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AAbbssttrraacctt

BBaacckkggrroouunndd:: Although microarray technology allows the investigation of the transcriptomic
make-up of a tumor in one experiment, the transcriptome does not completely reflect the
underlying biology due to alternative splicing, post-translational modifications, as well as the
influence of pathological conditions (for example, cancer) on transcription and translation. This
increases the importance of fusing more than one source of genome-wide data, such as the
genome, transcriptome, proteome, and epigenome. The current increase in the amount of
available omics data emphasizes the need for a methodological integration framework.

MMeetthhooddss:: We propose a kernel-based approach for clinical decision support in which many
genome-wide data sources are combined. Integration occurs within the patient domain at the level
of kernel matrices before building the classifier. As supervised classification algorithm, a weighted
least squares support vector machine is used. We apply this framework to two cancer cases,
namely, a rectal cancer data set containing microarray and proteomics data and a prostate cancer
data set containing microarray and genomics data. For both cases, multiple outcomes are predicted.

RReessuullttss:: For the rectal cancer outcomes, the highest leave-one-out (LOO) areas under the
receiver operating characteristic curves (AUC) were obtained when combining microarray and
proteomics data gathered during therapy and ranged from 0.927 to 0.987. For prostate cancer, all
four outcomes had a better LOO AUC when combining microarray and genomics data, ranging
from 0.786 for recurrence to 0.987 for metastasis.

CCoonncclluussiioonnss:: For both cancer sites the prediction of all outcomes improved when more than one
genome-wide data set was considered. This suggests that integrating multiple genome-wide data
sources increases the predictive performance of clinical decision support models. This
emphasizes the need for comprehensive multi-modal data. We acknowledge that, in a first phase,
this will substantially increase costs; however, this is a necessary investment to ultimately obtain
cost-efficient models usable in patient tailored therapy.
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BBaacckkggrroouunndd
Kernel methods are a powerful class of methods for pattern

analysis. In recent years, they have become a standard tool

in data analysis, computational statistics, and machine

learning applications [1]. Based on a strong theoretical

framework, their rapid uptake in applications such as

bioinformatics [2], chemoinformatics, and even compu-

tational linguistics is due to their reliability, accuracy, and

computational efficiency. In addition, they have the

capability to handle a very wide range of data types (for

example, kernel methods have been used to analyze

sequences, vectors, networks, phylogenetic trees, and so on).

The ability of kernel methods to deal with complex struc-

tured data makes them ideally positioned for heterogeneous

data integration. More specifically, in this study we used a

weighted least squares support vector machine (LS-SVM),

an extension of the support vector machine (SVM) for super-

vised classification [3-5]. Compared to the SVM, the LS-SVM

is easier and faster for high dimensional data because the

quadratic programming problem is converted into a linear

problem. To account for the unbalancedness in many two-

class problems, this linear problem is extended with weights

that are different for the positive and negative classes.

The growing amount of data combined with factors such as

time, cost, and personalized treatment is complicating

clinical decision making. Using advanced mathematical

models such as the above mentioned LS-SVM can aid clinical

decision support because information arising from clinical

risk factors (for example, tumor size, number of positive

lymph nodes) is not accurate enough to reliably predict

patient prognoses. Patients with the same clinical and patho-

logical characteristics but different clinical outcomes can

potentially be discerned with microarray technology. This

technology investigates the transcriptomic make-up of a

tumor in one experiment. A decade ago, it was first used in

cancer studies to classify tissues as cancerous or non-cancerous

[6,7]. Within the domain of cancer, microarray technology

has earned a prominent place for its capacity to characterize

underlying tumor behavior in detail. Although the first gene

expression profile signature is being validated in clinical

trials [8-10], microarray technology can not measure the

complete transcription profile due to the limited number of

probes per gene on a chip; nor does the transcriptome

completely reflect the biology underlying a disease.

Besides transcription, pathological conditions such as cancer

also influence alternative splicing, chromosomal aberra-

tions, and methylation [11,12]. For example, chromosomal

aberrations have been found in the general population as

well as in all major tumor types [13,14]. These regions of

increased or decreased DNA copy number can be detected

using, for example, array comparative genomic hybridiza-

tion (CGH) technology. This technique measures copy

number variations (CNVs) within the entire genome of a

disease sample compared to a normal sample [11]. Many

small aberrations have emerged as prognostic and predictive

markers. Numerous aberrations, however, also affect large

genomic regions, encompassing multiple genes or whole

chromosome arms.

Due to differential splicing or post-translational modifica-

tions such as phosphorylation or acetylation, the proteome is

many orders of magnitude bigger than the transcriptome.

This makes the proteome, which reflects the functional state

of the cell, a potentially richer source of data for unraveling

diseases [15]. It can be measured using mass spectrometry

[16], or protein or antibody microarrays [17]. Additionally,

other available omics data, such as epigenomics - the study

of epigenetic changes such as DNA methylation and histone

modifications [12] - and single nucleotide polymorphism

genotyping [18], should be considered as they promise to be

useful in unraveling cancer mechanisms and the refinement

of their molecular descriptions. Although the technologies

are available, joint analysis of multiple hierarchical layers of

biological regulation is at a preliminary stage.

In this study we investigate whether the integration of

information from multiple layers of biological regulation

improves the prediction of cancer outcome.

RReellaatteedd  wwoorrkk
Other research groups have already proposed the idea of

data integration, but most groups have only investigated the

integration of clinical and microarray data. Tibshirani and

colleagues [19] proposed such a framework by reducing the

microarray data to one variable, addable to models based on

clinical characteristics such as age, grade, and size of the

tumor. Nevins and colleagues [20] combined clinical risk

factors with metagenes (that is, the weighted average

expression of a group of genes) in a tree-based classification

system. Wang et al. combined microarray data with know-

ledge on two clinicopathological variables by defining a gene

signature only for the subset of patients for whom the

clinicopathological variables were not sufficient to predict

outcome [21].

A further evolution can be seen in studies in which two

omics data sources are simultaneously considered, in most

cases microarray data combined with proteomics or array

CGH data. Much literature on such studies involving data

integration already exists. However, the current definition of

the integration of high-throughput data sources as it is used

in the literature differs from our point of view.

In a first group of integration studies, heterogeneous data

from different sources were analyzed sequentially; that is,

one data source was analyzed while the second was used as

confirmation of the found results or for further deepening

the understanding of the results [22]. Such approaches are

used for biological discovery and a better understanding of

the development of a disease, but not for predictive pur-
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poses. For example, Fridlyand and colleagues [23] found

three breast tumor subtypes with a distinct CNV pattern

based on array CGH data. Microarray data were sub-

sequently analyzed to identify the functional categories that

characterized these subtypes. Tomioka et al. [24] analyzed

microarray and array CGH data of patients with neuro-

blastoma in a similar way. Genomic signatures resulted from

the array CGH data, while molecular signatures were found

after the microarray analysis. The authors suggested that a

combination of these independent prognostic indicators

would be clinically useful.

The term data integration has also been used as a synonym

for data merging in which different data sets are conca-

tenated at the database level by cross-referencing the

sequence identifiers, which requires semantic compatibility

among data sets [25,26]. Data merging is a complex task due

to, for example, the use of different identifiers, the absence

of a ‘one gene-one protein’ relationship, alternative splicing,

and measurement of multiple signals for one gene. In most

studies, the concordance between the merged data sets and

their interpretation in the context of biological pathways and

regulatory mechanisms are investigated. Analyses of the

merged data set by clustering or correlating the protein and

microarray data can help identify candidate targets when

changes in expression occur at both the gene and protein

levels. However, there has been only modest success from

correlation studies of gene and protein expression. Bitton et

al. [27] combined proteomics data with exon array data,

which allowed a much more fine-grained analysis by

assigning peptides to their originating exons instead of

mapping transcripts and proteins based on their IDs.

Our definition for the combination of heterogeneous

biological data is different. We integrate multiple layers of

experimental data into one mathematical model for the

development of more homogeneous classifiers in clinical

decision support. For this purpose, we present a kernel-

based integration framework. Integration occurs within the

patient domain at a level not so far described in the

literature. Instead of merging data sets or analyzing them in

turn, the variables from different omics data are treated

equally. This leads to the selection of the most relevant

features from all available data sources, which are combined

in a machine learning-based model. We were inspired by the

idea of Lanckriet and colleagues [28]. They presented an

integration framework in which each data set is transformed

into a kernel matrix. Integration occurs on this kernel level

without referring back to the data. They applied their

framework to amino acid sequence information, expression

data, protein-protein interaction data, and other types of

genomic information to solve a single classification problem:

the classification of transmembrane versus non-transmem-

brane proteins. In this study by Lanckriet and colleagues, all

considered data sets were publicly available. This requires a

computationally intensive framework for determining the

relevance of each data set by solving an optimization

problem. Within our set-up, however, all data sources are

derived from the patients themselves. This makes the

gathering of these data sets highly costly and limits the

number of data sets, but guarantees more relevance for the

problem at hand.

We previously investigated whether the prediction of distant

metastasis in breast cancer patients could be improved when

considering microarray data besides clinical data [29]. In

this manuscript, we consider not only microarray data but

also high-throughput data from multiple biological levels.

Three different strategies for clinical decision support are

proposed: the use of individual data sets (referred to as step

A); an integration of each data type over time by manually

calculating the change in expression (step B); and an

approach in which data sets are integrated over multiple

layers in the genome (and over time) by treating variables

from the different data sets equally (step C).

We apply our framework to two cases, summarized in

Table 1. In the first case on rectal cancer, tumor regression

grade, lymph node status, and circumferential margin

involvement (CRM) are predicted for 36 patients based on

microarray and proteomics data, gathered at two time points

during therapy. The second case on prostate cancer involves

microarray and copy number variation data from 55

patients. Tumor grade, stage, metastasis, and occurrence of

recurrence were available for prediction [30,31].

MMaatteerriiaallss  aanndd  mmeetthhooddss
DDaattaa  sseett  II::  rreeccttaall  ccaanncceerr
Patients and treatment
Forty patients with rectal cancer (T3-T4 and/or N+) from

seven Belgian centers were enrolled in a phase I/II study

investigating the combination of cetuximab, capecitabine,

and external beam radiotherapy in the preoperative

treatment of patients with rectal cancer [32]. These patients

received preoperative radiotherapy (1.8 Gy, 5 days/week for

5 weeks) in combination with cetuximab (initial dose

400 mg/m2 intravenous given 1 week before the beginning

of radiation followed by 250 mg/m2/week for 5 weeks) and

capecitabine for the duration of radiotherapy (first dose

level, 650 mg/m2 orally twice-daily; second dose level,

825 mg/m2 twice-daily; including weekends). Details of the

eligibility criteria, pretreatment evaluation, radiotherapy,

chemotherapy and cetuximab administration, surgery,

follow-up, and histopathological assessment of response to

chemoradiation have been published [32].

Data preprocessing
Tissue and plasma samples were gathered at three time

points: before treatment (T0); after the first loading dose of

cetuximab but before the start of radiotherapy with

capecitabine (T1); and at the moment of surgery (T2). All
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experimental procedures were done following standard

laboratory procedures, or following the manufacturers’

instructions. Because of the exclusion of some patients due to

a missing outcome value, death before surgery, or not having

surgery, the data set ultimately contained 36 patients.

The frozen tissue samples were hybridized to Affymetrix

human U133 2.0 plus gene chip arrays. The resulting data

were first preprocessed for each time point separately using

robust multichip analysis [33]. Secondly, the number of

features was reduced from 54,613 probe sets to 27,650 genes

by taking the median of all probe sets that matched on the

same gene. Probe sets that matched on multiple genes were

excluded because of the danger of cross-hybridization. Taking

into account the low signal-to-noise ratio of microarray data,

we finally filtered out genes with low variation across all

samples. Only retaining the genes with a variance in the top

25% reduced the number of features to 6,913 genes.

Ninety-six proteins known to be involved in cancer were

measured in the plasma samples using a Luminex 100

instrument. Proteins that had absolute values above the

detection limit in less than 20% of the samples were

excluded for each time point separately. This resulted in the

exclusion of six proteins at T0, four at T1, and six at T2. The

proteomics expression values of transforming growth factor

alpha, which had too many values below the detection limit,

were replaced by the results of ELISA tests performed at the

Department of Experimental Oncology in Leuven, Belgium.

For the remaining proteins the missing values were replaced

by half of the minimum detected for each protein over all

samples, and values exceeding the upper limit were replaced

by the upper limit value. Because most of the proteins had a

positively skewed distribution, a log transformation (base 2)

was performed.

In this paper, only the data sets at T0 and T1 were used

because our goal is to predict the four different outcomes

before therapy or early in therapy.

Response classification
A semiquantitative classification system has been described

by Wheeler et al. [34] for determining histopathological

tumor regression (that is, the therapy response). There are

also two prognostic factors important in rectal cancer:

pathologic lymph node involvement and CRM [35]. Because

the completeness of tumor resection relies on the assess-

ment of resection margins by the pathologist, knowledge of

the CRM before therapy provides important prognostic

information for local recurrence and for development of

distant metastasis and survival [36].

These three outcomes were registered for 36 patients at the

moment of surgery. For all these outcomes, ‘responders’ are

distinguished from ‘non-responders’. The grading of

regression established by Wheeler and colleagues [34] (from

now on referred to as WHEELER) is a modified pathological

staging system for irradiated rectal cancer. It includes a

measurement of tumor response after preoperative therapy:

grade 1, good responsiveness (tumor is sterilized or only

microscopic foci of adenocarcinoma remain); grade 2,

moderate responsiveness (marked fibrosis but still with a

macroscopic tumor); grade 3, poor responsiveness (little or

no fibrosis with abundant macroscopic tumor). Tumors are

classified as ‘responder’ when assigned to grade 1 (26

patients) and ‘non-responder’ when assigned to grade 2 or 3

(10 patients). Response can also be evaluated with the

pathologic lymph node stage at surgery (pN-STAGE). The

‘responder’ class contains 22 patients with no lymph nodes

found at surgery while the ‘non-responder’ class contains 14

patients with at least 1 regional lymph node. CRM was

measured according to the guidelines of Quirke et al. [37].

CRM was considered positive when the distance between the

tumor and the mesorectal fascia was ≤2 mm. Tumors with a

negative CRM are classified as ‘responder’ (27 patients),

while tumors with a positive CRM belong to the ‘non-

responder’ class (9 patients). Thirteen patients belong to the

‘responder’ class for all three outcomes, while there is an

overlap of two patients between the ‘non-responder’ classes.
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TTaabbllee  11

OOvveerrvviieeww  ooff  tthhee  ttwwoo  ccaassee  ssttuuddiieess  oonn  rreeccttaall  aanndd  pprroossttaattee  ccaanncceerr

Data set I: rectal cancer Data set II: prostate cancer

Number of samples 36 55

Data sources Microarray Microarray
Proteomics Genomics

Number of features (after preprocessing) T0: 6,913 genes; 90 proteins 6,974 genes
T1: 6,913 genes; 92 proteins 7,305 CNVs

Outcomes WHEELER GRADE
pN-STAGE STAGE
CRM METASTASIS

RECURRENCE



DDaattaa  sseett  IIII::  pprroossttaattee  ccaanncceerr
Patients and treatment
We also applied our method to a publicly available data set

of prostate cancer. Lapointe and colleagues [30] first

profiled gene expression in 71 prostate tumor cases of which

62 were primary and 9 had lymph node metastases. All

tumors were removed by radical prostatectomy (that is, the

surgical removal of the prostate gland). A cDNA microarray

was used, containing 39,711 human cDNAs representing

26,260 mapped genes. Additionally, DNA CNVs were

profiled on cDNA microarrays for CGH for 64 prostate

tumor cases, among which 55 were primary tumors and 9

had pelvic lymph node metastases. The arrays were obtained

from the Stanford Functional Genomics Facility and

included 39,632 human cDNAs corresponding to 22,279

genes [31]. Among the primary tumors, the available gene

expression and genomics data were in common for 55.

Data preprocessing
Median fluorescence ratios were calculated for genes

represented by multiple arrayed cDNAs. Missing gene

expression values were imputed unsupervised using the k-

nearest neighbors method of Troyanskaya et al. [38]. The

parameter k was set to 15 such that a missing value for a spot

S in a sample was estimated as the weighted average of the

15 spots that are most similar to spot S in the remaining

samples. The same unsupervised prefiltering as applied on

the rectal cancer data set was used for both the microarray

and genomics data sets. Features with a variance in the top

50% were retained, reducing the data sets to 6,974 genes and

7,305 CNVs, respectively.

Response classification
Two pathological variables, stage and grade, metastasis of the

tumor, as well as the outcome after prostatectomy defined as

recurrence were considered. For grade (from now on referred

to as GRADE), the Gleason Grading system was used, which

is based on the most common and second most common

architectural patterns of the glands of the tumor [39]. Two

groups could be distinguished based on the architecture of

the most common pattern: 36 tumors were well differentiated

(that is, low-grade), 19 were poorly differentiated (that is,

high-grade). According to the extent of the primary tumor

(STAGE), 25 samples were of stage T2 (that is, the cancer is

confined within one lobe of the prostate gland), while 25

samples were of advanced stage T3 (that is, the tumor has

extended through the fibrous tissue surrounding the prostate

gland but no other organs are affected). The stage of the

remaining five patients was not known. The cancer had

metastasized to distant lymph nodes in 12 tumors, while the

cancer had not spread beyond the regional lymph nodes in 38

of the tumors (METASTASIS). Tumor recurrence was defined

as a rise in prostate-specific antigen of at least 0.07 ng/ml or

as occurrence of clinical metastasis (RECURRENCE). Seven

tumors recurred while 22 tumors did not. The recurrence

status of the remaining 26 patients was not available.

KKeerrnneell  mmeetthhooddss  aanndd  wweeiigghhtteedd  lleeaasstt  ssqquuaarreess  ssuuppppoorrtt  vveeccttoorr
mmaacchhiinneess
Kernel methods are a group of algorithms that can handle a

very wide range of data types, such as vectors, sequences,

networks, and so on. They map the data x from the original

input space to a high dimensional feature space with the

mapping function Φ(x). This embedding into the feature

space is performed by a mathematical object K(xk , xl), called

a ‘kernel function’. This function efficiently computes the

inner product 〈 Φ(xk),Φ(xl) 〉 between all pairs of data items xk

and xl in the feature space, resulting in the kernel matrix. The

size of this matrix is determined only by the number of data

items, whatever the nature or the complexity of these items.

For example, a set of 100 patients each characterized by 6,913

gene expression values is still represented by a 100 × 100

kernel matrix [40]. The representation of all data sets by this

real-valued square matrix, independent of the nature or

complexity of the data to be analyzed, makes kernel methods

ideally positioned for heterogeneous data integration.

Any symmetric, positive semidefinite function is a valid

kernel function, resulting in many possible kernels - for

example, linear, polynomial, and diffusion kernels. They all

correspond to a different transformation of the data,

meaning that they extract a specific type of information from

the data set. In this paper, the normalized linear kernel

function:

K
~
(xk , xl) = K(xk , xl) / √{K(xk , xk) K(xl , xl)}

where K(xk , x) = xk
Tx is used instead of the linear kernel

function K(xk , xl) = xk
Txl. With the normalized version, the

values in the kernel matrix will be bounded because the data

points are projected onto the unit sphere while these

elements can take very large values without normalization.

Normalizing is thus required when combining multiple data

sources to guarantee the same order of magnitude for the

kernel matrices of the data sets.

A kernel algorithm for supervised classification is the SVM

developed by Vapnik [41] and others. Contrary to most other

classification methods and due to the way data are

represented through kernels, SVMs can tackle high

dimensional data (for example microarray data). Given a

training set (xk , yk)N
k=1 of N samples with feature vectors

xk ∈ Rn and output labels yk ∈ {–1, + 1}, the SVM forms a

linear discriminant boundary y(x) = sign[wT Φ(x) + b] in the

feature space with maximum distance between samples of

the two considered classes, with w representing the weights

for the data items in the feature space and b the bias term.

This corresponds to a non-linear discriminant function in

the original input space. A modified version of SVM,

LS-SVM, was developed by Suykens et al. [3,4]. On high

dimensional data sets, this modified version is much faster

for classification because a linear system instead of a

quadratic programming problem needs to be solved.
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The constrained optimization problem for an LS-SVM has

the following form:

1                   1   N
min (— wTw + γ — Σek

2)
w,b,e 2                   2  k=1

subject to:

yk[wT Φ(xk) + b] = 1 – ek, k = 1, … N

with ek the error variables, tolerating misclassifications in

cases of overlapping distributions, and γ the regularization

parameter, which allows tackling the problem of overfitting.

It has been shown that regularization seems to be very

important when applying classification methods on high

dimensional data [42].

In many two-class problems, data sets are skewed in favor of

one class such that the contribution of false negative and

false positive errors to the performance assessment criterion

are not balanced. We therefore used a weighted LS-SVM in

which a different weight ζk is given to positive and negative

samples in order to account for the unbalancedness in the

data set [5]. The objective function changes into:

1                  1   N
min (— wTw + γ — Σζkek

2)
w,b,e 2                  2  k=1

with

2NP
—N if yk = +1

ζ k = {
2NN
—N if yk = –1

and NP and NN representing the number of positive and

negative samples, respectively.

FFeeaattuurree  sseelleeccttiioonn
Univariate feature selection techniques are computationally

simple but do not incorporate feature-feature interactions.

However, due to small sample size limitations, multivariate

approaches are often not appropriate for discovering the

underlying complex, multivariate correlations. Because it

has been shown that univariate gene selection methods lead

to good and stable performances across many cancer types

and yield in many cases consistently better results than

multivariate approaches [43], we used the method DEDS

(differential expression via distance synthesis) [44]. This

technique is based on the integration of different univariate

test statistics via a distance synthesis scheme because

features highly ranked simultaneously by multiple statistics

are more likely to be differentially expressed than features

highly ranked by a single test statistic. The statistical tests

combined are ordinary fold changes, ordinary t-statistics,

SAM (significance analysis for microarrays) statistics and

moderated t-statistics. DEDS is available as a BioConductor

package in R.

We applied DEDS to the microarray data sets as well as the

genomics data set. From our experience, DEDS is less

appropriate for data with a limited set of features (data not

shown). Since the proteomics data on rectal cancer contain

only 90-92 cancer-related proteins, one test statistic suffices,

for which we chose the Wilcoxon rank sum test.

MMooddeell  bbuuiillddiinngg
To determine the optimal number of features, we use a

leave-one-out (LOO) cross-validation approach in which we

increase the number of included features iteratively

according to the obtained feature ranking but in which we do

not include more features than the number of samples in the

data set on which the optimal number of features is

determined, as discussed by Li and Yang [45]. Besides the

number of features, the parameters of the kernel method

(parameter γ for LS-SVM with normalized linear kernel) also

need to be selected. This selection occurs on a k-dimensional

grid with k - 1 the number of data sets included. We

considered 40 possible values for γ, ranging from 10-4 to 106

on a logarithmic scale. In each LOO iteration, a sample is left

out, feature selection is performed on the remaining n - 1

samples, and models are built for all possible combinations

of parameters on this grid. Each model with the instantiated

parameters is evaluated on the left out sample. This whole

procedure is repeated for all samples. The model parameters

are chosen corresponding to the model with the highest LOO

area under the receiver operating characteristic (ROC) curve

(AUC). If multiple models have the same AUC, the model

with the lowest balanced error rate and an as high as

possible sum of sensitivity and specificity is chosen. For each

considered outcome, the AUC of the best performing model

is compared with the AUC of the other models using the

method of Hanley and McNeil [46]. The final features are

chosen as those that occurred most often in the top rankings

determined in each LOO iteration.

Three kinds of model building strategies are proposed, different

in the degree of integration. Figure 1 shows these strategies in

more detail. The data sets are represented as matrices with rows

corresponding to patients and columns corresponding to genes,

proteins, or CNVs. The matrices representing microarray or

genomics data are larger than those for the proteomics data to

emphasize the difference in dimensionality.

All three strategies were applied to the microarray and

proteomics data sets of rectal cancer. For the prostate cancer

data set, however, only two strategies were applicable due to

a lack of measurements repeated over time. For all models

the parameters were trained according to the same

approach, which makes the corresponding LOO results

comparable for each outcome separately.

Step A models: single data set
In a first step, LS-SVM models are built on each data set

separately, mimicking the results that would have been
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obtained when only static data from one platform were

available. For rectal cancer, the single data sets are micro-

array at T0, microarray at T1, proteomics at T0, and

proteomics at T1 for the prediction of a regression grading

system and two prognostic factors (Figure 1a). For prostate

cancer, LS-SVM models are built on the microarray and

genomics data separately for the prediction of grade, stage,

metastasis, and recurrence. Because of only one set of

features, a two-dimensional grid is used for the optimization

of the regularization parameter and the number of features.

Step B models: manual integration of data over time
When measurements are repeated at multiple time points,

knowledge over time can be exploited. For rectal cancer,

data were available before and early in therapy and,

therefore, can be combined in the models. This is done for

each data type separately by manually calculating the change

in gene expression or protein abundance between the first

two time points (T0-T1). These changes over time are used as

features for the models as shown in Figure 1b. Also for these

models, a two-dimensional grid suffices for the optimization

of the regularization parameter and the number of features.

Step C models: multiple omics integration approach
The previous two types of models (steps A and B) are

considered to verify whether complex integration of data

over multiple layers of biological regulation is crucial. The

ability of kernel methods to deal with complexly structured

data makes them ideally positioned for more advanced

integration of heterogeneous data sources. We will use the

intermediate integration method proposed in [47] in which a

kernel matrix is computed for each data source separately.

Subsequently, these data sources can be integrated in a

straightforward way by summing the multiple kernel

matrices. Positive semidefiniteness of the linear combina-

tion of kernel matrices is guaranteed by constraining the

weights of the kernels to be non-negative. A weighted LS-

SVM is trained on the explicitly heterogeneous kernel matrix.

The choice of the weights to give to each data set is impor-

tant. A kernel framework for optimizing weights is proposed

in [48]. This optimization is important when dealing with

many data sets of which only several are relevant. However,

when the number of data sets is limited and most of them

are reliable and relevant to the problem at hand, a trade-off

needs to be made between performance and computational

burden (for example, extra required cross-validation loops).

Due to the rather small sample size in both case studies,

weights were chosen equally. Moreover, our aim is to

emphasize that classification becomes more accurate when

data from multiple layers in the genome are available and to

offer a machine learning-based method for integrating these

data sources, rather than to improve an algorithm for the

optimization of weights (for example, [48]). A three-

dimensional grid is used for the optimization of the

parameters, that is, the regularization parameter, the

number of genes selected from the microarray data sets, and

the number of proteins or CNVs obtained from the

proteomics data sets or the genomics data set, respectively.

For the data on rectal cancer, the number of genes/proteins

selected at T0 and T1 were taken equally when data from

both time points were considered. Figure 1c gives an

overview of the strategy.

RReessuullttss
SSttuuddyy  II::  rreeccttaall  ccaanncceerr
Using the methodologies shown in Figure 1, models were

built using microarray and proteomics data of 36 rectal

cancer patients at two time points during therapy for the

prediction of three outcomes registered at the moment of

surgery: a tumor regression grading system (WHEELER)

and two prognostic factors, pathologic N stage at surgery

(pN-STAGE) and the circumferential margin involvement

(CRM). The models with the highest AUC, lowest balanced

error rate and an as high as possible sum of sensitivity and

specificity are shown in Table 2. The step A models are MT0

(model based on microarray data at T0), MT1 (model based

on microarray data at T1), PT0 (model based on proteomics

data at T0), and PT1 (model based on proteomics data at T1).

The step B models consist of MT0-T1 (model based on

change in gene expression between T0 and T1) and PT0-T1

(model based on change in protein abundances between T0

and T1). Finally, the step C models comprise MT01 (model

based on microarray data at both time points), PT01 (model

based on proteomics data at both time points), MPT0 (model

based on microarray and proteomics data at T0), MPT1 (model

based on microarray and proteomics data at T1), all possible

combinations of three data sets (using the same name

convention), and MPT01 (model based on all data (microarray

and proteomics data at both time points)). The numbers of

genes and proteins were chosen to optimize the LOO

performance of the LS-SVM models. The features selected

most often in the 36 LOO iterations are listed and discussed.

For each outcome, the ROC curve of the best model was

compared with the ROC curves of all other models [46]. The

P-values of these significance tests are reported as well.

Table 2 shows the LS-SVM models for the considered

combinations of data sets to predict WHEELER, pN-STAGE,

and CRM with the optimal number of genes and proteins

selected with DEDS and the Wilcoxon rank sum test,

respectively. The corresponding ROC curves are shown in

Additional data file 1. The performance of the models based

on three data sets is given in Additional data file 2. Due to

the slightly, but not significantly, better performance for

each outcome of one model based on three data sets

compared to models based on two data sets, we report the

results for the best model combining two data sets. Such

models would only require a sample to be taken at one time

point (MPT0, MPT1) or one technology to be applied on two

time points (MT01, PT01). For the prediction of WHEELER,

the expression of 25 genes and 12 proteins at T1 was best,
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FFiigguurree  11
Overview of the three applied model building strategies. ((aa))  Use of a single data set; ((bb))  manual integration of data over time; ((cc))  a genome-wide
integration approach. The data sets are represented as matrices with rows corresponding to patients and columns corresponding to genes, proteins, or
CNVs. In step A, LS-SVM models are built on each data set separately. A two-dimensional grid is used for the optimization of the regularization
parameter and the number of features. For step B, data sets over time are combined. By using the changes in expression or abundance as features, a
two-dimensional grid is sufficient. In step C, an intermediate integration method is used for the integration of all available data sets. A k-dimensional grid
is required for optimizing the regularization parameter and the number of features selected from the (k - 1) integrated data sets. FS, feature selection; Mi,
model for parameter combination i; NF, number of features; T, time point.
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although not significantly, with an AUC of 0.9269. Also for

pN-STAGE, combining both data sets at T1 using the

expression of 21 genes and 14 proteins resulted in the best

LOO AUC of 0.9870. This performance is significantly better

than all step A and B models as well as PT01. Finally, the

inclusion of 7 genes and 33 proteins at T1 led to an AUC of

0.9630 for the prediction of CRM. Four models based on

only one data type perform significantly worse compared to

MPT1. For all outcomes, none of the selected proteins are a

product of the selected genes.
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TTaabbllee  22

LLSS--SSVVMM  mmooddeellss  ffoorr  tthhee  pprreeddiiccttiioonn  ooff  WWHHEEEELLEERR,,  ppNN--SSTTAAGGEE  aanndd  CCRRMM  iinn  rreeccttaall  ccaanncceerr

Outcome Model NG* NP† AUC (SE)‡ p-value§

WWHHEEEELLEERR
A MT0 4 0.7538 (0.1085) 0.0987

MT1 29 0.9038 (0.0502) 0.6861
PT0 35 0.7423 (0.0867) 0.0540
PT1 11 0.9038 (0.0575) 0.7273

B MT0-T1 32 0.6846 (0.1215) 0.0598 
PT0-T1 5 0.8654 (0.0621) 0.4135

C MT01 3¶ 0.7808 (0.0985) 0.1320
PT01 21¶ 0.7692 (0.0831) 0.0831
MPT0 3 35 0.8461 (0.0718) 0.2760
MPT1 2255 1122 00..99226699  ((00..00442255))
MPT01 2¶ 31¶ 0.8846 (0.0558) 0.4858

MT0PT1 2 4 0.9385 (0.0444) 0.8101¥

ppNN--SSTTAAGGEE
A MT0 25 0.6493 (0.0914) 2.315e-4 

MT1 22 0.8506 (0.0665) 0.0362
PT0 2 0.6753 (0.0906) 6.659e-4
PT1 12 0.8409 (0.0652) 0.0238

B MT0-T1 4 0.6071 (0.0986) 1.359e-4
PT0-T1 9 0.7662 (0.0900) 0.0153

C MT01 24¶ 0.9286 (0.0450) 0.1998 
PT01 34¶ 0.8182 (0.0695) 0.0145
MPT0 27 27 0.9188 (0.0469) 0.1591
MPT1 2211 1144 00..99887700  ((00..00113355))
MPT01 23¶ 16¶ 0.9610 (0.0280) 0.3421

MT0PT01 26 20¶ 1 (0) 0.3347¥

CCRRMM
A MT0 33 0.6790 (0.1016) 0.0072 

MT1 9 0.9259 (0.0472) 0.4955
PT0 34 0.8518 (0.0624) 0.0935
PT1 34 0.7654 (0.0831) 0.0281

B MT0-T1 6 0.9136 (0.0480) 0.4030
PT0-T1 2 0.8272 (0.0709) 0.0849

C MT01 16¶ 0.8066 (0.0846) 0.0468 
PT01 3¶ 0.7531 (0.0865) 0.0227
MPT0 7 27 0.8477 (0.0688) 0.1340
MPT1 77 3333 00..99663300  ((00..00334444))
MPT01 2¶ 3¶ 0.8230 (0.0771) 0.0973

MT1PT0 16 14 0.9630 (0.0376) 1
MT01PT1 9¶ 29 0.9876 (0.0146) 0.4924¥

*Number of genes selected in each LOO iteration. †Number of proteins selected in each LOO iteration. ‡Area under the ROC curve (standard error)
obtained with leave-one-out. §Comparison of AUC between each model and the best model in bold [46]. ¶Number of features used at both time points.
¥This model is better than the model in bold we compare with.



The contribution of the genes and/or proteins in rectal or

colorectal cancer that were selected most often in the LOO

iterations of MPT1 and predicted most accurately WHEELER,

pN-STAGE, or CRM are shown in Table 3. A protein

important for CRM, for example, is the epidermal growth

factor receptor (EGFR), involved in signaling pathways
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TTaabbllee  33

FFeeaattuurreess  ffoorr  ((ccoolloo))rreeccttaall  ccaanncceerr  sseelleecctteedd  bbyy  MMPPTT11 aanndd  kknnoowwnn  ttoo  bbee  iinnvvoollvveedd  iinn  tthhiiss  ttyyppee  ooff  ccaanncceerr

Outcome* Gene/protein Hits† Region Function Up/down‡ Reference

W Cox-2 36 1q25.2-q25.3 Progression Up [50]

W IL-1B 36 2q14 Inflammatory response Up [50]

W Ferritin 36 11q13; 19q13.3-q13.4 Iron storage Down [63]

W EGF 36 4q25 Cell growth/proliferation/ differentiation Up [64]

W MMP-2 36 16q13-q21 Invasion/metastasis Up [65]

W TGFα 36 2p13 Angiogenesis/cell proliferation Down [51]

W SELE 25 1q22-q25 Progression/metastasis Up [66]

W GM-CSF 24 5q31.1 Maintenance of granulocytes/macrophages Up [67]

W MMP-1 15 11q22.3 Tumor invasion/ metastasis/poor prognosis Up [68]

N Reg4 36 1p13.1-p12 Early carcinogenesis Down [69]

N MUC2 36 11p15.5 Deregulated by TNFα Down [70]

N CA1 36 8q13-q22.1 Carbonate dehydratase activity Down [71]

N CA2 36 8q22 Carbonate dehydratase activity Down [71]

N CLDN8 36 21q22.11 Tumorigenesis Down [72]

N CEA 36 19q13.1-q13.2 Cell adhesion; tumor marker for recurrence Down [53]

N IL-1ra 36 2q14.2 Carcinogenesis Up [73]

N CA19-9 36 Tumor marker for recurrence Down [53]

N Ferritin 36 11q13; 19q13.3-q13.4 Iron storage Down [63]

N IL-1beta 36 2q14 Inflammatory response Down [50]

N beta2-microglobulin 36 15q21-q22.2 Metastasis Up [74]

N RARRES1 31 3q25.32-q25.33 Cell proliferation Down [75]

N IL-8 28 4q13-q21 Progression/metastasis Down [52]

N TNFRII 24 1p36.3-p36.2 Apoptosis Up [76]

C ICAM-1 36 19p13.3-p13.2 Metastasis Down [77]

C CEA 36 19q13.1-q13.2 Cell adhesion; tumor marker for recurrence Down [53]

C MMP-2 36 16q13-q21 Invasion/metastasis Up [65]

C Adiponectin 36 3q27 Metabolic/hormonal processes Down [78]

C Thrombospondin-1 36 15q15 Angiogenesis/tumor growth Up [79]

C EGFR 36 7p12 Cell growth/ proliferation/ differentiation Up [49]

C Tissue factor 35 1p22-p21 Angiogenesis/metastasis Up [80]

C CYP1B1 35 2p21 Drug metabolism Down [81]

C EGF 32 4q25 Cell growth/proliferation/ differentiation Up [64]

*W, WHEELER; N, pN-STAGE; C, CRM. †Number of occurrences of the gene/protein in the 36 LOO iterations. ‡Up/down-regulation in the good
responders with respect to moderate or poor responders; no lymph nodes with respect to at least one regional lymph node; negative CRM with respect
to positive CRM. CRC, (colo)rectal cancer.



affecting cellular growth, differentiation, and proliferation.

This protein represents one of the most promising targets

allowing progress in colorectal cancer treatment. It has been

suggested that EGFR polymorphisms as well as poly-

morphisms of other genes active in the EGFR pathway may

be potential indicators of radiosensitivity in patients with

rectal cancer treated with chemoradiation [49]. In colorectal

cancer, pro-inflammatory cytokines such as interleukin-1

beta and interleukin-6 may be accountable for the over-

expression of Cox-2, important in the early stage and for

progression [50]. Transforming growth factor alpha, down-

regulated in our patients with a good responsiveness to

preoperative therapy, is implicated in metastatic spread of

colon cancer cells [51]. The expression of interleukin-8 is

associated with induction and progression of colorectal

carcinoma and the development of colorectal liver meta-

stases [52]. In our data set, it is down-regulated in the group

of patients with no lymph nodes found at surgery. Finally,

elevated carcinoembryonic antigen and cancer antigen 19-9

are related to poor outcome in colorectal cancer [53]. Their

levels are low in patients with no lymph nodes, while

carcinoembryonic antigen is also less expressed in patients

with a negative CRM, that is, belonging to the class of

‘responders’. A complete list of the genes and proteins

chosen by the models MPT1 are shown, for each outcome

separately, in Additional data file 3. The predictions seem to

depend on mainly different subsets of features. The gene

encoding PAI-2 is important for both WHEELER and CRM,

while the proteins important for two of the three outcomes

are interleukin-4, ferritin, apolipoprotein H, epidermal

growth factor, matrix metalloproteinase-2, and lympho-

tactin. Notably, these genes and proteins were also selected

by the other models based on microarray and/or proteomics

data at T1, although the specific feature ranking depends on

the number of features included. Some of these genes and

proteins were also included in the models based on data at T0.

SSttuuddyy  IIII::  pprroossttaattee  ccaanncceerr
The same methodology was applied to microarray and

genomics data of 55 patients with prostate cancer. Table 4

shows the results for the prediction of the grade and stage of

the tumor (GRADE and STAGE), as well as the tumors that

metastasized to distant lymph nodes (METASTASIS) or that

recurred (RECURRENCE). Because the data were gathered

at one time point, only step A and C models are applicable.

The step A models are represented as M (model based on

microarray data) and G (model based on genomics data),

and the step C model based on both microarray and genomics

data as MG. Also, after having optimized the essential

number of features to be included using a LOO cross-

validation, the final genes and CNVs were selected based on

their position and number of occurrences in the 55 LOO

rankings.

We obtained similar results as for rectal cancer. Combining

gene expression with measurements at the DNA level (MG)

led, for all four outcomes, to an improvement in classifi-

cation accuracy and was significant in some cases (Table 4).

For the prediction of GRADE, six genes and eight CNVs

selected with DEDS resulted in an AUC of 0.9006. For

STAGE, 42 genes and 22 CNVs were needed for a perfor-

mance of 0.8528. The model MG for the prediction of

METASTASIS had an AUC of 0.9868 when fusing the

expression of 18 genes with 3 CNVs. Finally, the prediction
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TTaabbllee  44

LLSS--SSVVMM  mmooddeellss  ffoorr  tthhee  pprreeddiiccttiioonn  ooff  GGRRAADDEE,,  SSTTAAGGEE,,  MMEETTAASSTTAASSIISS  aanndd  RREECCUURRRREENNCCEE  iinn  pprroossttaattee  ccaanncceerr

Outcome Model NG* NC† AUC (SE)‡ p-value§

GGRRAADDEE
A M 24 0.8304 (0.0623) 0.2727

G 8 0.7822 (0.0632) 0.0503
C MG 66 88 00..99000066  ((00..00441133))

SSTTAAGGEE
A M 18 0.6576 (0.0778) 0.0191

G 32 0.7936 (0.0631) 0.3466
C MG 4422 2222 00..88552288  ((00..00555500))

MMEETTAASSTTAASSIISS
A M 18 0.9759 (0.0178) 0.4392

G 12 0.8114 (0.0755) 0.0166
C MG 1188 33 00..99886688  ((00..00112211))

RREECCUURRRREENNCCEE
A M 24 0.7208 (0.0936) 0.5392

G 26 0.4481 (0.1433) 0.0354
C MG 3322 22 00..77885577  ((00..00993344))

*Number of genes selected in each LOO iteration. †Number of copy number variations selected in each LOO iteration. ‡Area under the ROC curve
(standard error) obtained with leave-one-out. §Comparison of AUC between each model and the best model in bold [46].



of RECURRENCE was most difficult, with an AUC of 0.7857

when combining 32 genes and 2 CNVs. Additional data file 1

shows the ROC curves of the models listed in Table 4.

Several genes and CNVs have been selected by MG and are

known to be involved in, and important for, prostate cancer

(Table 5). The gene ALOX15B is a suppressor of prostate

tumor development [54] and in this data set is down-

regulated in tumors of high-grade and in tumors that

recurred. Both SFRP4 and CXCL14 on the other hand are

inhibitors of prostate tumor growth [55,56]. SFRP4 is up-

regulated in tumors of high-grade, and CXCL14 in tumors of

advanced stage. A small deletion involving chromosomal

band 21q22.3 fuses all coding exons of ERG to androgen-

related sequences in the promoter of the prostate-specific

TMPRSS2 gene. This chromosomal rearrangement is a

highly prevalent oncogenic alteration in prostate tumor cells

and leads to an aberrant expression of the ERG proto-

oncogene, important for early prostate carcinogenesis [57].

In this data set, ERG is overexpressed in tumors in which the

cancer metastasized to distant lymph nodes. It has been

shown that this genetic biomarker is a strong prognostic

factor for disease recurrence, and can be used for early

detection and outcome prediction in prostate cancer [58].

VAV3, an oncogene involved in development and progres-

sion of prostate cancer, is up-regulated in tumors that
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TTaabbllee  55

FFeeaattuurreess  ffoorr  pprroossttaattee  ccaanncceerr  sseelleecctteedd  bbyy  MMGG  aanndd  kknnoowwnn  ttoo  bbee  iinnvvoollvveedd  iinn  tthhiiss  ttyyppee  ooff  ccaanncceerr

Outcome* Gene/CNV Hits† Region Function Up/down‡ Reference

G SFRP4 55 7p14.1 Inhibitor of PT growth/invasion Up [55]

G VCAN 55 5q14.3 Contributor to PC pathology Up [82]

G ALOX15B 36 17p13.1 Suppressor of PT development Down [54]

S MAGEA4 50 Xq28 Only expressed in PC (diagnosis and therapy) Down [83]

S ANPEP 50 15q25-q26 PT cell invasion Down [84]

S POU4F1 50 13q31.1 PC cell growth Down [85]

S CXCL14 48 5q31 Inhibitor of PT growth Up [56]

S RNASEL 48 1q25 Polymorphic changes as tumor; suppressor Up [62]
in hereditary PC 

S GDEP 41 4q21.1 Prostate-specific gene Down [86]

M ERG 50 21q22.3 Proto-oncogene; early prostate carcinogenesis Up [57]

M AREG 49 4q13-q21 PC progression/growth via TARP Down [87]

M VAV3 49 1p13.3 Oncogene; PC development/ progression Up [59]

M ADAMTS1 26 21q21.2 Negatively affected by TGFbeta1, which Down [82]
increases VCAN-expression

R AZGP1 29 7q22.1 Inversely associated to tumor stage; Down [88]
predictor of biochemical recurrence

R TIAM1 29 21q22.1-11 Predictor of decreased disease-free Up [60]
survival/recurrence

R FGG 28 4q28 PC cell growth Down [89]

R ATF3 26 1q32.3 Inversely related to invasion/ angiogenesis; Down [90]
positively correlated to metastases

R JAG1 26 20p12.1-11.23 Cell growth/progression/metastasis Up [61]

R ERG 14 21q22.3 Proto-oncogene; early prostate carcinogenesis Up [57]

R ALOX15B 14 17p13.1 Suppressor of PT development Down [54]

*G, GRADE; S, STAGE; M, METASTASIS; R, RECURRENCE. †Number of occurrences of the gene/CNV in all LOO iterations (number of LOO iterations
for G = 55, S = 50, M = 50, R = 29). ‡Up/down-regulation in high-grade with respect to low-grade; advanced stage with respect to early stage; metastasis
with respect to no metastasis; recurrence with respect to no recurrence. PC, prostate cancer; PT, prostate tumor.



metastasized [59]. It has previously been shown that strong

overexpression of TIAM1 is significantly associated with

disease recurrence and a decreased disease-free survival

[60]. Also, JAG1 is significantly associated with recurrence

[61] and plays a role in cell growth, progression, and

metastasis. In this data set, both genes are up-regulated in

the group of tumors that recurred. Finally, several germline

mutations or variants in RNASEL have been observed

among hereditary prostate cancer cases, indicating that

polymorphic changes within the RNASEL gene may be

associated with increased risk of familial but not sporadic

prostate cancer [62]. A list of all the genes and CNVs

selected by the models MG are shown in Additional data

file 3. As for rectal cancer, the outcomes for prostate cancer

seem to be characterized by mainly different sets of features.

Five genes overlap between at least two outcomes (ERG,

AHSG, SEMA4G, F5, and ALOX15B), while the same holds

for four CNVs of the genes GPD1L, KCTD12, SMYD5, and

TRO.

CCoommppaarriissoonn  wwiitthh  aann  eennsseemmbbllee  aapppprrooaacchh
To assess the benefit of our kernel-based integration approach

over standard data fusion techniques, we implemented an

ensemble approach in which each data set gives rise to a

separate LS-SVM classifier. These individual LS-SVM models

were built similarly to the step A models, with the same

number of genes, proteins or CNVs selected as included in

the best models MPT1 and MG. Subsequently, as a late

integration step, the continuous outputs of these models

were added.

For the study on rectal cancer, the AUC values of the

ensemble models integrating the microarray and proteomics

data set gathered at T1, and the corresponding AUC values of

the best model obtained with our strategy (MPT1) are shown

in Table 6. The P-values of the significance tests comparing

the ROC curves are reported as well [46]. For CRM, our

strategy was significantly better than the ensemble approach

at a significance level of 0.05. For WHEELER and pN-

STAGE, the AUC values did not differ significantly. Similarly

for the study on prostate cancer, the AUC values of MG were

compared with the AUC values of the ensemble models

combining microarray and genomics data (Table 6). For all

four outcomes, the AUC of MG was better than the AUC of

the ensemble models, although being significantly better for

RECURRENCE only.

CCoorrrreellaattiioonn  aannaallyyssiiss
We additionally verified whether, in both cases, data from

multiple layers of molecular biology were complementary.

After mapping the entities of the data sets based on their

entrez gene IDs, we investigated the correlation between the

microarray and proteomics data of rectal cancer on the one

hand, and between the microarray and genomics data of

prostate cancer on the other hand. Using the Spearman

correlation coefficient, there was no significant correlation

for rectal cancer between the abundances of the 90-92

proteins and their corresponding transcripts at a

significance level of 0.05. The microarray and genomics data

sets for prostate cancer were slightly more correlated. While

for GRADE the 6 genes selected by the model MG did not

correlate with their DNA expression, 2 of the 42 selected

genes for STAGE were significantly correlated (P < 0.05).

For METASTASIS and RECURRENCE, there was a

significant correlation for one and three genes, respectively.

The regions, with involved CNVs selected from the genomics

data, were also compared with the regions in which the

selected genes from the microarray data were located. For

the majority of regions, there was no overlap. For the other

regions with the same rough chromosomal location, the

genes selected by both data sets were different.

DDiissccuussssiioonn
The proposed integration approach has been applied to two

patient data sets, each with two high-throughput data

sources. Microarray and proteomics were gathered from 36

patients with rectal cancer at two time points during
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TTaabbllee  66

CCoommppaarriissoonn  ooff  oouurr  kkeerrnneell--bbaasseedd  iinntteeggrraattiioonn  aapppprrooaacchh  wwiitthh  tthhee  eennsseemmbbllee  aapppprrooaacchh

Outcome AUC (SE)*: MPT1/MG AUC (SE)*: ensemble approach p-value

WHEELER 0.9269 (0.0425) 0.9500 (0.0339) 0.6160

pN-STAGE 0.9870 (0.0135) 0.9253 (0.0432) 0.1422

CRM 0.9630 (0.0344) 0.7860 (0.0783) 00..00338844

GRADE 0.9006 (0.0413) 0.8567 (0.0521) 0.3745

STAGE 0.8528 (0.0550) 0.8304 (0.0582) 0.6836

METASTASIS 0.9868 (0.0121) 0.9452 (0.0309) 0.1313

RECURRENCE 0.7857 (0.0934) 0.4545 (0.1352) 00..00118822

*Area under the ROC curve (standard error) obtained with leave-one-out. †Comparison in AUC between the best models obtained with our strategy
(MPT1 for rectal cancer, MG for prostate cancer) and the corresponding ensemble models based on the same number of features [46].



preoperative treatment, while microarray and genomics

were gathered from 55 patients with prostate cancer. To

verify the merit of our integration approach over the use of a

single omics data source, models were built for classifying

cancer patients according to therapy response, prognostic

factors, metastasis, or recurrence. In many studies, only

single data sources are explored for the development of such

profiles. However, in our opinion, a single layer of molecular

information is inadequate to explain the complete network

of molecules underlying a disease. In this study, LS-SVMs

were first built on all data sets individually (Figure 1). Next,

we manually integrated data measured at multiple time

points by building LS-SVMs using the change in expression

between two time points. Because the integration of data

may be more complex than the change in expression over

time, we subsequently applied an intermediate integration

approach in which data from multiple omics were combined

at the kernel level within the patient domain.

For the data on rectal cancer, all three outcomes - a tumor

regression grading system and two prognostic factors -

could be predicted most accurately and most cost-efficiently

with an AUC ranging from 0.9269 to 0.9870 when fusing

microarray and proteomics data gathered during therapy

(MPT1; Table 2). For WHEELER, for example, MPT0

performance is better than each of the models based on

data from an individual technology (MT0 and PT0), as is the

case for MPT01 compared to MT01 and PT01. This trend of

increased performance when combining data from two

different technologies was further confirmed by our second

data set for prostate cancer patients. Best results for the

prediction of grade, stage, metastasis, and recurrence were

obtained when integrating microarray and genomics data

(MG). The corresponding AUC values were 0.9006, 0.8528,

0.9868, and 0.7857, respectively (Table 4). For many of the

genes, proteins, and CNVs included in these models,

involvement in rectal or prostate cancer has been defined,

indicating the reliability of the selected features (Tables 3

and 5). These models were compared with models obtained

with an ensemble approach in which classifiers are

combined instead of data sets at the kernel level. Globally,

our approach performed better, although not always

significantly (Table 6).

By looking at the correlation between two data sets gathered

from the same set of patients, we show that data from

different layers are mainly complementary. For rectal

cancer, there was a lack of correlation between the selected

genes and their corresponding proteins. Also, the selected

proteins did not significantly correlate with their transcript

level, suggesting alternative splicing and post-translational

modification. With newer technologies such as mass

spectrometry, the whole proteome will become measurable.

For prostate cancer, up to three genes included in the model

MG were significantly correlated with their corresponding

CNV.

More specific for the study on rectal cancer, we can conclude

from Table 2 that data gathered after an initial dose of

cetuximab are more informative for prediction of therapy

response than data gathered before the start of the therapy.

Neither microarray nor proteomics data can predict the

outcomes more accurately at T0 than T1, except for the

proteomics data at T0 being more informative for the

prediction of CRM. Moreover, when combining both data

types at one time point (MPT0 and MPT1), the models

applicable after the initial dose of cetuximab outperform

those at T0.

We acknowledge that the models proposed in this

manuscript are quite expensive. Applying a model for rectal

cancer would require microarray and/or proteomics data,

gathered at one or two time points during therapy. However,

we have attempted to keep the cost to a minimum. The

performance difference between models combining two data

sets, only requiring a sample to be taken at one time point or

one technology to be applied at two time points, and models

requiring a sample to be taken at both time points and both

technologies to be performed was minimal and not

statistically significant. We therefore chose the best model

among the models based on two data sets. We admit that

there may exist other, less expensive data sources that can

contain complementary information as well. Firstly, clinical

information is routinely gathered during therapy, such as

tumor size, tumor location and number of positive lymph

nodes. However, we only had access to the clinical

parameter age, for which we performed an additional

analysis to verify whether this parameter could be of use. A

univariate analysis based on the Wilcoxon rank sum test

showed no significant difference in age between the two

classes of samples according to the considered outcomes. In

a multivariate logistic regression model, the parameter age

was not significant as well. Secondly, there is an increasing

need for multi-modal studies in which, among others,

clinical, genomic and genetic data are collected. Also,

imaging, such as computed tomography (CT) and magnetic

resonance imaging (MRI) can be a potential predictor to use

in combination with high-throughput data sources. Such

studies are required to determine which data sets are most

relevant for the problem at hand and which data sets should

be combined to become good performing, affordable models

that are clinically applicable.

CCoonncclluussiioonnss
The results suggest that the use of our integration approach

on experimental data from multiple levels in the genome can

improve the performance of decision support in cancer. For

both data sets studied in this manuscript, combining high-

throughput data sets (transcriptomics with proteomics, or

genomics with transcriptomics) outperformed the models

based on data from a single layer of biological information,

independent of the outcome considered for prediction.
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These results emphasize the need for comprehensive multi-

modal data gathered with high-throughput technologies as

well as imaging, because it is unknown which technologies,

and thus which levels of molecular biology, are the most

relevant for prognostic prediction. We acknowledge that this

will substantially increase costs in a first exploratory phase.

However, this is a necessary investment to ultimately obtain

cost-efficient models usable in patient tailored therapy.

In the near future, we will compare our kernel-based

integration method with a Bayesian network integration

framework. These frameworks are complementary. We also

plan to apply an ensemble approach for integrating these

two frameworks because more accurate classifiers are not

only obtained by combining different data types but also by

combining individual decisions of multiple classifiers. In this

way, the advantages of both methods can be exploited.

AAbbbbrreevviiaattiioonnss
AUC, area under the ROC curve; CGH, comparative genomic

hybridization; CNV, copy number variation; CRM, circum-

ferential margin involvement; DEDS, differential expression

via distance synthesis; EGFR, epidermal growth factor

receptor; G, model based on genomics data; LOO, leave-one-

out; LS-SVM, least squares support vector machine; M,

model based on microarray data; MG, model based on both

microarray and genomics data; MPT0, model based on

microarray and proteomics data at T0; MPT1, model based

on microarray and proteomics data at T1; MPT01, model

based on all data (microarray and proteomics data at both

timepoints); MT0, model based on microarray data at T0;

MT1, model based on microarray data at T1; MT01, model

based on microarray data at both time points; MT0-T1,

model based on change in gene expression between T0 and

T1; PT0, model based on proteomics data at T0; PT1, model

based on proteomics data at T1; PT01, model based on

proteomics data at both time points; PT0-T1, model based on

change in protein abundances between T0 and T1; ROC,

receiver operating characteristic; SVM, support vector

machine; T0, time point before treatment; T1, time point

after the first loading dose of cetuximab but before the start

of radiotherapy with capecitabine; T2, time point at moment

of surgery.
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