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Simple Summary: The immunopeptidome of cancer cells is a treasure trove of neoantigens bound to
MHC molecules, thus a great source for mining immunopeptides for immunotherapy applications,
including cancer vaccines. Immunopeptides may encompass post-translational modifications that
are overlooked by genomic and transcriptomic tools. We review post-translational modifications that
have been uncovered, and how this information could be harnessed for cancer vaccines.

Abstract: Although harnessing the immune system for cancer therapy has shown success, response
to immunotherapy has been limited. The immunopeptidome of cancer cells presents an opportunity
to discover novel antigens for immunotherapy applications. These neoantigens bind to MHC class I
and class II molecules. Remarkably, the immunopeptidome encompasses protein post-translation
modifications (PTMs) that may not be evident from genome or transcriptome profiling. A case in
point is citrullination, which has been demonstrated to induce a strong immune response. In this
review, we cover how the immunopeptidome, with a special focus on PTMs, can be utilized to
identify cancer-specific antigens for immunotherapeutic applications.
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1. Introduction

Identifying novel antigens in cancer is highly relevant for immunotherapeutic ap-
plications including chimeric antigen receptor (CAR)-T and NK cell, pulsed-dendritic
cell therapy, and therapeutic and preventative cancer vaccines [1]. Mass spectrometry
provides an important means for deciphering the immunopeptidome repertoire of tumor
cells [2]. Whereas much emphasis has been placed on mutations as a source of neoantigens,
the occurrence of specific mutations in peptides bound to the major histocompatibility
complex (MHC) is quite variable from patient to patient [3–5]. Thus, there is a need to
identify antigenic peptides that are commonly expressed in a cancer type that are presented
through MHC class I for activation of cytotoxic CD8+ T cells [6,7]. Moreover, there is
also an emerging interest in immune peptides bound to MHC class II that induce a B cell
response [8–10].

Since the early days of profiling the immunopeptidome using mass spectrometry
(MS) some three decades ago [11], there has been substantial improvement in the over-
all approach, including the application of machine learning [12–14]. The detection and
prediction of immunogenic peptides through genomic and transcriptomic data is chal-
lenging and overlooks protein aberrations that occur after transcription. These include
translational errors, post-translational modifications (PTMs) and peptide splicing that can
be uncovered through analysis of the immunopeptidome [15–17]. Remarkably, PTMs
have been discovered to induce immunogenicity more than their unmodified counterparts.
Prior studies by our group have identified citrullination as a source of immunogenicity
in cancer [18]. Other notable PTMs include phosphorylation, acetylation, deamination,
and glycosylation [19–22]. However, not all PTMs are stable and presented by MHC, given
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their enzymatic reversibility as in the case of acetylation [23]. This review covers how
interrogating the immunopeptidome can yield novel cancer-specific antigens, with an
emphasis on PTMs and their applications.

2. The Immunopeptidome as a Source of Different Types of Neoantigens

The immunoediting concept has been critical for our understanding of the mechanisms
through which the immune system responds to cancer and how tumor cells can evade
the immune response [24]. A key factor in the immune response is the recognition of
tumor antigens. T cells, through their TCRs, can interact with the myriad of peptides
bound to MHC, sorting out self from non-self. Non-canonical tumor antigens, derived
from sequences outside of exons or by alternate protein-processing mechanisms, are of
increasing interest for immunotherapy [25]. PTMs are mediated by multiple enzymes,
some of which may be dysregulated in tumor cells, rendering them potentially tumor
specific. Post-translationally modified proteins undergo processing through the proteasome,
resulting in peptides that bind to MHC-I for endogenous proteins or MHC-II for exogenous
proteins [26]. Dendritic cells (DCs) are antigen-presenting cells (APCs) in cancer that are
essential for T and B cell responses via immunopeptides and native protein presentation,
respectively [27,28]. PTMs that are restricted to tumor cells have potential as a source of
immunopeptides for immunotherapy.

3. Post-Translational Modifications as a Source of Tumor Antigens

Whereas a multitude of PTMs are known to occur, most have not been previously
investigated in cancer. Nanoscale liquid chromatography coupled mass spectrometry
(nanoLC-MS) has contributed significantly to the identification of PTMs in the immunopep-
tidome through matching the peptide parent mass (MS1) and the fragment mass (MS2)
to sequences in the human genome database, allowing for mass shift due to modified
amino acids (e.g., +0.984 Da on Arg) for citrullination; (+97.976 Da on Ser, Thr, and Tyr)
for phosphorylation; and (+203.079 Da on Ser and Thr) for O-GlcNAc. In this review,
we cover PTMs that have been identified in the immunopeptidome with demonstrated
immunogenicity in cancer (Figure 1).

3.1. Citrullination

Several studies have explored citrullination as a source of antigenicity in cancer [29–31].
Citrullination occurs on arginine residues and is enzymatically driven by peptidyl arginine
deiminases (PADI), which are dysregulated in multiple cancer types [18]. The dysregulated
citrullination pathway was initially linked to autoimmune diseases, mainly rheumatoid
arthritis. More recently, its role in cancer has attracted interest [31,32]. Citrullinated peptides
are principally presented by MHC-II, eliciting a CD4+ T cell and B cell response [10,33].
Citrullination in cancer cells occurs as a result of cellular stress, exemplified by autophagy,
nutrient starvation, and hypoxia [31,34–36], which induces PADI expression. The PADI
family consists of five members, with PADI2 and PADI4 being predominantly expressed in
cancer [37].

In a recent study, we found PADI2 to be highly expressed in several cancer types,
notably in triple-negative breast cancer (TNBC) [18]. PADI2 expression was correlated with
accumulation of citrullinated proteins and, with MHC-II-bound citrullinated peptides, and
with a B cell immune response. PADI2 is also overexpressed in HER2+ breast cancer, hepa-
tocellular carcinoma, esophageal cancer, gastric adenocarcinoma, and castration-resistant
prostate cancer [38–40]. PADI2 is variably expressed in colorectal cancer (CRC) [41,42]. It
is intriguing that low PADI2 expression seems to correlate with poor prognosis, possibly
due to a lack of immunogenic citrullinated peptides [41,43]. Overexpression of PADI2 in
skin tumors is associated with elevated inflammatory cell infiltration [31,44,45]. CRC with
high PADI2 and PADI4 expression is associated with increased overall survival [46]. PADI4
expression in benign tumors and non-tumor inflamed tissues was found to be restricted to
malignant tumors in gastric, liver, and ovarian cancers [47–51].
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Figure 1. Post-translationally modified peptide-based cancer vaccine workflow. The figure depicts
cancer cell antigen processing of intracellular and extracellular proteins, subsequently as peptides
bound to MHC-I or MHC-II. Some of the proteins have PTMs in their structure, which are sketched
in colors (citrullination: red; phosphorylation: blue; glycosylation: green) as well as in MHC-
bound peptides. The MHC-bound peptides are identified by means of liquid chromatography-mass
spectrometry (LC/MS), to derive the cancer cell immunopeptidome. From the immunopeptidome
data, peptides with PTMs can be selected as antigens for cancer vaccines.

Citrullination has been investigated in relation to tumor biology and metastasis and
as a source of cancer biomarkers [31]. For applications to immunotherapy usage, some
citrullinated proteins have been tested as antigen candidates for therapeutic cancer vaccines.
Among several hundred citrullinated proteins [52], α-enolase (ENO1), vimentin (VIM),
nucleophosmin (NPM1), matrix metalloproteinase-21 (MMP21), cytochrome p450 (Cp450),
and glutamate receptor ionotropic (GRI) citrullinated peptides have been selected for
immunization for melanoma, lung, pancreas, and ovarian cancers [29,30,33,53–55].

3.2. Phosphorylation

The majority of phosphorylation research in cancer is focused on signaling path-
ways [56]. However, there is interest in phosphorylation as a neoantigen target. The most
abundant of the enzymatically modified cancer proteins are represented by phosphopro-
teins, resulting from dysregulation of kinase-mediated signaling pathways triggering the
synthesis of cancer-associated phosphopeptides [57]. Importantly, MHC-I and MHC-II
present these phosphorylated peptides in cancer cells [58–60]. Moreover, there are reports
of tumor-specific phosphorylated peptides stimulating CD8 and CD4 T cells and even
phosphopeptide-specific T cells in cancer [61–63]. There is also evidence of a B cell response
against phosphorylated proteins [64]. These findings elicit interest in phosphopeptides as a
source of cancer antigens [65,66].

Two phosphopeptides are currently being tested in melanoma patients, one derived
from the insulin receptor substrate 2 (IRS2) and the other from breast cancer antiestrogen
resistance 3 (BCAR3) (NCT01846143). In CRC, 120 phosphopeptides were identified,
some of which were tumor restricted. TILs from CRC patients recognized three of the
identified phosphopeptides from IRS2, tensin 3 (TNS3), and selenoprotein H (SELH) [67].
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Other phosphopeptides with potential utility as immunotherapeutic targets are derived
from beta-catenin and CDC25b [58,62]. Approaches to enrich for phosphopeptides in the
immunopeptidome include the use of immobilized metal affinity chromatography and
titanium dioxide nanoparticles [68–70]. In development, is a predictor of interactions
between MHC-I and phosphopeptides. [71].

3.3. Glycosylation

Protein glycosylation occurs in the endoplasmatic reticulum and Golgi apparatus and
is commonly associated with secreted and extracellular membrane proteins. Considering
that there are several types of glycans that could be covalently conjugated to proteins,
there are a myriad of possible combinations. O-linked-N-Acetylglucosamine (O-GlcNAc)
plays an important role in signal transduction, transcription, cell division, metabolism, and
the cytoskeleton in cancer cells [72]. Given that glycosylation creates novel epitopes, its
occurrence in peptides presented by MHC has been of interest as a source of targets for
immunotherapy [73].

An important source of glycopeptides is represented by mucins (MUC), which are
highly glycosylated in cancer. They have been utilized as a study model for carbohydrates’
immunogenicity [74,75]. Tumor cells overexpress MUC1 and MUC4 on the surface, both
of which exhibit altered glycosylation, potentially representing tumor-specific targets.
Common antigens expressed in cancer mucins are the O-glycans Tn and T antigens, which
have been utilized as vaccines. Several vaccine strategies using glycopeptides from mucins
in combination with adjuvant have been utilized to induce an anti-tumoral response
in vitro and in vivo. These strategies are being put to the test for different cancer types,
including breast, prostate, lung, pancreatic, and renal cancer, as well as melanoma and
lymphoma [76]. The glycosylation pattern of MUC proteins has proven to be a useful
target for single-domain antibodies overcoming tumor growth, invasion, and metastasis in
a mouse model [77].

Other glycosylated immunopeptides have also been investigated as vaccines, tumor-
selective antibodies, CAR T cells, nanoparticles, and DC therapy [78–88]. Critical to this
effect is knowledge of the structure of glycoproteins for their synthesis and antibody binding
properties and their surface localization and occurrence in the immunopeptidome [89–100].
Interestingly, MHC-I also undergoes glycosylation, which must be taken into account
for antigen presentation [101]. Additionally, of interest is the finding that deaminated
MHC-I-bound peptides are derived from glycopeptides, which has relevance to antigen
presentation to T cells [97]. At present, there is a surge of interest in glycopeptides presented
by MHC-II on DCs, resulting from a deeper understanding of how glycosylated proteins are
presented [102]. These advances and diversified strategies around the glycoproteogenome
and its immunopeptidome are promising, not only for glycopeptides but also for various
peptide PTMs in cancer that could be utilized as tumor-specific targets.

4. Peptide PTMs as a Source of Cancer Vaccines

Taking into account that the immunopeptidome represents the whole spectrum of
peptides presented in a cell, there is a need to identify the most promising cancer targets.
Thus, there is a need to determine the structure of an MHC-bound peptide and its level of
expression for vaccine development. There are numerous ongoing clinical trials utilizing
different antigens and adjuvants as therapeutic cancer vaccines. Focusing on peptides with
PTMs as vaccines, promising findings have resulted from the use of citrullinated peptides
(Table 1). A citrullinated VIM peptide has been utilized as an antigen in combination
with an adjuvant induced IFN-γ and granzyme B-secreting CD4+ T cells. Citrullinated
VIM-specific Th1 cells induced by the vaccine had a potent antitumor response against
established skin and lung tumors, as well as a long-term memory response [30]. Similarly,
a citrullinated ENO1 peptide-based vaccine elicited a potent citrulline-specific Th1 cell
response in pancreatic, skin, and lung cancers [29]. Additionally, ENO1 is commonly
overexpressed in different tumor types, including melanoma, pancreatic, breast, and lung
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cancer, thus citrullinated ENO1 peptides are plausible antigens for a wide cancer spec-
trum [18,29,55]. Furthermore, the combination of citrullinated VIM and ENO1 peptides
in a vaccine, designated Modi-1, induced a significant antitumoral response in a mouse
model of ovarian cancer. Importantly, a substantial citrulline-specific T cell response was
observed in more than half of ovarian cancer patients [103]. Moreover, analysis of the
melanoma immunopeptidome led to the identification of MHC-II-bound citrullinated pep-
tides are derived from MMP21, Cp450, and GRI proteins [33]. A combination of these
citrullinated peptides did not induce a greater antitumoral response than citrullinated
MMP21 and GRI peptides individually, pointing to the potential of a reduced response
with multiple peptides with different MHC-II binding specificities [33]. Another source of
citrullinated peptides is the NPM protein. Vaccination with a PADI2-mediated-citrullinated
NPM peptide induced an antitumoral response which was therapeutic, increasing survival
and resulting in protection against a second tumor challenge in melanoma and lung cancer
mouse models. Interestingly, PADI4-mediated-citrullination of NPM peptide did not elicit a
citrulline-specific Th1 response, in contrast to PADI2-mediated-citrullination [53]. The CD4
responses observed may result from binding of citrullinated peptides primarily by MHC-
II [18] in HLA-DP4 and HLA-DR4 transgenic mice. Nevertheless, the vaccine-induced
CD4 response was sufficient to inhibit tumor progression, indicating the effectiveness of
responses that do not involve CD8+ T cells [10].

Table 1. Summary of the post-translational modified peptides used in immunotherapy.

Post-Translational
Modification Protein Cancer Type Immunotherapy MHC Class Reference

Citrullination

ENO1 SKCM, PAAD, LUAD, OV Vaccine II [18,29,55,103]
VIM SKCM, LUAD, PAAD, OV Vaccine II [30,103]

MMP21 SKCM Vaccine II [33]
GRI SKCM Vaccine II [33]

Cp450 SKCM Vaccine II [33]
NPM SKCM, LUAD Vaccine II [53]

Phosphorylation
ISR2 SKCM Vaccine, ACT I [62,104]

BCAR SKCM Vaccine I [104]
CDC25b SKCM ACT I [62]

Glycosylation
MUC1 BRCA, PRAD Vaccine, DCTher I, II [77,80–82]
MUC4 NA Vaccine II [85]

PHOX2B Neuroblastoma CAR T cell I [105]

ACT: Adoptive Cell Therapy; DCTher: Dendritic Cell Therapy; ENO1: α-enolase 1; VIM: vimentin; MMP21:
Matrix Metalloproteinase-21; GRI: Glutamate Receptor Ionotropic; NPM: Nucleophosmin; ISR2: Insulin Receptor
Substrate 2; BCAR: Breast Cancer Antiestrogen Resistance 3; SKCM: Skin Cutaneous Melanoma; PAAD: Pan-
creatic Adenocarcinoma; PRAD: Prostate Adenocarcinoma; BRCA: Breast Invasive Carcinoma; LUAD: Lung
Adenocarcinoma; OV: Ovarian Serous Cystadenocarcinoma; NA; Not Applicable.

There is a more limited number of studies utilizing phosphorylation as a PTM for
peptide vaccines, although immunopeptidome analysis has pointed to a substantial number
of phosphorylated peptides. Immunopeptidome analysis of melanoma, ovarian carcinoma,
B lymphoblastoid, and leukemia resulted in the identification of a large number of phos-
phopeptides that were cancer specific with CD8 T cell antigen specificity in patients [58,63].
Some of the identified phosphopeptides were derived from ISR2, BCAR, TNS2, SELH,
CDC25b, and beta-catenin [58,62,63], concordant with the identification of phosphorylated
ISR2, TNS2, and SELH peptides in the colorectal cancer immunopeptidome [67]. At present,
phosphopeptides from ISR2 and BCAR are being explored as a cancer vaccine for melanoma
patients [104]. The phase I trial confirmed that the vaccines using these peptides are safe
and capable of inducing an immune response, justifying future studies for their use as
vaccines (NCT01846143).

As for glycopeptide-based cancer vaccines, an initial source was the glycosylated
MUC protein displaying the Tn antigen. Immunization of mice with a desialylated ovine
MUC with substantial representation of the Tn antigen elicited primarily a CD4+ T cell
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response specific to the Tn antigen. Conversely, immunization with a deglycosylated MUC
did not induce an immune response [73]. The induction of an immune response specifically
against the PTM protein suggests that glycosylation may be a useful source of cancer-
specific antigens given the findings of aberrant glycosylation in many cancers, notably
breast cancer [78,106]. A case in point is a fully synthetic cancer vaccine, a dendrimeric
multiple antigenic glycopeptide displaying a trimer of Tn antigens (MAG-Tn3) associated
with a promiscuous CD4 epitope, the tetanus toxoid-derived P2 peptide, that has been
shown to induce an antitumoral Tn-specific T cell response in monkeys [78]. This MAG-Tn3
vaccine has been used in a phase I clinical trial for high-risk relapsed breast cancer patients
(NCT02364492). Another cancer vaccine in clinical trial is based on MUC1 bearing Tn
antigens (Tn-MUC1) pulsed with autologous DCs [81]. This phase I/II clinical trial follows
the same strategy used in rhesus macaques, which resulted in five out of seven castrate-
resistant prostate cancer patients having a CD4 and/or CD8 response (NCT00852007).

Other studies involving MUC1 glycopeptide vaccines induced a monoclonal IgG
specific to mammary tumors [80]. Likewise, a synthetic MUC1 glycopeptide linked to a
B-cell and a T-cell epitope together with poly I:C as an adjuvant elicited significant IgG
titers against tumor-associated MUC1 expressed in breast cancer cells [82]. Recently, a
novel approach was developed using a MUC1 glycopeptide that consists of a fluorinated
nanoliposomal vaccine that is self-adjuvanated. This novel vaccine induced a high level
of antigen-specific IgG in mice [107]. These glycopeptide-based vaccines were designed
to induce primarily a humoral response. However, there are cancer vaccines using MUC1
glycopeptides that bind to MHC-I, inducing a cytotoxic CD8 response observed in healthy
donors as well as in breast cancer patients [108]. There are also some promising gly-
copeptide candidates identified from leukemia MHC-I immunopeptidomes, five of which
have been associated with a memory T cell response in healthy subjects [96]. Likewise,
MUC4 glycopeptide candidates have been identified for pancreatic cancer immunother-
apy [85,109]. Given the complexity of glycan modifications, there has been a surge of
various approaches to identify and develop glycopeptides as vaccines, as reviewed above,
including the use of glyco-antigen microarrays to investigate immune responses to cancer
vaccines [79,91]. Another development is the use of an antigen delivery system based on
gold nanoparticles with Dectin-1 to target DC, conjugated with MHC-II glycopeptides.
This gold nanoparticle glycopeptide vaccine elicited a strong humoral and cellular immune
response in mice [84]. In all, much progress has been made in the identification of gly-
copeptides and their structural and other properties to enhance their effectiveness as cancer
vaccines [92,93,95,98].

5. Conclusions

It is evident that the potential of harnessing the immunopeptidome with its PTM
peptides for cancer therapy and vaccines is quite substantial. Reliance on PTM modifica-
tions in tumor antigens further enhances the specificity of the epitopes and their restricted
expression to cancer. Such PTMs do not occur in the thymus, resulting in a lack of negative
selection for corresponding T cells. Although this review covered citrullination, phosphory-
lation, and glycosylation PTMs, there are numerous other modifications, some consisting of
fusion peptides resulting from aberrant proteasomal function, known as proteasomal splic-
ing. These spliced peptides result from the fusion of two unrelated fragments presented by
MHC in cancer cells but may not be cancer specific [15,110]. An interesting development is
harnessing the immunopeptidome to generate personalized oncolytic cancer vaccines, as
demonstrated using a murine colon cancer model. This impressive immunopeptidomic-
based pipeline harnesses the entire MHC-bound peptidome to develop an oncolytic cancer
vaccine coated with tumor antigen peptides as a tool for immunotherapy [111]. The
immunopeptidome also provides a basis for CAR T cell therapy, [83,112–114], targeting
glycopeptides with promising results [86,115,116]. An example is the development of a
peptide-centric CAR T cell using the immunopeptidome of neuroblastoma. Remarkably,
computational modeling predicted that this peptide-centric CAR T cell was capable of rec-
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ognizing peptides with different MHC-I polymorphisms, resulting in a strong and specific
killing of neuroplastoma cells and complete tumor regression in mice [105,117].

Another promising avenue for immunopeptide-based immunotherapies is in combi-
nation with immune checkpoint inhibitors (ICI) with the potential for synergism as with
anti-PD-1 immunotherapy [118]. Taking into account that ICI is mostly effective in the
presence of tumor infiltrating lymphocytes, a prior immunization that can efficiently induce
T cell tumor migration would enhance the efficiency of ICI therapy [119,120]. All things
considered, the immunopeptidome field has crucial relevance for cancer interception.
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