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Abstract

Background

Urine is a potential source of biomarkers for diseases of the kidneys and urinary tract. RNA,

including microRNA, is present in the urine enclosed in detached cells or in extracellular

vesicles (EVs) or bound and protected by extracellular proteins. Detection of cell- and dis-

ease-specific microRNA in urine may aid early diagnosis of organ-specific pathology. In this

study, we applied barcoded deep sequencing to profile microRNAs in urine of healthy volun-

teers, and characterized the effects of sex, urine fraction (cells vs. EVs) and repeated voids

by the same individuals.

Results

Compared to urine-cell-derived small RNA libraries, urine-EV-derived libraries were rela-

tively enriched with miRNA, and accordingly had lesser content of other small RNA such as

rRNA, tRNA and sn/snoRNA. Unsupervised clustering of specimens in relation to miRNA

expression levels showed prominent bundling by specimen type (urine cells or EVs) and by

sex, as well as a tendency of repeated (first and second void) samples to neighbor closely.

Likewise, miRNA profile correlations between void repeats, as well as fraction counterparts

(cells and EVs from the same specimen) were distinctly higher than correlations between

miRNA profiles overall. Differential miRNA expression by sex was similar in cells and EVs.

Conclusions

miRNA profiling of both urine EVs and sediment cells can convey biologically important

differences between individuals. However, to be useful as urine biomarkers, careful
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consideration is needed for biofluid fractionation and sex-specific analysis, while the time of

voiding appears to be less important.

Introduction
Urine is a source of biomarkers for diseases of the kidneys and urinary tract as well as systemic
disorders [1]. In addition to proteins and serum-derived metabolites, extracellular nucleic acids
present in the cells and microvesicles of urine can serve biomarker purposes. RNA is present in
the urine enclosed in detached cells or in extracellular vesicles (EVs) released from intact kid-
ney and urinary tract cells. Conditions, which alter relative quantities of individual microRNAs
(miRNAs) in urine, include inflammatory processes within the genitourinary tract, malignan-
cies and infections [2].

The presence of cell-specific miRNAs in the urine may aid early diagnosis of organ-specific
pathology. In this study of healthy volunteers, we examined sex differences, relationship
between matched cellular and extracellular miRNA profiles and repeatability of miRNA pro-
files between matched consecutive urine voids.

Materials and Methods

Ethics statement
This study was approved by the Institutional Review Board of The Rockefeller University Hos-
pital. Clinical data and specimens were collected after obtaining participants’ written informed
consent.

Participants and biofluid specimens
We collected urine specimens from 20 healthy volunteers, 20–30 years old [3], representative
of New York City ethnic demographics. Each volunteer provided 2 urine specimens, 1–3 h
apart, each at least 50 ml. Urine specimens were handled as previously described [4]. Of note,
second urine voids were more dilute, as indicated by ~1.9-fold lower creatinine concentrations
(p = 0.014, paired-sample t-test). Total RNA was extracted from 50 ml urine sediment cells
and from the ensuing cell-free, ultrafiltration-retained supernatant, a ~250-fold concentrate of
the cell-free urine particles and macromolecules larger than 100 kDa, thus including EV-
enclosed RNA (VS2042, Vivaproducts Inc., Littleton MA) [4]. RNA was quantified using
Qubit 2.0 fluorometer [5]. Small-RNA cDNA libraries were constructed with addition of exter-
nal miRNA-like synthetic calibrators (2.5 attomol per ng total RNA), and sequenced, as
recently described [4]. The median amounts of input RNA used for cDNA library preparation
were 10.2 ng (IQR 4.2–15.1 ng) in batches of cell-derived samples and 0.49 ng (IQR 0.28–1.44
ng) in batches of EV specimens.

Sequencing and annotation of small RNA cDNA libraries
The obtained sequence files were trimmed and split into the separate samples according to the
barcode sequences. Extracted reads were assigned annotations by aligning to the genome and
small-RNA databases. For miRNA annotation we used contemporary in-house definitions (see
S1 Tables) [6].

The sequencing data discussed in this publication have been deposited in NCBI's Gene
Expression Omnibus and are accessible through GEO Series accession number GSE72183
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72183).
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Statistical analysis
Normally distributed clinical parameters were compared using unpaired or paired t-tests.
Characteristics with skewed distributions were compared using Mann-Whitney, Wilcoxon
signed-rank, Friedman rank sum and Kolmogorov-Smirnov non-parametric tests, as appropri-
ate, using Bioconductor on R [7]. The 'DESeq2' package [8] was used for analysis of differential
expression. Additional Bioconductor packages were used for plotting ('ggplot2' [9] and 'rggobi'
[10]), PCA and correlation analysis ('stats') and unsupervised clustering and heat map genera-
tion ('pheatmap'). Classification with machine learning methods was carried out using 'MLIn-
terfaces' [11]. Machine learning refers to a family of computational methods for analyzing
multivariate datasets. Serving as a mock-up for biomarker discovery studies, we explored using
such methods the possibility to classify and predict our samples based on their miRNA profiles.
Attempted algorithms include neural networks, support vector machine, discrimination analy-
ses, k-nearest neighbor classification and recursive partitioning and regression trees. Prior to
statistical analysis and presentation of miRNA, except differential expression analysis, counts
were transformed to log2-counts per million by the 'limma' voom function [12], following
TMM normalization using 'edgeR' [13]. S1 Text Files include selected R scripts and related
input data used in this study.

Results and Discussion

Total RNA yield from urine and small RNA composition analysis
To obtain miRNA profiles we processed urine cells and EVs isolated from two urine voids,
taken one to three hours apart, and provided by 20 healthy young adults (Table 1). Women’s
urine had higher total RNA content (per given volume) in both cells and EVs, compared to
men (Table 2). Disparities in RNA content were most prominent in the first void, where inter-
gender differences of 12.8-fold for cells and 4.3-fold for EVs were observed.

Barcoded small RNA cDNA libraries were prepared from 79 total RNA specimens (one vol-
unteer provided an insufficient volume of urine for the second void EV preparation). The

Table 1. Characteristics of study volunteers. Anthropometric and clinical characteristics of study
volunteers.

Men (n = 10) Women (n = 10)

Age, years 27±2 26±2

Systolic BP, mmHg 115±12 106±10

Diastolic BP, mmHg 78±9 71±10

Heart rate, bpm 62±8 69±9

Height, cm 175±6 166±7

Weight, kg 77±13 64±5

Body mass index, kg/m2 25.1±3.6 23.3±2.4

Waist circumference, cm 86±10 75±6

Hip circumference, cm 101±10 94±6

Waist/hip ratio 0.86±0.04 0.80±0.06

Blood urea nitrogen, mg/dl 13.3±4.4 11.0±1.8

Serum creatinine, mg/dl 1.19±0.09 0.91±0.09

Serum uric acid, mg/dl 5.56±0.62 4.07±0.83

Stick urinalysis Negative Negative

BP, blood pressure

bpm, beats per minute.

doi:10.1371/journal.pone.0147249.t001
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samples were organized in four batches, each multiplexing 19 to 20 samples (see Methods for
amounts of input RNA), and sequenced on four Illumina Genome Analyzer IIx lanes. Table A
in S2 Tables displays read numbers by small RNA annotation categories.

Quality control via analysis of spike-in calibrator oligoribonucleotides
Amixture of 10 calibrator oligoribonucleotides was spiked during library preparation. Unsu-
pervised clustering of reads corresponding to these oligonucleotides in the obtained sequence
files, Fig 1, shows no evidence of bias related to void (first vs. second void) or sample source
(cells vs. EVs). There was a trivial degree of barcode-related clustering, reflective of highly simi-
lar miRNA composition in closely related samples.

There were no consistent sex-related or void-related differences in calibrator-normalized
miRNA content. However, compared to cell-derived small RNA libraries, EV libraries were
enriched with miRNA, while EV content of scRNA, snRNA, snoRNA, rRNA and rRNA pre-
cursors was lower compared to cells (Fig 2 and Table B in S2 Tables). Second and first void
cells had similar small RNA composition. However, second void EVs had lower miRNA con-
tent compared to first void EVs (Table B in S2 Tables).

Table 2. Total RNA yields in cells and extracellular vesicles. Total RNA content (ng) in study specimens by volunteer sex.

Men Women

Fraction Void Mean Median (IQR) Mean Median (IQR) P-value*

Cells 1st 6.2 3.6 (2.1–10.7) 79.2 48.0 (19.0–120) <0.0001

2nd 11.5 6.0 (2.9–17.1) 16 12.1 (4.3–28.7) 0.579

P-value† 0.241 0.074

EVs 1st 0.6 0.2 (0.0–0.4) 2.6 0.9 (0.4–4.9) 0.007

2nd 1.8 1.0 (0.5–2.8) 2.6 3.0 (1.0–4.2) 0.247

P-value† 0.007 0.721

EV, extracellular vesicles

IQR, 25th-75th percentiles

*, Mann-Whitney u-tests comparing women to men

†, Wilcoxon signed ranks tests comparing 2nd to 1st void.

doi:10.1371/journal.pone.0147249.t002

Fig 1. Heat map of hierarchically clustered study samples according to external calibrator content. Amixture of 10 synthetic oligoribonucleotides
(‘calibrators’) was spiked into RNA samples during library preparation for sequencing. Unsupervised analysis of samples based on read counts of these
calibrators shows absence of clustering by specimen source (cells vs. EVs), sex or void, as would be expected for an external spike-in control.

doi:10.1371/journal.pone.0147249.g001
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Principal component analysis and unsupervised clustering
Reads mapping to miRNA were summed, and organized according to mature miRNA
(Table C in S2 Tables) and miRNA precursor clusters (Table D in S2 Tables). Principal com-
ponent analysis (PCA) of mature miRNA counts, Fig 3, disclosed consistent sex- and fraction-
based separation of profiles. Unsupervised clustering of specimens according to miRNA pre-
cursor cluster expression levels, Fig 4, showed prominent bundling by specimen type (cells vs.
EVs) and by sex, as well as a tendency of void repeats to neighbor closely in the dendrogram.
Thus, if miRNA are to be useful as urine biomarkers, careful consideration is needed for bio-
fluid fractionation and sex-specific analysis, while the time of voiding may be less important.

Test-retest repeatability of miRNA profiles
To examine repeatability of miRNA expression, namely the similarity of miRNA profiles in
successive voids from the same individual, we examined the Spearman correlation matrix of all
samples (limiting this analysis to miRNAs which were detected with�2 reads in�25% of sam-
ples– 160 mature miRNA, Table E in S2 Tables). Table 3 shows median Spearman correlation
coefficients of samples from a given batch with their respective matched counterparts in other
batches (left panel) or with all samples in other batches (middle panel). miRNA profile correla-
tions between a sample and its void (as well as fraction) counterparts are distinctly higher than
correlations between miRNA profiles overall (right panel). This is another indication that
intra-individual variability is considerably smaller than inter-individual differences, and that
the exact timing of urine collection has minor consequences.

Analysis of differential expression
To distinguish miRNA composition in EVs vs. cells we conducted differential expression anal-
yses using DESeq2 [8]. The expression of 129 of 431 mature miRNAs (miRNAs with at least 5
reads summed across all samples, Table F in S2 Tables) was found to differ between EVs and
cells in a model including the cofactors void, sex and fraction�sex interaction. The pattern of
differential expression was unbalanced in that a handful of high-abundance miRNAs were

Fig 2. Heat map of hierarchically clustered study samples according to small RNA category profiles. Small RNA sequencing was conducted from all
study samples as described in the Methods section. An automated pipeline identified and summarized the resulting sequence reads according to small RNA
annotation categories. Unsupervised analysis based on read counts shows clustering by specimen source (cells vs. EVs), sex and subject.

doi:10.1371/journal.pone.0147249.g002
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slightly enriched in EVs, while numerous low-abundance miRNA were depleted in EVs com-
pared to cells (Fig A in S1 Figs). As an exception to this trend, the highly abundant miR-320
was less frequent in EVs. The unique biogenesis of miR-320 [14] may be linked to this relative
depletion.

miRNA expression differences relating to volunteer sex (women vs. men) were evaluated in
the same model. We found differential expression of 97 of 431 mature miRNA (Table G in S2
Tables). Top sex-related differentially expressed miRNAs in separate analyses on cells and EVs
are shown in Table 4. Good agreement was found between findings in cells and EVs in respect

Fig 3. Principal component analysis plot of study sample miRNA profiles. A scatter plot depicting principle component 1 (PC1) and PC2 coordinates of
study samples, color-coded according to subject sex and urine fraction. Consistent sex- and fraction-based separation of profiles is observed.

doi:10.1371/journal.pone.0147249.g003

Fig 4. Heat map of hierarchically clustered study samples according to miRNA profiles. Small RNA sequencing was conducted from all study samples
as described in the Methods section and in Figs 1 and 2. Unsupervised analysis based on miRNA precursor read counts shows prominent clustering by sex,
urine fraction (cells vs. EVs) and subject.

doi:10.1371/journal.pone.0147249.g004
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to leading sex-related differences; Pearson correlation coefficient of log2 fold-changes among
top differentially expressed miRNA in cells vs. EVs, 0.940. Thus, similar sex-related differences
(and expectedly also disease-associated changes [4]) are detected in cells and EVs (see also Fig
B in S1 Figs).

Table 3. Correlation betweenmicroRNA profiles. Median Spearman correlation coefficients between batches restricted to matched samples (left panel)
or including all samples (middle panel).

median correlation of matched samples median correlation between all sample KS tests-derived p-values*

batch EVs A EVs B cells A cells B EVs A EVs B cells A cells B EVs A EVs B cells A cells B

EVs A 1 0.781 0.743 0.718 0.571 0.538 0.563 0.535 2.3E-15 3.7E-13 2.8E-11 2.6E-12

EVs B 0.778 1 0.679 0.645 0.538 0.524 0.540 0.515 3.7E-13 1.7E-14 1.3E-08 1.0E-09

cells A 0.746 0.679 1 0.733 0.563 0.540 0.581 0.554 2.8E-11 1.3E-08 2.3E-15 4.3E-13

cells B 0.722 0.645 0.733 1 0.535 0.515 0.554 0.532 2.6E-12 1.0E-09 4.3E-13 2.3E-15

EVs A, first void EVs

EVs B, second void EVs

cells A, first void sediment cells

cells B, second void sediment cells.

*, Kolmogorov-Sminrov tests comparing the lists of correlation coefficients summarized in the left panel vs. the respective lists in the middle panel.

doi:10.1371/journal.pone.0147249.t003

Table 4. Top differentially expressedmiRNA in women compared to men. Analysis of all specimens (left), urine cells (middle) or EVs (right).

Cells + EVs Cells EVs

miRNA CPM log2FC adj.pval log2FC adj.pval log2FC adj.pval

hsa-miR-320(1) 74266 3.41 5.1E-09 3.89 6.1E-06 2.93 8.1E-04

hsa-miR-21(1) 59213 0.27 5.9E-01 1.83 3.3E-03 -1.29 4.6E-02

hsa-miR-124(3) 44731 -1.33 5.9E-06 -0.63 2.4E-01 -2.03 1.0E-06

hsa-miR-29a(1) 34090 -0.92 1.1E-03 -0.14 7.9E-01 -1.71 1.1E-05

hsa-miR-9(3) 32587 -0.78 2.8E-02 -0.19 7.6E-01 -1.37 5.8E-03

hsa-miR-26a(2) 31294 -1.30 2.1E-05 -0.65 2.4E-01 -1.95 6.2E-06

hsa-miR-22(1) 30735 0.36 5.9E-01 1.82 4.2E-02 -1.10 2.7E-01

hsa-let-7f(2) 17689 -0.68 9.7E-02 -0.07 9.2E-01 -1.30 2.1E-02

hsa-miR-128(2) 14089 -1.16 2.2E-02 -0.54 5.6E-01 -1.78 1.3E-02

hsa-let-7a(3) 13876 -0.30 4.8E-01 0.46 4.9E-01 -1.06 4.4E-02

hsa-let-7c(1) 12872 -0.71 4.5E-02 -0.55 3.6E-01 -0.87 9.7E-02

hsa-miR-103(2) 10488 -0.84 8.2E-02 0.12 8.7E-01 -1.80 5.5E-03

hsa-miR-24(2) 9563 -0.88 8.0E-02 0.02 9.8E-01 -1.79 8.9E-03

hsa-miR-203(1) 8104 8.83 1.6E-32 5.80 1.3E-08 11.85 5.0E-25

hsa-miR-29b(2) 7325 -1.28 1.2E-02 -0.16 8.5E-01 -2.41 6.7E-04

hsa-miR-210(1) 6375 5.26 4.3E-14 4.57 1.0E-05 5.96 3.5E-09

hsa-miR-221(1) 6201 2.03 2.1E-03 2.64 6.5E-03 1.42 1.9E-01

hsa-let-7i(1) 5862 -0.69 2.6E-01 0.55 5.7E-01 -1.94 1.2E-02

hsa-miR-378(1) 5603 2.54 1.4E-04 2.88 3.6E-03 2.19 3.4E-02

hsa-miR-138(2) 5150 -1.33 9.8E-02 -0.38 7.8E-01 -2.29 4.2E-02

hsa-miR-205(1) 3737 9.40 1.1E-26 7.79 4.0E-12 11.01 8.3E-15

CPM, counts per million (mean normalized expression)

log2FC, log2 fold-change

adj.pval, adjusted p-value.

doi:10.1371/journal.pone.0147249.t004
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Fig 5 shows the mean-variance association of normalized and log-transformed miRNA
read counts. Inverted-U-shape relationship is seen, while several outliers are denoted. This pat-
tern would not be expected of typical tissue profiles, and is likely a result of inconsistent cell
type composition, with diversity represented in the mid-abundance miRNAs. For example,
miR-203 and miR-205 are expressed in keratinocytes [15], which are present in urine irregu-
larly, predominantly in women.

Classification
Lastly, this study involved healthy volunteers without known kidney or urinary tract disorder.
However, we reasoned that in lieu of its design, this study can simulate the results of a disease-
centered clinical investigation, and thus point to limitations and needed modifications to the
methodology and analysis. We examined the following questions: (1) can miRNA profiles clas-
sify volunteers’ sex and specimen type, and (2) can the first void serve as a training set and
guide classification (sex, specimen type) of second void specimens?

As shown above, a dendrogram (Fig 4) and a two-dimensional PCA plot (Fig 3) can par-
tially distinguish volunteer sex and specimen fraction. Additional dimensions of data may
allow better distinction. Indeed, two-dimensional projections of a multi-dimension plot are
more effective at separating specimens (Fig C in S1 Figs) [16].

Various machine learning algorithms [11] performed reasonably well in classification and
prediction of sample sex and fraction (Table H in S2 Tables and Fig D in S1 Figs). Using first
void profiles for training, test classification of second void specimens was variably successful
(Table I in S2 Tables).

Conclusions
From this pilot study applying next generation sequencing to profile urine miRNA in healthy
volunteers we conclude that miRNA profiling of both EVs and sediment cells relate to biologi-
cal characteristics of interest. We found indications that intra-individual variability is

Fig 5. Mean-variance association of miRNA abundance. A scatter plot depicting the mean (x axis) and
coefficient of variation (y axis) relationship of log-transformed normalized miRNA counts across all samples.
A fit line is shown and several prominent outliers are labeled. The color scale represents the standard
deviation from the mean.

doi:10.1371/journal.pone.0147249.g005
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considerably smaller than inter-individual differences, and that the exact timing of urine collec-
tion has minor consequences. Thus, for miRNA profiling to be useful as urine biomarkers,
careful consideration is needed for biofluid fractionation and sex-specific analysis, while the
time of voiding may be less important. We found similar miRNA profile differences between
men and women in urine cells and extracellular vesicles, likely reflecting that extracellular vesi-
cles are originating from the same cell types that are present in the sediment. This suggests that
potential biomarkers found in urine sediment cells are likely to be present in the extracellular
vesicles, and vice versa. However, in patients with kidney or urinary tract disease, as opposed
to the healthy subjects who volunteered to this study, the composition of cells and extracellular
vesicles in the urine may have different derivations.

Supporting Information
S1 Figs. Figs presenting supplementary data. Fig A–MA plot of miRNA expression in urine
EVs compared to cells. Log fold-change (y axis) vs. average expression (x axis) in urine EVs
compared to cells. Dots representing differentially expressed miRNA (adjusted p-value<0.05
according to a DESeq2 analysis) are colored red. Fig B–Sex-related fold-change values in extra-
cellular vesicles vs. cells. Scatter plot of log2 fold-change values of miRNA expression in
women compared to men in extracellular vesicles (EV, y axis) vs. sediment cells (x axis). Colors
code the average miRNA abundance. Fig C–Multidimensional scaling of samples according to
miRNA profiles. Two-dimensional projections of multidimensional scaling analysis of samples
based on miRNA profiles. Principle component analysis and plotting were generated using
rggobi [16]. Between 3 and 5 principal components are projected. Orange and purple, symbol-
ize female; red and yellow, male; orange and yellow, cells; purple and red, EVs. Various projec-
tions capture clear separation based on subject sex and urine fraction. Panels b and c uncover
subject 11 samples, particularly her cell specimens, as outlier. Asymptomatic bacteriuria (E.
coli) is likely responsible for this aberration. Fig D–miRNA-based classification trees. Two pro-
posed classification trees to categorize samples according to volunteer sex and specimen type
(urine cells or EVs). Binary decisions are based on the specified miRNA levels (expressed as
log-transformed counts per million).
(PDF)

S1 Tables. Spreadsheet tables presenting miRNA annotation definition
(XLSX)

S2 Tables. Spreadsheet tables presenting supplementary data.
(XLSX)

S1 Text Files. R scripts and related input data files that can be used to reproduce the main
analyses presented in this study.
(ZIP)
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