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Physiological variability manifests itself via differences in physiological function between individuals of
the same species, and has crucial implications in disease progression and treatment. Despite its
importance, physiological variability has traditionally been ignored in experimental and computational
investigations due to averaging over samples from multiple individuals. Recently, modelling frameworks
have been devised for studying mechanisms underlying physiological variability in cardiac electro-
physiology and pro-arrhythmic risk under a variety of conditions and for several animal species as well as
human. One such methodology exploits populations of cardiac cell models constrained with experi-
mental data, or experimentally-calibrated populations of models. In this review, we outline the con-
siderations behind constructing an experimentally-calibrated population of models and review the
studies that have employed this approach to investigate variability in cardiac electrophysiology in
physiological and pathological conditions, as well as under drug action. We also describe the method-
ology and compare it with alternative approaches for studying variability in cardiac electrophysiology,
including cell-specific modelling approaches, sensitivity-analysis based methods, and populations-of-
models frameworks that do not consider the experimental calibration step. We conclude with an
outlook for the future, predicting the potential of new methodologies for patient-specific modelling
extending beyond the single virtual physiological human paradigm.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Physiological variability manifests itself through differences in
physiological function between individuals of the same species
(Britton et al., 2013; Marder and Taylor, 2011; Sarkar et al., 2012). In
cardiac electrophysiology, there are significant inter-subject and
intra-subject differences in the electrical activity of cardiac tissue
from the same region of the heart (Feng et al., 1998;Walmsley et al.,
odriguez).

r Ltd. This is an open access article
2015). At the level of isolated cardiac cells (cardiomyocytes), vari-
ability becomes apparent via differences in the morphology and
duration of their electrical signal e the action potential (AP).

One cause of variability is the biophysical processes responsible
for the flow of ionic currents across the cellular membrane. Mul-
tiple proteins regulate the sarcolemmal flow of ionic species vital
for electrophysiological function, including sodium, calcium, and
potassium ions, and an alteration in the balance of these ionic
currents would give rise to differences in the AP. Crucially, these
currents are affected by processes such as protein expression
(Schulz et al., 2006), cell environment (Severi et al., 2009; Vincenti
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Fig. 1. Flowchart illustrating the process behind constructing an experimentally-
calibrated population of models (abbreviated as PoMs).
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et al., 2014), and circadian rhythms (Jeyaraj et al., 2012; Ko et al.,
2009). Therefore, even for a specific cell, the balance of ionic cur-
rents will change in time or under drug action and following the
onset of disease.

Physiological variability has significant implications for treating
and managing heart diseases. For instance, drugs that are designed
to have anti-arrhythmic properties in a diseased tissue, at certain
heart rates, and with a particular acid-base balance, can become
pro-arrhythmic at different heart rates or in less diseased tissue
(Savelieva and Camm, 2008). Likewise, susceptibility to patholog-
ical conditions such as arrhythmias can also differ from individual
to individual or depending on the condition of the patient (Severi
et al., 2009; Vincenti et al., 2014). By studying variability, we can
explore and improve our understanding of the mechanisms that
lead to differences in outcomes when different individuals have the
same condition or are given the same treatment.

Physiological variability is difficult to investigate with experi-
mental methods alone (Carusi et al., 2012; Sarkar et al., 2012) due to
the need to average data to control experimental error. Recently, a
body of research (Britton et al., 2013; Groenendaal et al., 2015;
Sarkar et al., 2012) has shown the power of computer models for
investigations into the sources and modulators of biological vari-
ability. Specifically, populations of models e also referred to as
ensembles of models e have proven useful in investigations of
cardiac electrophysiological variability as reviewed by (Sarkar et al.,
2012). Recent studies have furthered the methodology by explicitly
incorporating experimental data into the construction of pop-
ulations of models, thus yielding experimentally-calibrated pop-
ulations of models (Britton et al., 2014, 2013; Muszkiewicz et al.,
2014; Passini et al., 2015; S�anchez et al., 2014; Zhou et al., 2013).

The main aim of this paper is to review recent insights into
variability in cardiac electrophysiology obtained through
experimentally-calibrated populations of models in a variety of cell
types and species. We discuss the ability of the experimentally-
calibrated population-of-models methodology to provide new in-
sights into sources and implications of variability in cardiac elec-
trophysiology in physiological and pathological conditions, and
following pharmacological interventions. The paper presents a
description of themethodology and its comparisonwith alternative
approaches for studying variability in cardiac electrophysiology,
including cell-specific modelling (Davies et al., 2012; Groenendaal
et al., 2015; Syed et al., 2005), sensitivity-analysis-based methods
(Pueyo et al., 2010; Romero et al., 2009; Sobie and Sarkar, 2011;
Sobie, 2009), and population-of-models methods without experi-
mental calibration (Cummins et al., 2014; Devenyi and Sobie, 2015;
Sarkar et al., 2012; Walmsley et al., 2013; Yang and Clancy, 2012).
We conclude with an outlook for the future, predicting the poten-
tial of new methodologies for patient-specific modelling beyond
the single virtual physiological human paradigm. This paper is part
of the special issue on Recent Developments in Biophysics & Mo-
lecular Biology of Heart Rhythm.

2. Description of the experimentally-calibrated population-
of-models methodology

Fig. 1 illustrates the process of developing and analysing an
experimentally-calibrated population of models, described in more
detail in the following sections.

2.1. The research question and the baseline model of cellular
electrophysiology

The research question (and corresponding hypotheses) will
inform both the choice of experimental data and the modelling
process. These will be the two corner stones for the construction of
the experimentally-calibrated population of models. A common
assumption is that inter-individual variability affects electrophysi-
ology at the level of ionic current properties (such as the ionic
current conductances, time constants of channels opening/closing,
and other parameters characterising the currents), and not at the
level of ion channel structure (which is represented in the models
through equations describing each modelled channel's transitions
between gating states) (Britton et al., 2013; Groenendaal et al.,
2015; Sarkar et al., 2012). Therefore, at the initial stage of model-
ling, one selects an appropriate cardiac cell model whose model
equations are used as a ‘scaffold’, whilst the baseline model pa-
rameters are varied to represent variability in ionic current
properties.

Aside from the research question, additional factors that may
play a critical role in selecting the baseline model to use as the
scaffold are model complexity and unique model characteristics,
particularly if multiple models of a particular cell type exist. For
instance, there are six published biophysically-detailed models of
human atrial electrophysiology (Colman et al., 2013; Courtemanche
et al., 1998; Grandi et al., 2011; Koivum€aki et al., 2011; Maleckar
et al., 2009; Nygren et al., 1998). The Colman et al., Courtemanche
et al. and Grandi et al. models produce a spike-and-dome AP;
however, the latter model includes a formulation for chloride cur-
rent that is missing in the former. In comparison, the models of
Nygren et al., Maleckar et al. and Koivum€aki et al. generate more
triangular APs. At the same time, the Maleckar et al. model is the
only one able to incorporate the effects of vagal stimulation on the
AP due to the inclusion of acetylcholine-activated potassium cur-
rent, while the Koivum€aki et al. model contains a much more
detailed description of the intracellular calcium transient compared
to the remaining models. The assumptions made in a particular
study, together with key features of experimental data to be
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modelled, will determine the relative importance of the model-
specific properties for answering the research question (for
instance, do experimental APs display a spike-and-dome
morphology? How finely-detailed does the calcium subsystem
need to be?).

2.2. Generating the population of candidate models

Populations of models extend cardiac modelling beyond the use
of a single model that represents the average or typical behaviour of
that cell type and species, to an ensemble of models with different
values of underlying parameters and differing behaviours of model
outputs. The choice of parameters to vary is therefore a significant
part of designing a population of models.

A parameter should only be varied if an argument, based on the
aims of the study, can be made as to why it should be varied. While
many parameters within a model of a biological systemwill exhibit
variability in experiments, different biological parameters vary
through different mechanisms. For example, both ionic current
conductances and kinetics can vary between individuals; however,
conductances vary primarily due to variation in the number of ion
channels in the cell membrane, while kinetics vary primarily due to
changes in channel structure. Genetic mutations that alter channel
kinetics and functionality are generally considered pathological,
and differentiate individuals from the range of the population that
is considered as healthy. Therefore, a population created by varying
channel kinetics would have a different biological interpretation
from a population created by varying conductances alone.

After determining the parameters that will be varied for the
population of candidate models, the next choice is to determine the
range over which to sample parameter values. Ranges for param-
eter sampling should be chosen according to the hypothesis of a
particular study and the assumptions made about what the resul-
tant population will represent. Wider parameter ranges allow for
more extreme parameter values and therefore more extreme
model behaviours. For ionic current conductances, expanding the
range towards large values could represent increased expression or
activity of that current, as might occur in compensation for block of
another current (Marder and Taylor, 2011), or due to beta-
adrenergic stimulation (Heijman et al., 2013). Expanding the
range towards zero could represent decreased expression of an ion
channel, but very low values could also represent mutations that
cause loss-of-function of a channel (Rosati andMcKinnon, 2004), or
diseases that impair channel function (Borlak and Thum, 2003;
Farid et al., 2011).

A common step in modelling studies to date is to assume that
ionic current conductances vary significantly between individuals
and constitute the major determinant behind physiological vari-
ability (Britton et al., 2013; Groenendaal et al., 2015; Sarkar et al.,
2012). For modelling of non-diseased, healthy cardiomyocytes,
the results of previous modelling studies (Corrias et al., 2011;
Romero et al., 2009) suggest that a variation of approximately
±30% in conductance values (from the value of the parameter in the
baseline model) might be a moderate estimate on the level of
variability, while ±50% would allow substantial variability. For
studies that are interested in extreme behaviours, particularly
including conditions where one or more types of ion channel may
be almost completely inhibited or not present in the cell, ±100%
variation in ionic current conductances could be used (Britton et al.,
2013).

Once the range of parameter variation has been established, the
next step in the experimentally-calibrated population-of-models
method is to generate a large number of parameter sets for the pool
of candidate models, sampled from a high-dimensional parameter
space. Sampling every possible combination of parameter values is
computationally infeasible given the complexity of most cardiac
cell models. Most studies of experimentally-calibrated populations
of models in cardiac electrophysiology (Britton et al., 2014, 2013;
Muszkiewicz et al., 2014; Passini et al., 2015; Zhou et al., 2013)
used Latin Hypercube sampling (Burrage et al., 2015; McKay et al.,
1979), a parameter sampling method that does not scale the
computational cost with the number of varied parameters, allow-
ing for an exploration of a complex parameter space.

Different techniques could be used to construct an
experimentally-calibrated population of models, and an important
question is how effective the present methodology is in yielding an
ensemble of models that captures the desired features of experi-
mental data. An argument can be made that Latin Hypercube
sampling is a crude mechanism for exploring a high-dimensional
parameter space and other statistical techniques may be more
effective. Alternative approaches such as Approximate Bayesian
Computation (ABC) could indeed be considered to perform
Bayesian statistical inference for models that do not possess a
computationally tractable likelihood function (Beaumont et al.,
2002). ABC algorithms search the parameter space until they find
a certain number of parameters generating simulated data that are
close to the observed experimental data with respect to some
summary statistics. In this manner, the ABC identifies a compact
region in the parameter space that produces simulated data from a
statistical model that is as close as possible to the observed data.
Conversely, experimentally-calibrated populations of models can
cover a wide region of the parameter space with all models treated
equally likely. Whereas ABC can be considered statistically stronger,
it may be less effective in identifying outliers than the
experimentally-calibrated population-of-models approach. For
specific research questions, capturing outliers is crucial, especially
when we aim to identify unlikely abnormalities in cardiac function
such as cardiac arrhythmias.

2.3. Simulation and calibration of the candidate population of
models

The population of candidate models generated in the previous
step is now simulated and calibrated, to select the models whose
simulated electrophysiological properties are in range with the
same properties in experimental data. This step yields the
experimentally-calibrated population of models. It is crucial that
the simulations mimic the experimental conditions and protocols
as closely as possible, considering important aspects such as ionic
concentrations in the bath, stimulation amplitude and stimulation
frequency as well as any drugs used in the experiments.

Calibration criteria naturally differ from study to study,
depending on the experimental data available. In some studies,
experimental data characterising only the AP properties of car-
diomyocytes are provided, while other studies use additional in-
formation on the intracellular calcium transient (Passini et al.,
2015), and ionic current densities obtained from voltage clamp
recordings. Fig. 2 illustrates some of the AP properties that may be
used in the calibration process. Table 1 provides a summary of the
AP properties and ranges used in different studies, emphasizing
consistent variability in the AP across multiple species and sample/
tissue types.

In the experimentally-calibrated population-of-models studies
to date (Britton et al., 2014, 2013; Muszkiewicz et al., 2014; Passini
et al., 2015; S�anchez et al., 2014; Zhou et al., 2013), the
experimentally-permitted range of values for model outputs are
determined by calculating the minimum and maximum values
obtained from experimental measurements. Extreme outliers are
often discarded to exclude potential abnormalities due to damaged
preparation or dislodged microelectrode impalement. For smaller



Fig. 2. Action potential (AP) trace with some of the typical AP properties utilized in the
calibration process. Acronyms: APDxx e action potential duration at xx% repolariza-
tion, RMP e resting membrane potential, APA e action potential amplitude.

Table 1
Variability in physiological properties across species, experiment type, tissue/cell type, investigated electrophysiological properties, measurement frequencies (for AP mea-
surement only). Minimum and maximum values of APD90 at 1 Hz are used as illustration of variability. Acronyms: APDxx e action potential duration at xx% repolarization,
RMPe resting membrane potential, APAe action potential amplitude, dV/dtMEAN and dV/dtMAXemean andmaximum slope of the AP upstroke, respectively, V20e voltage
measured at 20% of APD90 time, ARI e activation-recovery interval.

Species Experiment type Tissue/cell type and cell number Properties investigated Frequencies at which
experiments performed
(for AP measurements
only)

APD90 at 1 Hz
(unless otherwise
specified)

Reference

Min
(ms)

Max
(ms)

Human Whole-cell patch-clamp Isolated atrial cardiomyocytes
(n ¼ 29 cells)

APD20, APD50, APD90,
RMP, APA

0.25, 0.5, 1, 2, 3 Hz 63.4 131.6 (Liu et al.,
2013;
Muszkiewicz
et al., 2014)

Human Micro-electrode recordings Atrial trabeculae from patients in
sinus rhythm (n ¼ 254 preparations
from 214 patients)

APD20, APD50, APD90,
RMP, APA, V20, dV/dtMAX

1 Hz 193 467 (S�anchez et al.,
2014)

Human Micro-electrode recordings Atrial trabeculae from patients with
chronic atrial fibrillation (n ¼ 215
preparations from 149 patients)

APD20, APD50, APD90,
RMP, APA, V20, dV/dtMAX

1 Hz 141 349 (S�anchez et al.,
2014)

Human Whole-cell patch-clamp Isolated ventricular non-diseased
cardiomyocytes (n ¼ 25 cells)

APD20, APD50, APD90,
RMP, APA, dV/dtMEAN

0.2, 0.5, 1 Hz 105 687 (Coppini et al.,
2013; Passini
et al., 2015)

Human Whole-cell patch-clamp Isolated ventricular hypertrophic
cardiomyopathy cardiomyocytes
(n ¼ 80 cells)

APD20, APD50, APD90,
RMP, APA, dV/dtMEAN

0.2, 0.5, 1 Hz 238 997 (Coppini et al.,
2013; Passini
et al., 2015)

Human Micro-electrode recordings Human right ventricular non-
diseased papillary and trabeculae
samples (n ¼ 62 preparations from
38 hearts)

Peak voltage, Time of peak
voltage, APD40, APD50,
APD90, Triangulation 90
e40, RMP

1 Hz 178 442 (Britton et al.,
2014)

Human In vivo epicardial sock In vivo electrograms (240 sites in
n ¼ 41 patients)

ARI (as surrogate of APD90) 1.67, 1.82, 2, 2.22, 2.5,
2.86 Hz

149 (at
1.67 Hz)

391 (at
1.67 Hz)

(Zhou et al.,
2013; Zhou
et al., 2015)

Rabbit Micro-electrode recordings Isolated rabbit Purkinje fibres
(n ¼ 12 preparations)

APD90, RMP, Peak voltage,
dV/dtMAX, Plateau Duration,
Peak Dome

0.2, 1, 2 Hz 188 342 (Britton et al.,
2013)

Rabbit Isolated ventricular myocytes, left
ventricular tissue preparations,
and Langendorff-perfused hearts

13 data sources, as identified in
systematic literature review

APD90, APD50 1, 1.667, 2.5 Hz 167 230 (Gemmell
et al., 2014)
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datasets, this must be done using intuition and experience, as with
few data points it is difficult to judge the boundary at which
reasonable experimental variation ends. Larger datasets would
offer a possibility of refining the way experimentally-permitted
calibration criteria are determined. For example, (Prinz et al.,
2004) used limits of 2 standard deviations from the mean to set
ranges on their calibration criteria for constructing populations of
neuronal models. Another approach for refining the calibration step
may involve the simultaneous use of different calibration criteria
derived from multiple experimental sources (e.g. combining AP-
level information with measurements of calcium transient or in-
dividual ionic currents, as our most recent work is now exploring
(Passini et al., 2015)). Hard limits on model acceptance could be
replaced as well by more flexible bounds or likelihood estimators.
This would allow analysing the impact of data scarcity, or the
matching of specific biomarker distributions, on the predictions
generated from different calibrated populations. These aspects of
course depend on the availability of sufficiently large experimental
datasets, essential for the intended use of the resulting population
(to capture the broadest range of possible physiological variability,
and in particular outlying phenotypic variants, versus replicating
specific or average cell behaviours).
2.4. Analysis of the experimentally-calibrated population of models
Analysis of the experimentally-calibrated population presents a
number of challenges that differ from those posed by analysis of a
single model. Under this methodology, there is no favoured
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parameter set; instead, all parameter sets within the
experimentally-calibrated population are equally valid as all pro-
duce output that is consistent with the range seen in experimental
data. Additionally, the underlying distribution of varied parameters
in the population is determined by the calibration criteria applied
to the model outputs. Experimental data for the distributions or
ranges of the underlying parameters are usually unavailable and so
the parameter distributions underpinning the experimentally-
calibrated population reflect the selectivity of the calibration
criteria and experimental data used, rather than direct experi-
mental measurements of the parameter distributions.

A first step for understanding the properties of the
experimentally-calibrated population is visualisation of the un-
derlying parameters and model outputs. Useful tools are scatter
plots (Fig. 3A), to examine correlations between pairs of variables
such as ionic conductances; as well as histograms and boxplots, to
Fig. 3. Visualizations helpful for understanding the properties of the experimentally-
calibrated population of models include scatter plots and histograms summarising the
population's properties without assuming a particular probability distribution for the
simulated data. (A) Scatter plots of ionic properties underpinning the experimentally-
calibrated population in (Britton et al., 2013), with the scale in all graphs including
±100% variation with respect to the baseline model value. (B) Histograms illustrating
the distribution of the AP properties across the experimentally-calibrated population
of non-diseased human ventricular myocytes in (Passini et al., 2015). Histograms show
the number of models for each of the bins. Black lines indicate the experimental range
used to calibrate the population for each AP property.
summarise the distributions of parameters and model outputs
without assuming a particular probability distribution for the
simulated data (Fig. 3B). Direct visualisation of the high-
dimensional parameter and model output spaces is difficult.
However, machine learning techniques such as principal compo-
nent analysis can be used to identify covariance between multiple
variables, while other techniques such as clutter-based dimension
reordering (Gemmell et al., 2014; LeBlanc et al., 1990; Peng, 2005;
Peng et al., 2004; Taylor et al., 2006) are available to represent
high-dimensional data in a single image.

It should be noted that the number of models in the
experimentally-calibrated population is usually larger than the
number of experiments used to calibrate the population, as well as
the number of experiments used to validatemodel predictions. This
is because the aim of the virtual population is to capture as much of
the experimental range of variability seen across the dataset as
possible, and to explore a large number of possible variant models
consistent with experiment.

3. Novel insights from experimentally-calibrated population-
of-models studies to date

Once a population's basic properties have been analysed, the
population is often simulated in conditions beyond those that were
used to develop it, and the results used as predictions of the pop-
ulation, or to generate new hypotheses. A traditional single model's
prediction would either be treated as a qualitative one (e.g.
whether the AP duration (APD) increases, decreases, or stays the
same following the application of a drug), or tested to see whether
it was close to the mean value from experiment (by comparing to
the standard deviation of the experimental data). In contrast, an
experimentally-calibrated population of models can be used to
generate quantitative predictions of the range of effects expected in
a given intervention that are directly comparable to experimental
data. A prediction on the range of effects can be more informative
than a prediction of the average behaviour in cases where outlier
responses are important (for instance in safety pharmacology).

In some studies, the focus is not on understanding the mecha-
nisms behind purely quantitative changes such as APD prolonga-
tion due to drug application. Instead, different cell groups may
show qualitatively different responses to the same intervention. For
example, the same drug may trigger abnormal repolarizations in
cardiomyocytes from one individual, while cells from another
subject will repolarize normally. In this case, the aim of the analysis
is to identify sub-populations of models within the experimentally-
calibrated population that display the behaviour of particular in-
terest, and determine whether any combinations of parameters can
be used to distinguish this sub-population from the remaining
models. Differences identified in this manner can then be used to
inform new hypotheses regarding the plausible mechanisms
causing a particular behaviour to occur. Standard methods for
single model analysis can be used on exemplar models within the
sub-population to provide evidence for whether a proposed
mechanism is responsible for the observed behaviour. Themethods
that could be used here include detailed analysis of state variables,
to establish cause-and-effect in the model; as well as bifurcation
analysis, to analyse the different dynamical states a particular
model can occupy.

3.1. Variability under physiological conditions

To capture as much variability as possible, populations of
candidate models can be calibrated with data from a wide range of
sources, for instance using the existing experimental literature to
define a range of values for the properties characterising the AP.
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This is well-illustrated with the experimentally-calibrated popu-
lation of rabbit ventricular myocyte models constructed in
(Gemmell et al., 2014), where a literature search identified 13
different sources of AP data and was sufficient to establish a
physiological range for APD90, a commonly-reported AP property
(Table 1). Less commonly-reported properties, such as APD50,
required a different approach: in this case, the literature was used
to calculate mean APD50, but its physiological range of values was
estimated on the assumption that its percentage variation from the
mean was identical to that for APD90.

In this way, the population of rabbit ventricular models was
calibrated with experimental data from multiple sources, and
encompassed variation observed across a variety of experimental
samples. Conclusions drawn from such a population are not specific
to a particular experiment or a narrowgroup of cells. Instead, such a
population inherently incorporates determinants and modulators
of variability that are both intrinsic and extrinsic to the experi-
mental preparations (for instance, ionic current properties versus
differing ionic concentrations in the bath due to modifications in
experimental protocol). Analysis of the experimentally-calibrated
population by Gemmel et al. revealed interesting correlations be-
tween the underpinning ionic current properties. For example, the
experimentally-calibrated population based on the (Shannon et al.,
2004) model of rabbit ventricular electrophysiology tended to
require reductions in the conductances of ICaL and IK1 (with respect
to the baseline model), and while the population overall covered an
even range of values for conductances of INaK and IKr, these two
parameters were correlated, with an increase in INaK corresponding
to an increase in IKr.

At the other end of the spectrum, the experimentally-calibrated
population-of-models approach has also been used to construct
models mimicking the behaviour of cells extracted from a narrow
patient group. This is illustrated by (Muszkiewicz et al., 2014), who
used a rich experimental dataset consisting of AP recordings of
human atrial myocytes obtained from right atrial appendages of
elderly male patients, all of whom were in sinus rhythm and un-
dergoing a common clinical procedure in the same geographical
location (Liu et al., 2013). The AP properties elicited from these cells
were quite distinct from those generated by the baseline models of
human atrial electrophysiology published in the literature, with
APD90 spanning 63e143 ms (Table 1), compared to the conven-
tional model values between 197 and 330 ms (Colman et al., 2013;
Wilhelms et al., 2012).

Muszkiewicz et al. constructed a population of models that
mimicked the range of variability exhibited by the AP properties
pertaining to this narrow cell group, and investigated the relative
impact of the sources of variability intrinsic and extrinsic to the cell
on AP generation (Muszkiewicz et al., 2014). Specifically, variation
in ionic current conductances constituted an intrinsic source of
variability, while stimulation amplitude and ionic concentrations
comprised extrinsic variability. The authors showed that variability
in the early repolarization stage in the models was highly influ-
enced by the stimulus strength, whereas that in resting membrane
potential was critically dependent on ionic concentrations. Simul-
taneously, intrinsic variability represented by the variation in ionic
current conductances was key to capturing the range of APD90
values observed in experiments. These findings suggest that, to
construct a population of models mimicking a narrow cell group,
one may need to consider variability in extrinsic factors in addition
to variability in ionic current properties. In turn, this may have
important implications for understanding the propensity of
different patient subgroups to disease conditions.
3.2. Variability under pathological conditions

Experimentally-calibrated populations of models can be useful
to better understand the ionic mechanisms underlying particular
cardiovascular diseases. As an example, atrial fibrillation (AF) is the
most commonly diagnosed cardiac arrhythmia, but mechanisms of
its generation and maintenance are still a matter of debate.
Furthermore, phenotypic variability in human atrial electrophysi-
ology in AF is large, overlapping in many cases with that of healthy
subjects in sinus rhythm used as control (Table 1). In a recent study,
populations of models were calibrated with experimental datasets
from over 450 cell samples extracted from patients in sinus rhythm
and AF, in order to investigate the ionic mechanisms underlying
inter-subject variability in human atrial AP properties between AF
and control cells (S�anchez et al., 2014). Despite intrinsic differences
between the populations representing control and AF scenarios
(Fig. 4A), both have shown similar mechanisms underlying vari-
ability in different stages of the AP: ICaL, Ito and IKur were found to be
key in modulating inter-subject differences in early repolarization,
whereas IK1 and INaK determine cell-specific values of APD90. These
findings may help in understanding inter-subject differences in
human atrial dynamics and the response to anti-AF pharmacolog-
ical therapies.

The experimentally-calibrated population-of-models approach
has also been used to investigate hypertrophic cardiomyopathy
(HCM) (Passini et al., 2015), a cardiac genetic disease characterised
by an increased arrhythmic risk and still lacking a specific phar-
macological treatment. Based on human experimental data
((Coppini et al., 2013); Table 1), two populations of models were
constructed representing both control and HCM cardiomyocytes
(Fig. 4B). The electrical remodelling induced by HCM was subse-
quently investigated by analysing the different ionic currents and
Ca2þ subsystem changes, and the electrophysiological phenotype of
the disease successfully reproduced in the population of human
ventricular HCM cells. Consistent with experimental findings, the
study identified three distinct sub-populations within the
experimentally-calibrated population of HCM models, including
models displaying a single or multiple EADs as well as models
failing to repolarize (Fig. 5A). Pro-arrhythmic mechanisms within
these sub-populations were subsequently investigated by analysing
their underpinning ionic current conductances (Fig. 5B). In this
way, common ionic mechanisms contributing to EADs generation
were identified, thus suggesting potential therapeutic targets in
human HCM. Based on these findings, selective and multi-channel
current blocks were tested in simulations, giving new insights
about potential anti-arrhythmic drugs for the pharmacological
management of the disease, which may be able to suppress repo-
larisation abnormalities, as well as reverse the HCM phenotype.
Overall, these findings illustrate the power of the experimentally-
calibrated population-of-models approach to predict and explain
disease phenotype, provide the means for a quantitative compari-
son between experimental and simulation data, and investigate
potential disease therapies.

Zhou et al. (Zhou et al., 2013, 2015) also applied the
experimentally-calibrated population-of-models approach to study
mechanisms underpinning cardiac alternans, which are stable
beat-to-beat fluctuations between subsequent APs elicited from the
same cell. While cardiac alternans have an unequivocal connection
to arrhythmia onset (Rosenbaum et al., 1994), most investigations
of alternans to date were based on animal experiments, providing
the need for a human-focused study to avoid inter-species differ-
ences in electrophysiology. To investigate the mechanisms under-
lying alternans generation in human cardiomyocytes in vivo, a
population of human ventricular cell models was generated to
include the effect of natural variability in ionic current



Fig. 4. Experimentally-calibrated populations of models applied to investigations of physiological variability in (A) atrial fibrillation, (B) hypertrophic cardiomyopathy, and (C) under
drug action. (A) AP traces of experimentally-calibrated populations of models mimicking control (top) and diseased cells (bottom), including histograms of APD90 in simulated
(blue) and experimental data (red), modified from (S�anchez et al., 2014)). (B) AP traces (left) and intracellular calcium transients (right) in experimentally-calibrated populations of
models mimicking control (blue) and diseased cells (pink); white and black traces illustrate the output of the baseline model in the absence and presence of HCM-induced electrical
remodelling. Reproduced from (Passini et al., 2015)). (C) Ranges of APD prolongation (DAPD) caused by four concentrations of potassium current blocker dofetilide in the models
comprising the experimentally-calibrated population in (Britton et al., 2013); dots indicate values of DAPD obtained independently in five experiments using rabbit Purkinje fibre
preparations. Reproduced from (Britton et al., 2013).
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conductances. Activation recovery intervals (ARIs) were calculated
from in vivo electrograms obtained using epicardial socks (Nash
et al., 2006; Taggart et al., 2014) from 41 patients undergoing cor-
onary cardiac surgery. The ARIs were used as in vivo surrogate of
APD90 during the calibration process (Table 1) to select the ven-
tricular cell models exhibiting physiological APD ranges at six
different pacing rates (Zhou et al., 2013, 2015). The in silico popu-
lation of human ventricular cell models successfully reproduced
the frequency dependence of repolarization alternans as observed
in the in vivo recordings. Further analysis of the human alternans
models revealed the key role of fluctuations in the sarcoplasmic
reticulum calcium content in the initiation of alternans, regardless
of differences in ionic currents. The sodium calcium exchanger
functioned as the main translator between calcium fluctuation and
APD alternans, and its modulation was shown to be an effective
anti-arrhythmic strategy for the management of cardiac alternans.

3.3. Variability in response to drug action

Ensembles of models were used to investigate the role of vari-
ability in modulation of repolarization reserve and response to
ionic channel block (Cummins et al., 2014; Devenyi and Sobie, 2015;
Sarkar et al., 2012; Sobie and Sarkar, 2011; Sobie, 2009). Britton
et al. (2013) proposed the methodology to construct and calibrate



Fig. 5. Experimentally-calibrated population of human HCM models consists of three sub-populations, including models with a single EAD, multiple EADs, and repolarization
failure. (A) Representative experimental (top) and simulated (bottom) HCM action potential traces, showing the three types of repolarization abnormalities. (B) Normalized dis-
tributions of ionic properties for the 11 ionic current conductances varied within the population, for models displaying normal AP (n ¼ 8366), single EADs (n ¼ 480), multiple EADs
(n ¼ 201), and repolarization failure (RF, n ¼ 71). In each box, the central line represents the median, the box limits correspond to the 25th and 75th percentiles, the whiskers extend
to the most extreme data points not considered as outliers, while the outliers are depicted individually as crosses. Reproduced from (Passini et al., 2015).
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a population of models using experimental data, and then evaluate
predictions of this experimentally-calibrated population following
drug block. Specifically, (Britton et al., 2013) built a population of
models mimicking variability in the AP properties of isolated rabbit
Purkinje fibres under control conditions (Table 1), and used the
resultant population to investigate the effect of four concentrations
of dofetilide, a selective IKr blocker, on rabbit ventricular AP. The
ranges of APD prolongation predicted by the populationwere found
to be in agreement with blinded experimental results that were not
used to construct the population (Fig. 4C). This demonstrates the
ability of the population-of-models methodology to make quanti-
tative predictions that can be compared directly to experimental
results, and to connect drug effects to specific ionic mechanisms.
Additionally, this achievement illustrates the inherent potential of
the methodology to meet the industry needs for safety pharma-
cology testing, as for the replacement, refinement and reduction
(3Rs) of existing animal assays in this industrial sector.

In addition to APD prolongation due to potassium channel
blocker, the experimentally-calibrated population-of-models
approach has also been used to study pro-arrhythmic effects of
drugs (Britton et al., 2014). In some circumstances, drug application
can lead to the development of abnormalities in repolarisation at
the cellular level, including EADs (Lu et al., 2002; Savelieva and
Camm, 2008). Therefore, (Britton et al., 2014) used an
experimentally-calibrated population to investigate the relative
importance of sarcolemmal currents in determining the suscepti-
bility of human ventricular cardiomyocytes to drug-induced repo-
larisation abnormalities for specific and multiple ionic current
blocks. Every model within the experimentally-calibrated popula-
tion produced action potentials consistent with normal pacing
under control conditions; however, the response to inhibition of
the repolarising currents IKr, IKs and IK1, along with ICaL, widely
accepted as a key mechanism of EAD generation (January and
Riddle, 1989), was highly heterogeneous across the population.
The conductances of ICaL and INaK were identified as crucial for
determining whether a given model developed drug-induced
repolarisation abnormalities across a wide range of repolarising
current block levels. Specifically, moderate to high ICaL and very low
values of INaK were present in models that were identified as highly
susceptible to repolarization abnormalities or repolarization
failure.
4. Discussion

In this paper, we have analysed the scientific considerations
behind the construction of experimentally-calibrated populations
of models as a novel conceptual framework for investigating the
impact of variability on cardiac electrophysiology. The utility of
such an approach is further exemplified through a detailed review
of different studies employing this methodology, to investigate
variability in cardiac function in both healthy and pathological
conditions and under drug action. The methodology is also
compared to alternative approaches for studying variability,
including the sensitivity analysis and cell-specific modelling
methods.

The experimentally-calibrated population-of-models approach
merges models, simulations and experiments into a tightly inter-
connected system (Carusi et al., 2012) that can be used to generate
new insights and hypotheses concerning variability observed in a
particular experimental dataset, as illustrated in Fig.1. In turn, these
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insights can be fine-tuned and tested via additional experiments
and refinedmodels, deepening our understanding of variability and
its impact on cardiac electrophysiology. In this way, experimen-
talists and modellers work closely with each other, resulting in a
modelling approach that is more responsive to experimentalists'
concerns, and more likely to generate hypotheses that can be
experimentally tested (Carusi, 2014; Quinn and Kohl, 2013, 2011).
Therefore, in the population-of-models approach, models are
regarded as tools to probe variability in cardiac electrophysiology
(Boon and Knuuttila, 2009; Carusi et al., 2012).

4.1. Importance of variability in biology and medicine

Understanding inter-subject and intra-subject variability in
physiological and pathological function is one of the biggest chal-
lenges in biology and medicine.

Sex and age differences have been identified as important de-
terminants of inter-subject variability (Abi-Gerges et al., 2006,
2004; Gaborit et al., 2010; Ganjehei et al., 2011; Herraiz-Martínez
et al., 2015; Sims et al., 2008; Villareal et al., 2001). For instance,
(Abi-Gerges et al., 2006, 2004) discussed differences in cardiac
electrophysiology and inducibility of ventricular arrhythmias be-
tween females and males, while (Rosano et al., 1996) showed that
susceptibility to paroxysmal supraventricular tachycardia in
women varies with changes in hormonal levels during menstrual
cycle. Additionally, (Sims et al., 2008) demonstrated that sex, age,
and regional differences in expression of ICaL ionic current are de-
terminants of arrhythmia phenotype in rabbit with drug-induced
long QT syndrome, while (Herraiz-Martínez et al., 2015) demon-
strated that the amplitude of intracellular calcium transient in atrial
cardiomyocytes decreased with age.

Intra-subject variability in electrophysiology manifests itself as
spatial heterogeneities (including differences in repolarization
from different regions of the heart, see for instance (Bueno-Orovio
et al., 2012)). This variability within the same individual can also be
modulated temporarily by, for example, heterogeneous nervous
innervation or circadian rhythms. In mice, circadian rhythms were
found to alter protein expression of an important Ito subunit by
approximately ±40% from the midpoint over a 24 h cycle (Jeyaraj
et al., 2012). Beat-to-beat variability in the AP is another manifes-
tation of temporal variability, and processes such as alternans and
the stochastic nature of ion channel dynamics have been implicated
(Heijman et al., 2013; Pueyo et al., 2011; Walmsley et al., 2015).

Besides, physiological variability in humans is expected to be
larger than in animal models, given the controlled homogeneity of
certain animal lines used in research juxtaposed with the highly
heterogeneous nature of any human population (in terms of life-
style, age, and genetics). This advocates studies into (i) the sources
andmodulators of physiological variability in humans, as well as (ii)
the implications of this variability in disease and treatment. A
significant portion of further studies using the population-of-
models approach can be aimed at characterising variability in
specific subgroups of human patients based on age and sex (as in
(Yang and Clancy, 2012)), as well as the determinants of spatio-
temporal intra-subject variability.

4.2. Ionic determinants of variability in cardiac electrophysiology

A central assumption in modelling studies of physiological
variability in cardiac electrophysiology is that the properties of
ionic currents, such as their conductances, are the main de-
terminants of variability. Multiple processes affecting transcription,
translation, degradation and circadian rhythms could impact ionic
current conductances and contribute to physiological variability in
ionic currents and the AP. Documented differences exist between
transcription rate and mRNA level, mRNA level and protein level,
and translation rate and protein level (see Fig. 1 in Shu and Hong-
Hui, 2004). For instance, mRNA expression of genes that code for
ion channel proteins is influenced by post-transcriptional regula-
tion and buffering through processes that translate mRNA to
functional ion channels (Nattel et al., 2010). Further, there is evi-
dence that mRNA expression can vary by large amounts, from
almost complete downregulation up to increases of at least four-
fold compared to baseline (Borlak and Thum, 2003) in the most
extreme cases of remodelling such as heart failure.

It is crucial to emphasise that the range of variation in ionic
current properties cannot be determined in experiments, as (i)
when elicited under standard laboratory protocols, the AP traces
alone do not carry enough information to pinpoint all ionic current
properties, and (ii) ionic currents can only be measured in voltage-
clamp experiments on isolated cardiomyocytes. The inherent lim-
itation of voltage-clamp protocol is its adverse impact on ion
channel density, known to be affected by the cell isolation pro-
cedures (Yue et al., 1996). Furthermore, if measurements of all ionic
current conductances in a specific preparation and at a particular
point in time could be possible, ionic conductances are subject to
continuous variation caused by extrinsic factors (S�anchez et al.,
2014) that include long-term drug effects (Xiao et al., 2008) and
circadian rhythms (Jeyaraj et al., 2012). The experimentally-
calibrated population-of-models methodology allows us to iden-
tify and probe key determinants of physiological variability at the
ionic level, and suggest a plausible range of their variation. In fact, a
study by (Weiss et al., 2012) showed the correspondence between
gene expression data and a population of computer models of the
mouse ventricular action potential, supporting the hypothesis that
biological systems are generally ‘sloppy’ (Gutenkunst et al., 2007),
i.e. tolerant to significant variations of many parameter
combinations.

At the level of single cells, physiological variability maymanifest
itself not only via differences in ionic current conductances and
kinetics, but through differences in other variables impacting ionic
current balance. For instance, inter-cellular variability in car-
diomyocyte volume and membrane capacitance has been linked to
patients' age (Polak and Fijorek, 2012). Variability in extracellular
and intracellular ionic concentrations has been shown to have an
effect on the AP-level properties such as the resting membrane
potential and APD90 (Muszkiewicz et al., 2014; Passini et al., 2014;
Vincenti et al., 2014).

4.3. Comparison of the experimentally-calibrated populations of
models with other approaches for studying variability

In addition to the experimentally-calibrated population-of-
models approach, three other frameworks for computational
studies of cell-to-cell physiological variability in cardiac electro-
physiology have been devised: the sensitivity-analysis method, the
population or ensemble-of-models framework without experi-
mental calibration, and cell-specific modelling approaches (Fig. 6).
Sensitivity-analysis-based methods explore the effect of variation
in model parameters on model outputs such as the action potential
or intracellular calcium transient. The parameters of interest are
varied around set values e usually the baseline model values e one
at a time. Univariate sensitivity analysis was used by Romero et al.
to investigate variability by varying one parameter at a time by
±15% and ±30% from its baseline value, and to explore the effect
this had on pre-clinical biomarkers of arrhythmic risk, including the
APD, in a human ventricular single-cell model (Romero et al., 2009).

In the absence of experimental calibration, the population-of-
models approach can be thought of as an extension of the
sensitivity-analysis framework, in that it permits multiple
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parameters to be varied simultaneously, and in the context of car-
diac electrophysiology, it was first used in a series of papers by
(Sobie and Sarkar, 2011; Sobie, 2009). There, multiple parameters
were varied simultaneously in models of ventricular cells, with
parameter values sampled from a log-normal distribution centred
on their baseline values. Then, the authors used regression analysis
to create simplified models relating changes in parameters
describing ionic currents to changes in cellular properties. Using
similar methods, Walmsley et al. investigated mRNA expression
levels on the cellular electrophysiological remodelling in failing
human hearts (Walmsley et al., 2013; Yang and Clancy, 2012) pro-
bed sex-based differences in human susceptibility to cardiac ven-
tricular tachyarrhythmias; and Cummins et al. compared rate-
dependent properties of 13 models of ventricular cells in the
context of drug action (Cummins et al., 2014). Most recently, the
methodology was used by (Devenyi and Sobie, 2015), who studied
regulation of calcium transient in rat cardiomyocytes via iterations
with experiments.

Both the sensitivity-analysis approach and the population-of-
models framework without experimental calibration are very
useful as tools to probe the relationships between ionic current
properties and cellular properties such as the AP. However, unlike
the experimentally-calibrated population-of-models methodology,
they do not incorporate a calibration step permitting one to
constrain models with experimental data. Therefore, they cannot
generate models representative of datasets extracted from various
patient or subject groups. This is important, as experimentally-
calibrated populations-of-models provide a framework to quanti-
tatively (rather than qualitatively) compare simulation and exper-
imental predictions (Fig. 5). Additionally, narrow ranges of
parameter variation combined with the absence of calibration
criteria mean that the sensitivity-analysis and ensemble-of-models
frameworks cannot be used to generate models whose predictions
are far from the baseline model value, while at the same time
mimicking the experimental recordings.

In cell-specific modelling approaches, the aim is to generate
biophysically-detailed models of specific cells used in experiments.
Syed et al. were the first to illustrate this approach by using a ge-
netic algorithm (Syed et al., 2005) to fit a biophysically-detailed
model of human atrial action potential to the AP trace generated
by different cell models, as well as by experimental data. Separately,
Davies et al. constructed 19 models of 19 dog ventricular mid-
myocardium myocytes. The models were fitted to the action po-
tential recordings in the early and late stages of cellular repolari-
zation under control conditions; a subsequent comparison of
model predictions to experimental observations of drug action
revealed that models had a prediction accuracy of over 80% (Davies
et al., 2012). Therefore, the approach proved useful; however, the
fact that the experimental AP traces used to constrain the models
were collected with standard laboratory protocols implies that the
uniqueness of parameter values in the resultant cell models cannot
be guaranteed. Improvements to the methodology were put for-
ward by Kaur et al. (2014) and Groenendaal et al. (2015). Kaur et al.
demonstrated that incorporating membrane resistance alongside
action potential measurements led to faster convergence in the
estimation of cell specific model parameters. Groenendaal et al.
developed a series of complex electrophysiology protocols
involving stochastic pacing of the cells in experiments, coupled
with the use of automated parameter optimization techniques, to
construct 4 specific models of 4 isolated guinea pig ventricular
myocytes. Cell-specific modelling could be a powerful approach to
address specific research questions, also in line with a tightly
interconnected model-simulation-experiment system. However,
the complexity of the protocols involved limits the number of cells
that can be investigated and modelled, and therefore it does not
provide the wide coverage of the parameter space of the
experimentally-calibrated populations of models.

4.4. Experimentally-calibrated population-of-models approach
beyond the heart

Experimentally-calibrated populations of models have also been
used in areas outside of cardiac electrophysiology. The approach
was originally pioneered byMarder et al. (see, for instance, (Marder
and Taylor, 2011; Prinz et al., 2004)) in neuroscience. In particular,
Prinz et al. constructed an experimentally-calibrated population
containing over 20 million models of a three-neuron network, with
varied synapse strengths and ionic current conductances (Prinz
et al., 2004). The authors subsequently used this population to
demonstrate that similar patterns of neuronal network activity can
arise from widely disparate sets of underlying mechanisms. In a
different study, Kispersky et al. investigated the impact of the so-
dium conductance values on the frequencyecurrent relationships
in neurons via an experimentally-calibrated population of neuronal
models. They found that increased sodium current conductance led
to higher neuronal firing rates for low input currents; however, for
large input currents an increase in sodium conductance lowered
the firing rate due to altered potassium current availability
(Kispersky et al., 2012). The experimentally-calibrated population-
of-models approach has also been used in the field of computa-
tional biomechanics by Sierra et al. (2015), who probed mechanical
properties of skeletal muscle. These studies demonstrate the uni-
versal applicability of the experimentally-calibrated population-of-
models approach for investigating variability.

5. Conclusions and future directions

Cardiac electrophysiology constitutes one of many scientific
disciplines that have historically been focused on understanding
the average properties of the system under investigation. However,
increasing evidence points towards the crucial role of inter-subject
and intra-subject differences in cardiac electrophysiological func-
tion, particularly in pathological conditions. Understanding this
physiological variability is one of the biggest challenges in biology
and medicine, and probing variability is difficult with experimental
methods alone. In recent years, different computational modelling
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frameworks have been devised to study physiological variability in
cardiac electrophysiology. One such framework uses
experimentally-calibrated populations of models, i.e. ensembles of
computational models constrained with experimental data, to
study causes and drivers of physiological variability under a variety
of conditions, including disease and drug action. To date, this
methodology has been used to investigate inter-subject and intra-
subject variability largely with experimentally-calibrated pop-
ulations of models of isolated cardiomyocytes.

Future work will involve extending the methodology to multi-
cellular simulations, taking the studies beyond the single-cell level,
as in S�anchez et al. (2013). This is especially important in patho-
logical conditions: while variability is generally reduced when cells
are coupled in tissue, disease states are known to cause cell-to-cell
uncoupling (for instance, reduction in the levels of connexin 43, a
membrane protein crucial for electrical communication between
cells, has been linked to arrhythmias (Poelzing and Rosenbaum,
2004; Poelzing et al., 2004)). Therefore, we need to understand
under what conditions physiological variability becomes
pathophysiologically-relevant in tissue and in the whole heart. This
review is part of the special issue on Recent Developments in
Biophysics and Molecular Biology of Heart Rhythm.

Editors' note

Please see also related communications in this issue by Clerx et
al. (2016) and Ravagli et al. (2016).
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