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INTRODUCTION

Fast fourier transforms (FFT) is a key tool in most of digital signal 
processing systems such as medical systems. FFT is an effective 
method for calculation of discrete fourier transform (DFT).

Radix‑2 method proposed by Cooley and Tukey[1] is a classical 
algorithm for FFT calculation. Due to high computational 
complexity of FFT, higher radices algorithms such as radix‑4 
and radix‑8 have been proposed to reduce computational 
complexity. On the other side, for real-time applications, 
such as medical applications, hardware implementation 
of FFT is interested. Another application is in digital 
communication systems based on Orthogonal Frequency 
Division Multiplexing, where FFT/IFFT block processes 
input data in their physical layer. Simplicity of the algorithm 
is very important to have efficient hardware architectures.

Although radix‑2 algorithms have the same order of 
computational complexity as radix‑4 and radix‑8 algorithms, 
their flow graphs are as simple as radix‑2 algorithm. In 
radix‑2p algorithms “p” is a natural number. These algorithms 
were introduced with radix‑22 in 1996[2] and are developing 
for higher radices.[3-9] Using radix‑2p to calculate FFT for real 
signals like medical signals is very efficient.[10]

A B S T R A C T

Owing to its simplicity radix‑2 is a popular algorithm to implement fast fourier transform. Radix-2p algorithms have the same order of 
computational complexity as higher radices algorithms, but still retain the simplicity of radix‑2. By defining a new concept, twiddle factor 
template, in this paper, we propose a method for exact calculation of multiplicative complexity for radix‑2p algorithms. The methodology 
is described for radix‑2, radix‑22 and radix‑23 algorithms. Results show that radix‑22 and radix‑23 have significantly less computational 
complexity compared with radix‑2. Another interesting result is that while the number of complex multiplications in radix‑23 algorithm 
is slightly more than radix‑22, the number of real multiplications for radix‑23 is less than radix‑22. This is because of the twiddle factors 

in the form of W
k N2 1
8
+( )

which need less number of real multiplications and are more frequent in radix‑23 algorithm.
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Although it is clear that their complexity is less than radix‑2 
algorithm, any systematic method to calculate computational 
complexity of radix‑2p algorithms has not been proposed yet. 
This paper proposes a methodology to compute the number 
of complex and real multiplications, exactly.

The rest of this article is organized as follows. First the 
importance of FFT algorithm in medical applications is 
described. Then, radix‑2 and radix‑2p algorithms are explained. In 
the following section we define twiddle factor template (TFT). 
The proposed methodology for calculation of computational 
complexity by using TFT is described in the next section. After 
that we compare the results computed for radix‑22 and radix‑23 
algorithms. Finally, we conclude the article.

FFT FOR MEDICAL SIGNALS

Digital signal processing is a key tool in medical applications. 
In order to extract some features of a medical signal, 
not visible in time domain, we need to transform signal 
representation into the frequency domain. For example, 
FFT is used to extract abnormalities of electrocardiogram 
signals for distinguishing heart diseases.[11] Or it is used 
to process electroencephalogram signal for seizure 
prediction.[12] The FFT plays an important role in different 
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called twiddle factor and k is its rotation angle.

Radix‑2p Algorithms

This section describes radix‑22 and radix‑23 approaches and 
their advantages in details and then generalization of the 
idea to radix‑2p algorithms is described.

Radix‑22: This approach proposed by He and Torkelson.[2] Main 
idea is to implement two stages of DIF simultaneously. This 
provides simplification of twiddle factors in these two stages. 
Time and frequency indices are decomposed as follows:
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where < >N represents modulo N. ki and ni in these 
equation are integer numbers used to decompose k and n, 
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real-time applications. In some medical applications,[11-13] 
the power spectral density of various real-valued signals 
has to be estimated. This requires calculation of the FFT 
repetitively on many overlapping windows of the signals.

Since, FFT algorithms are very common in transferring a 
time-domain signal into the frequency domain, their efficient 
implementation for medical signals is very important. 
Having a methodology for calculation of computational 
complexity of FFT algorithms is helpful for their evaluation.

 Radix‑2 FFT Algorithm

The N-point DFT for a sequence x (n) is defined as:[14]

X k x n W k N
n

N

N
nk[ ] = ( ) = … −

=

−

∑
0

1

0 1 1� � � �, , ,  (1)

where W eN

j
N=

− 2π

. Radix‑2 FFT algorithm reduces the order 
of computational complexity of Eq. 1 by decimating even 
and odd indices of input samples. There are two kinds of 
decimation:[14] decimation in the time domain and 
decimation in frequency (DIF) domain. Figure 1 shows the 
flow graph for radix‑2 DIF FFT for N = 16.

The flow graph in Figure 1 composed of Butterfly (BF) 
components with 2 inputs and 2 outputs. The structure of a 
BF is shown in Figure 2.

The bottom output of each BF is multiplied byWN
k . WN

k  is 

Figure 1: Radix-2 decimation in frequency fast fourier transforms for N = 16
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The decomposition can be repeated for N
4

-point FFT 

blocks. Figure 4 shows the final radix‑22 flow graph for 
N = 16.

Figure 4 has less number of nontrivial twiddle factors 
compared with Figure 1. Furthermore, for every two stages 
in Figure	4	one	of	them	has	trivial	twiddle	factors,	−j.

Radix‑23: The radix‑23 FFT algorithm is proposed in.[3] Similar 
to radix‑22, we can derive the radix‑23 algorithm by using the 
following new indices:[3]
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Figure 5 shows the flow graph of radix‑23 algorithm for 
N = 64. In Figure 5 for each three stages the first one has 
twiddle	 factors	 equal	 to	−j and the second one contains 

twiddle factors in the form of W
N
8  or − jW

N
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As (4) implies N-point FFT of X[k] is converted to N
4

-point 

FFT of H (k1, k2, n3) By changing k1 and k2 four different values 
of H are chosen. In other words, that an N-point FFT can be 
computed by implementing two stages of decimation 
together and then computing four N

4
-point FFTs. Figure 3 

shows the structure achieved by (4) for N = 16.

Figure 2: Input structure of a butterfly component in decimation in frequency 
fast fourier transforms flow graph

Figure 3: First decomposition of radix- 22 algorithm for N = 16
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In general for radix‑2p algorithms time and frequency indices 
are decomposed in the following forms:

n
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n
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n

N
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2 4 21 2 1  (7)

k k k kp p N
= + + + +1 2 12 2

PROPOSED METHODOLOGY

This section describes the proposed method to compute 
multiplicative complexity of radix‑2p algorithms.

TFT

For different FFT algorithms, different twiddle factors appear 
at different positions in the flow graph. By comparing 
Figures 1 and 4, 5, it can be seen that for each algorithm 
there is a regular arrangement for twiddle factors. TFT 
related to each algorithm, graphically represents the place 
and rotation value for each twiddle factor in the flow graph 
of the algorithm. For example in radix‑2 flow graph, shown in 
Figure 1, twiddle factors appear in the bottom outputs of BFs 
in each stage. Furthermore, the rotation angles of twiddle 
factors in each stage are twice compared with the rotation 
angles of twiddle factors in their previous stage. It means 
that twiddle factors in the first stage are W1, W2, W3,…, while 
for the second stage they are W2, W4, W6,…. So Figure 6 
shows TFT for radix‑2 algorithm. The numbers in Figure 6 

represent rotation angles of twiddle factors. In other words 
instead of W1, W2, W3…, numbers 1, 2, 3,… are displayed in 
TFT. Twiddle factors in the form of W0 are not shown in TFT.

In the same manner, we can derive the TFT for radix‑22 and 
radix‑23 as shown in Figures 7 and 8, respectively. In TFT for 
radix‑2p algorithms each successive P stages is called a section. 
Sections have a similar pattern of twiddle factors as shown in 
Figures 7 and 8, respectively for radix‑22 and radix‑23 algorithms.

CALCULATION OF MULTIPLICATIVE 
COMPLEXITY

Complex Multiplicative Complexity

We determine the TFT of each algorithm according to its 
mathematical equations. In the next step, the number of 
complex twiddle factors in the first section of the TFT is 

determined. It is noticeable that WN
0 1= , WN

N
2 1= − , W jN

N
4 = −  

and W jN

N3
4 =  are not counted here. Then, the number and 

length of blocks in the second section similar to the first 
section are determined. Now, we can calculate the total 
number of complex twiddle factors for each algorithm by:
•	 Defining	a	recursive	equation	and	solving	it	or
•	 Defining	a	series	and	calculating	its	summation.

These methods are described for radix‑22 and radix‑23 
algorithms.

Figure 4: 16-point fast fourier transforms flow graph based on radix-22
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Radix‑22: As Figure 7 shows twiddle factors in the first stage of 

each section in radix‑22 algorithm are W jN

N
4 = − . In stage 2 of 

Figure 7 three blocks with length N
4

 have complex twiddle 

factors. The first twiddle factor in each block is W0 = 1 and 

there is a twiddle factor equal to W j
N
4 = −  in the first block. 

Hence, the number of nontrivial twiddle factors in the first 

section is 
3
4

4N − . Second section contains four blocks similar 

to the first section with length N
4

. The recursive equation for 

the total number of complex multiplications can be written as:
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In the other way, we can derive the M Nc ( )as the summation 
of the following series:
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Figure 5: Flow graph of radix-23 algorithm for N = 64
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Both the above approaches achieve 10 for the total number 
of nontrivial twiddle factors in radix‑22 algorithm.

M N Nlog N Nc ( ) = − −
3
4

13
12

4
34  (10)

Radix‑23: According to the TFT in Figure 8 recursive equation 
and series for the number of complex multiplications in 
radix‑23 algorithm are derived as 12 and 13, respectively.
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The total number of complex multiplications is calculated 
as 14.

M N Nlog N Nc ( ) = − +
9
8

57
56

8
78  (13)

Real multiplicative complexity
Although the number of complex multiplications provides 
a good estimation for multiplicative complexity of an FFT 
algorithm, it isn’t the actual number of multiplications. 
Based on (15) multiplication of two complex numbers, 
x + jy and a + jb, can be implemented by three real 
multiplications (multiplication of two real numbers).

x y a y a b j x y a x b a+( ) − +( ) + +( ) + −( )[ ]  (14)

On the other side, twiddle factors in the form of W
k N2 1

8

+( )
 

for k = 0, 1, 2, 3, have same real and imaginary parts and 

need only two real multiplications. By computing the 
number of these special twiddle factors in the TFT we can 
obtain the exact number of real multiplications for each 
algorithm.

Radix‑22: Using the TFT in Figure 7, we compute the number 
of special twiddle factors for the first section of the TFT. 
There are 4 twiddle factors in the first section, which need 
two real multiplications. The number of real multiplications 
in the first section is computed as 16.

Number of real multiplications in the stagest1
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4 4
9

= × −




− =N
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Like complex multiplications, using the recursive equation 
in 17 or series in 18, we can compute the total number of 
real multiplications as 19.
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Figure 6: Twiddle factor template for radix-2 fast fourier transforms algorithm

Figure 7: Twiddle factor template for radix-22



Salehi and Amirfattahi: Calculation of computational complexity

Journal of Medical Signals & Sensors

223Vol 3  | Issue 4  |  Oct-Dec 2013

M N M
N N
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By solving 21 the total number of real multiplications in 
radix‑23 is computed as 22.

M N N log N N Nr ( ) = × − + ≥
25
8

25
8

4 648 �  (21)

Comparison
We compare the computational complexity of radix‑2, radix‑22 
and radix‑23 algorithms using the equations obtained in the 
previous sections. Figures 9 and 10 show the number of 
complex and real multiplications respectively. As these figures 
show the computational complexities for radix‑22 and radix‑23 
algorithms are significantly less than radix‑2 algorithm.

Compared to radix‑22, for radix‑23 algorithm complex 
multiplications are slightly more. However the number of 
real multiplications in radix‑23 is less than the number of 
real multiplications in radix‑22 algorithm. As N increases the 
difference between the number of real multiplications for 
radix‑22 and radix‑23 is more remarkable.

CONCLUSION

In this paper, we proposed a methodology to compute 
complex and real multiplicative complexities for radix‑2p 
algorithms. The method uses TFT in order to exploit 
regularity in these algorithms. As two special cases 
calculation of the computational complexity for radix‑22 
and radix‑23 algorithms using the proposed method 
was described. Finally, radix‑2, radix‑22 and radix‑23 were 
compared regarding to their complex and real multiplicative 
complexities. The method can easily be extended for radix‑2p 
algorithms.
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