cancers. After the original discovery of
ANXA8 in classical APL several decades ago, research focusing on the role of ANXA8 in different
cancers will be indispensable not only for developing diagnostic and prognostic biomarkers, but also
for devising ad hoc therapeutic strategies. For instance, cancers expressing ANXA8 might be targeted
with a strategy developed for targeting ANXA2 [159]. An increasing knowledge of miRNAs and
lncRNAs with regulatory and epigenetic roles will be necessary to decipher tumorigenic mechanisms
involving either single or multiple annexins.
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