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ABSTRACT

The nucleocapsid (N) protein of SARS-CoV-2 has been
reported to have a high ability of liquid-liquid phase
separation, which enables its incorporation into stress
granules (SGs) of host cells. However, whether SG
invasion by N protein occurs in the scenario of SARS-
CoV-2 infection is unknow, neither do we know its con-
sequence. Here, we used SARS-CoV-2 to infect mam-
malian cells and observed the incorporation of N protein

into SGs, which resulted in markedly impaired self-dis-
assembly but stimulated cell cellular clearance of SGs.
NMR experiments further showed that N protein binds to
the SG-related amyloid proteins via non-specific tran-
sient interactions, which not only expedites the phase
transition of these proteins to aberrant amyloid aggre-
gation in vitro, but also promotes the aggregation of
FUS with ALS-associated P525L mutation in cells. In
addition, we found that ACE2 is not necessary for the
infection of SARS-CoV-2 to mammalian cells. Our work
indicates that SARS-CoV-2 infection can impair the dis-
assembly of host SGs and promote the aggregation of
SG-related amyloid proteins, which may lead to an
increased risk of neurodegeneration.
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INTRODUCTION

The ongoing pandemic of coronavirus disease 2019
(COVID-19) caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) is an international public
health emergency. SARS-CoV-2 infection typically causes a
contagious respiratory tract illness and occasionally gas-
trointestinal symptoms (Lee et al., 2020; Mao et al., 2020;
Zhou et al., 2020; Zhu et al., 2020). These immediate
symptoms would disappear in several weeks as the patients
recover from the infection (Soresina et al., 2020; Thevarajan
et al., 2020). In the meantime, many evidence have shown
that SARS-CoV-2 can also infect human central nervous
system (Mao et al., 2020; Zhou et al., 2020; Song et al.,
2021) and cause neuroinflammation (Bostanciklioglu, 2020;
Gatto and Fernandez Boccazzi, 2020; Hascup and Hascup,
2020; Heneka et al., 2020; Singal et al., 2020), which raise
worries about potential long-term effects of COVID-19
especially on the development of neurodegenerative dis-
eases (Gatto and Fernandez Boccazzi, 2020; Heneka et al.,
2020; Li et al., 2020; Paniz-Mondolfi et al., 2020; Serrano-
Castro et al., 2020). Indeed, virus invasion in neurological
system has been linked to the pathogenesis of several
neurodegenerative disorders such as Parkinson’s disease
(PD), Alzheimer’s disease (AD), and amyotrophic lateral
sclerosis (ALS) (Jang et al., 2009; Eimer et al., 2018;
Readhead et al., 2018; Bellmann et al., 2019; Marreiros
et al., 2020). PD diagnosed after SARS-CoV-2 infection has
been also reported (Cohen et al., 2020). However, the rela-
tionship between SARS-CoV-2 infection and neurodegen-
eration requires a lot more evidence to reveal.

SARS-CoV-2 belonging to SARS-related coronaviruses,
is an enveloped, positive-sense single-stranded RNA virus
with a 30-kb genome (Wu et al., 2020; Zhou et al., 2020; Zhu
et al., 2020). Its genomic RNA packages with the nucleo-
capsid (N) protein to form the so-called nucleocapsid (Lai
and Cavanagh, 1997; Saikatendu et al., 2007), which is
important for the viral replication and transcription (McBride
et al., 2014). The genome of SARS-CoV-2 consists of 14
open reading frames (Orfs) encoding 16 non-structural pro-
teins (Nsp1–16), four structural proteins (spike (S), envelope
(E), membrane (M) and nucleocapsid (N)) and nine putative
accessory factors (Chan et al., 2020; Wu et al., 2020). A
recent mass spectrometry study expressed 26 out of the 29
SARS-CoV-2 proteins in human cells and identified broad
interactions between the viral and human proteins involved
in biological processes including protein trafficking, transla-
tion, transcription and ubiquitination regulation (Gordon
et al., 2020). Bioinformatics analysis predicted that the dis-
ordered domains of SARS-CoV-2 N protein can engage in π-
π intermolecular interactions with host stress granule (SG)
proteins, which is crucial for the viral hijacking of host
machineries (Moosa and Banerjee, 2020). Recombinant N
protein of SARS-CoV-2 exhibits a high ability of liquid-liquid
phase separation in vitro (Carlson et al., 2020; Chen et al.,
2020; Iserman et al., 2020; Savastano et al., 2020; Luo et al.,

2021b; Zhao et al., 2021), overexpression of which in human
cell lines showed its incorporation into SGs (Savastano
et al., 2020; Luo et al., 2021a). These studies indicate the
association of N protein with host SGs, while a real scenario
of virus infection is lacking. Neither do we know the conse-
quence of the potential invasion of host SGs by SARS-CoV-
2.

In this work, we infected mammalian cells with SARS-
CoV-2, and observed that N protein but not the other moni-
tored viral proteins incorporated into host SGs. Conse-
quently, the invaded SGs are less dynamic and resistant to
disassemble after the removal of stress, but are promoted for
clearance upon continuous stress. In vitro observations
showed cooperative liquid-liquid phase separation (LLPS) of
N protein with SG-related amyloid proteins and stimulation of
their amyloid aggregation. NMR experiments further char-
acterized the non-specific transient interactions between N
protein and SG-related amyloid proteins. The enhancement
of amyloid aggregation by SARS-CoV-2 infection was further
shown by the exacerbated aggregation of an ALS-associ-
ated FUS mutant in cells. In addition, we found that cells
without the ACE2 receptor can still be infected by SARS-
CoV-2, with a decreased efficiency though. These molecular
evidences support that SARS-CoV-2 infection might
increase the risk of neurodegenerative diseases.

RESULTS

ACE2 is not necessary for SARS-CoV-2 to infect
mammalian cells

To investigate the impact of SARS-CoV-2 infection on host
SGs, we first treated mammalian cells including monkey
Vero cells and human HeLa cells with SARS-CoV-2 for 30
min (Fig. 1A). Vero cells have the ACE2 receptor (Fig. S1A),
which can help the entry of SARS-CoV-2 (Li et al., 2003).
After two days for virus replication, expression of viral pro-
teins in Vero cells was detected (Fig. S1A). Although HeLa
cells lack ACE2 (Zhou et al., 2020), at a high multiplicity of
infection (MOI) of 0.75, SARS-CoV-2 can still infect HeLa
cells and the expression of the viral N protein was detected
by Western blot (Fig. S1B). However, the expression of
Spike was not observed (Fig. S1B), which may reflect poor
replication of the virus in HeLa cells. To increase the virus
entry efficiency, we also treated HeLa cells overexpressing
human ACE2 (ACE2-HeLa cells) with the virus. After 2 days
for viral replication, expression of the viral proteins was
detected (Fig. S1B). These results indicate that ACE2 is not
necessary for SARS-CoV-2 to infect mammalian cells,
although it can increase the efficiency.

N protein enters the host SGs upon SARS-CoV-2
infection

Next, we stressed the infected cells with 100 μmol/L sodium
arsenite to induce SGs, and then used immunofluorescence
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microscopy to monitor the cellular localization of different
viral proteins including N protein, S protein, Nsp1, Nsp8 and
ORF7α (Fig. 1A). The result showed that N protein but not
the others is recruited into the SGs of the mammalian cells
(Figs. 1B and S2).

It has been reported that overexpressed N protein of
either SARS-CoV-2 or SARS-CoV can invade cellular SGs
(Peng et al., 2008; Savastano et al., 2020; Luo et al., 2021a).
We confirmed this result by overexpressing recombinant
Flag-tagged N protein in HeLa cells, and consistently
observed the overexpressed N protein co-localizing with
SGs (Fig. 1C). The overexpression results indicate that N
protein can incorporate into SGs independent of viral
components.

SARS-CoV-2 infection impairs the self-disassembly
of SGs

To investigate the influence of SARS-CoV-2 invasion on SG
dynamics, we relieved the cellular stress by washing out
sodium arsenite in the culture medium (Fig. 2A). Before
washout, similar amounts of SGs formed in SARS-CoV-2
infected cells and control cells (not treated with virus)
(Fig. 2B), indicating no significant influence of SARS-CoV-2
infection on the assembly of SGs. However, the self-disas-
sembly of SGs was significantly slowed down in the infected
cells monitored 60 min post washout (Fig. 2B). Similar
phenomena were observed in both HeLa cells and ACE2-
overexpressed HeLa cells (Figs. 2B and S3A). We also
performed the washout experiment by directly overexpress-
ing N protein in HeLa cells and obtained consistent results
with that infected by the virus (Fig. S3B). These results
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Figure 1. SARS-CoV-2 infection results in the incorporation of N protein with SGs in mammalian cells. (A) Schematic workflow

of the virus infection and SG induction. (B) Confocal images of mammalian cells infected by SARS-CoV-2. Infected cells were

stressed with 100 μmol/L sodium arsenite for 1 h, and stained with DAPI, antibodies for N protein and SG marker proteins G3BP1.

Arrows indicate SGs. Scale bar, 5 µm. (C) Confocal images of HeLa cells transfected with Flag-tagged N protein (Flag-N). Cells were

stressed with 100 μmol/L sodium arsenite for 1 h, and stained with DAPI, anti-flag, and anti-G3BP1. Arrows indicate SGs. Scale bar, 5

µm.
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indicate that upon SARS-CoV-2 infection, the invasion of N
protein can impair the dynamics, specifically the self-disas-
sembly of SGs.

SARS-CoV-2 infection promotes cellular clearance
of SGs

Previous studies suggest autophagy as a second SG
clearance system in addition to self-disassembly (Buchan
et al., 2013; Protter and Parker, 2016), and persistent SGs

Figure 2. SARS-CoV-2 infection impairs the disassembly but enhances the cellular clearance of host SGs. (A) Schematic

workflow of the experiment of SG self-disassembly. (B) Confocal images of ACE2-HeLa cells with or without (control) infection of

SARS-CoV-2. Cells were stressed with 100 μmol/L sodium arsenite for 1 h, followed by washing out sodium arsenite. Cells were

stained with antibodies for viral N protein and SG marker protein G3BP1. Arrows indicate SGs. Scale bar, 5 µm. Quantitative analysis

of the images is shown on the right as the area of SGs per cell. Values are means ± SD, n > 150 cells from 3 replicates. Student’s t-

test, *P < 0.05, **P < 0.01; ns, not significant. (C) Schematic workflow of the experiment of cellular SG clearance. (D) Confocal images

of ACE2-HeLa cells with or without (control) SARS-CoV-2 infection. Cells were stressed with 100 μmol/L sodium arsenite for 1 h or 5

h. Cells were stained with antibodies for N and G3BP1 proteins. Arrows indicate SGs. Scale bar, 5 µm. Quantitative analysis of the

images is shown on the right as the area of SGs per infected cell. Values are means ± SD, n > 150 cells from 3 replicates. Student’s t-

test, *P < 0.05, **P < 0.01; ns, not significant. (E) In situ FRAP for SGs in HeLa cells overexpressing RFP-tagged N protein. Cells

overexpressing RFP-tag were performed as a control. mEGFP-tagged G3BP1 was co-overexpressed with RFP or RFP-N to

fluorescently label SGs. Scale bar, 5 µm. FRAP montages of an SG for each sample are shown. The arrows indicate the action of

bleaching. (F) Fluorescent recovery curves of the SGs. Data shown are means ± S.D., n = 3 individual SGs. Student’s t-test.
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induced by chronic stress are eliminated by autophagy-de-
pendent degradation (Gwon et al., 2021). Indeed, as we
stressed the cells for extra h (5 h), we also observed dis-
appearance of SGs (Fig. 2C and 2D), although the involve-
ment of autophagy is not confirmed here. Notably, SARS-
CoV-2 infected cells exhibited more severe SG disappear-
ance than the control cells (Fig. 2D). Similar phenomena
were observed when overexpressing N protein in HeLa cells
(Fig. S4). These results indicate that abnormal SGs due to
the incorporation of the viral N protein may be more potent to
trigger cellular degradation systems.

N protein incorporation impairs the liquid-like state
of host SGs

To further investigate the influence of N protein incorporation
on the liquid-like state of SGs, we performed in situ fluo-
rescence recovery after photobleaching (FRAP). We over-
expressed G3BP1 with an mEGFP tag as a fluorescent
marker of SGs in HeLa cells. FRAP experiment showed that
the fluorescent intensity of SGs rapidly recovered about 80%
within 2 min after photobleaching reflecting high mobility and
liquid-like property of SGs (Fig. 2E). In contrast, as N protein
co-overexpressed in the cells, the recovery of fluorescent
intensity significantly slowed down to ∼50% recovery within 2
min (Fig. 2F). This result indicates that N protein incorpora-
tion disrupts the liquid-like state of SGs.

N protein expedites the maturation of the LLPS of SG-
related amyloid proteins

It has been reported that N protein of SARS-CoV-2 has a
high ability of LLPS under various conditions (Carlson et al.,
2020; Cubuk et al., 2020; Iserman et al., 2020; Luo et al.,
2020; Perdikari et al., 2020; Savastano et al., 2020). The
LLPS property of N protein has been suggested to play an
important role in the viral genome packing in other viruses
(Guseva et al., 2020; Monette et al., 2020). We also
observed that N protein readily underwent LLPS in the
presence of synthetic single-stranded RNA (polyU) (Fig. S5).

Several RNA-binding proteins of SGs including FUS,
hnRNPA1, and TDP43 are meanwhile prone to undergo
amyloid aggregation, which is closely associated with neu-
rodegenerative diseases such as ALS and frontotemporal
dementia (FTD). These proteins also have a high ability of
LLPS (Molliex et al., 2015; Patel et al., 2015). To investigate
the influence of SARS-CoV-2 N protein on the phase tran-
sition of these SG-related amyloid proteins, we added the
viral N protein to the LLPS solution of human FUS,
hnRNPA1, and TDP43, respectively. Fluorescent micro-
scopic imaging showed that N protein spontaneously con-
denses in the droplets formed by the SG proteins (Fig. 3A),
which is consistent with a previous report showing that N
protein can co-phase separate with FUS, TDP43, and
hnRNPA2 (Perdikari et al., 2020).

Moreover, we observed that in the presence of N protein,
the fluorescent intensity of EGFP-tagged FUS (FUS-EGFP)
recovered markedly slower than that in the absence of N
protein (Fig. 3B). After incubation for 12 h, the shape of the
droplets was apparently less round than that at 0 h (Fig. 3B).
FRAP showed that these droplets nearly lost the mobility and
were hardly recovered after bleaching (Fig. 3B). Similarly, N
protein also impairs the liquid-like nature of the hnRNPA1
and TDP43 droplets by FRAP experiments (Fig. S6). These
data indicate that the involvement of N protein accelerates
the liquid-to-solid maturation process of these SG proteins,
which is in line with the impaired dynamics of SGs in cells
stated above.

Non-specific transient interactions between N protein
and the LC domains of SG-related proteins

We next used NMR spectroscopy to study the molecular
mechanism underlying the interaction between N protein and
the SG proteins. The 2D 1H-15N HSQC spectra of 15N-la-
beled FUS low complex domain (FUS-LC) and 15N-labeled
TDP43-LC showed that both proteins adopted an intrinsically
disordered conformation with a narrow chemical shift dis-
persion in the 1H dimension (backbone amide resonances
within 7.8–8.8 ppm) (Fig. S7), which is consistent with the
previous reports (Burke et al., 2015; Conicella et al., 2016;
Liu et al., 2020; Gu et al., 2021a). We then used unlabeled N
protein to titrate 15N-labeled FUS-LC. The HSQC spectra of
FUS-LC showed a global decrease of signal intensities in a
concentration-dependent manner (Figs. 4A, 4B and S7B),
indicating direct interaction between N protein and FUS-LC.
However, no specific region or residue type showed signifi-
cant intensity decrease compared to others, and residues of
FUS-LC suffered an overall ∼40% intensity decrease at the
substoichiometric molar ration of 1:0.5 (FUS-LC:N) (Fig. 4A),
implying that the interaction between N protein and FUS-LC
is non-specific. Similarly, titration of N protein to TDP43-LC
resulted in concentration-dependent attenuations of the
signal intensities in the HSQC spectra of TDP43-LC
(Figs. 4C, 4D and S7D). The interaction between N protein
and TDP43-LC also appears non-specific, since the resi-
dues of TDP43-LC generally showed a ∼20% intensity
decrease at the molar ratio of 1:5 (TDP43-LC:N) (Figs. 4C,
4D and S7D). Unfortunately, we did not get a good NMR
spectrum of hnRNPA1-LC, in which only a few broadening
crosspeaks could be detected at our conditions. Taken
together, these results indicate that N protein may commonly
bind the SG proteins via nonspecific weak interactions to the
LC domains of the SG proteins.

N protein stimulates the aggregation of SG-related
amyloid proteins

As we incubated N protein with FUS for 12 h, we observed
that some LLPS droplets became spiky with fibrils growing
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Figure 3. SARS-CoV-2 N protein co-phase separates with SG proteins and solidifies their liquid-like droplets. (A)

Fluorescence images of co-phase separation of N protein with SG proteins hnRNPA1, FUS, and TDP43, respectively. SG protein

concentrations and the molar ratio of SG proteins to N protein are indicated. LLPS buffer: 50 mmol/L Tris-HCl, pH 7.5, 100 mmol/L

NaCl, 10% PEG 3,350 (no PEG for FUS). EGFP is a fluorescence tag. Alexa-488 and QSY7 are fluorescence dyes. Scale bar, 5 µm.

(B) FRAP montages of FUS-EGFP droplets (left). The arrows indicate the action of bleaching. Protein concentrations are indicated.

Buffer: 50 mmol/L Tris-HCl, pH 7.5, 100 mmol/L NaCl. The droplets are incubated for 0 h and 12 h, respectively. Scale bar, 2 µm. The

graphs (right) show the recovery fraction as the function of time. Data shown are means ± SD, n = 3. (C) Representative images of the

morphological changes of FUS-EGFP droplets in the absence or presence of N protein over time. The phase separation condition is

the same as (B). A FUS droplet with fibrils growing out is enlarged in the inset. Scale bar, 10 µm.
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out of the droplets (Fig. 3B and 3C). FRAP experiment
showed that the fluorescence of these spiky droplets can
hardly recover after bleaching, which confirms the solid
nature of these droplets (Fig. 3B).

To further examine the influence of N protein on the
amyloid fibril formation of FUS, hnRNPA1, and TDP43, we
performed the ThT fluorescence assay and negative-stain-
ing transmission electron microscopy (TEM). Since the LC
domains of FUS, hnRNPA1, and TDP43 are the amyloid-
forming core sequences of these proteins (Johnson et al.,
2009; Kato et al., 2012; Kim et al., 2013), we incubated N

protein with the LC domains of these three SG proteins,
respectively. The result showed that the presence of N pro-
tein markedly enhanced the ThT intensities of the fibril-
forming samples, and shortened the lag time of the ThT
kinetic curves in a dose-dependent manner (Fig. 5A). TEM
imaging confirmed amyloid fibril formation in these samples
(Fig. 5B). In addition, we confirmed that N protein under the
examined conditions does not form amyloid fibrils (Fig. S8).
These results indicate that N protein can generally stimulate
the phase transition of the SG-related amyloid proteins into
amyloid aggregation.

Figure 4. SARS-CoV-2 N protein non-specifically interacts with LC domains of FUS and TDP-43. (A) Residue-specific intensity

changes of signals in the 2D 1H-15N HSQC spectra of 25 μmol/L 15N-labeled FUS-LC in the presence of N protein at molar ratios

(FUS-LC : N) of 1:0.5 (green) and 1:2 (orange). The x axis for the spectra on the top is shown according to the residue numbers; that

at the bottom is according to the amino acid composition. Residue signals that dropped over 70% are shown in (B). (C) Residue-

specific intensity changes of signals in the 2D 1H-15N HSQC spectra of 20 μmol/L 15N-labeled TDP43-LC in the presence of N protein

at molar ratios (TDP43-LC : N) of 1:2.5 (pink) and 1:5 (grey). Residue signals that dropped over 30% are shown in (B).

RESEARCH ARTICLE Yichen Li et al.

608 © The Author(s) 2022

P
ro
te
in

&
C
e
ll



SARS-CoV-2 infection promotes amyloid aggregation
of ALS-related FUS mutant in cells

We next sought to investigate SARS-CoV-2 infection on
protein amyloid aggregation in cells. We used a cell model
that overexpresses FUS with P525L mutation, a mutation

found in ALS that disrupts the nuclear localization of FUS
and results in FUS accumulation in the cytoplasm (Kwiat-
kowski et al., 2009; Dormann et al., 2010; De Santis et al.,
2019). We first transfected ACE2-overexpressed HeLa cells
with CFP-fused FUS P525L. Aggregation of FUS P525L in

Figure 5. SARS-CoV-2 N protein promotes the amyloid aggregation of SG proteins. (A) ThT kinetic assays for amyloid fibril

formation of the LC domains of FUS, TDP43, and hnRNPA1. Protein concentrations and molar ratios are indicated. Buffer for FUS-LC

and hnRNPA1-LC amyloid formation: 50 mmol/L Tris-HCl, pH 7.5 and 100 mmol/L NaCl. Buffer for TDP43-LC amyloid formation: 50

mmol/L Bis-Tris, pH6.5 and 100mmol/LNaCl. Data correspond tomean ±SD, n= 3 independent replicates. (B)TEM images of samples

in (A) at the end time point. Scale bar, 500 nm. (C)Confocal images of CFP-FUSP525L aggregation puncta in ACE2-HeLa cells infected

by SARS-CoV-2. Cells without treatment of the virus are used as a control. FUS P525L is visualized by CFP fluorescence. N protein is

immunostained with anti-N. The arrows indicate FUSP525L aggregates. Scale bar, 5 μm.Quantitative analysis of the aggregation area

per cell in the imaging data is shown on the right. Values are means ± SD, n > 150 cells from 3 replicates. Student’s t-test.
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cells can be probed CFP fluorescence and an amyloid dye—
pFTAA (Klingstedt et al., 2013; Qamar et al., 2018). Next, we
treated the cells with SARS-CoV-2 and observed that the
viral N protein colocalizes with FUS P525L aggregates
(Fig. 5C). Notably, comparing with the control cells (no virus
infection), the aggregation of FUS P525L significantly
increased upon virus infection (Fig. 5C). We also observed
the same enhancement of FUS P525L aggregation by using
SARS-CoV-2 infected HeLa cells (Fig. S9A) and HeLa cells
with overexpressed N protein (Fig. S9B). These data
strengthen the potential consequence of SARS-CoV-2
infection in stimulating protein amyloid aggregation in the
host cells.

DISCUSSION

Virus infection has been found to play an important role in
the pathogenesis and clinical onset of human neurodegen-
erative diseases (Jang et al., 2009; Eimer et al., 2018;
Readhead et al., 2018; Bellmann et al., 2019; Marreiros
et al., 2020). Recent studies have shown that proteins of
SARS-CoV-2 accumulate in the brain tissues of both trans-
genic mice and patients who died from COVID-19 (Matschke
et al., 2020; Song et al., 2021). It has also been reported that

SARS-CoV-2 can infect and replicate in astrocytes (Crunfli
et al., 2021). Clinical correlation of SARS-CoV-2 infection
and PD onset has also been reported. These observations
raise the concern of neurodegeneration as a long-term
consequence of COVID-19 (Bostanciklioglu, 2020; Gatto
and Fernandez Boccazzi, 2020; Hascup and Hascup, 2020;
Heneka et al., 2020; Singal et al., 2020). The answer for this
concern is important for our treatment and policy to COVID-
19. Our work demonstrates that as SARS-CoV-2 infects the
host cells, it has a strong potential to stimulate the amyloid
aggregation of host proteins, which provides molecular evi-
dence for the role of SARS-CoV-2 in triggering neurode-
generation (Fig. 6). During this process, the viral N protein is
a major player. N protein can interact with a wide spectrum of
SG proteins including FUS, TDP43, hnRNPA1, hnRNPA2,
G3BP1, and G3BP2 as reported previously and in this work
(Kaur and Lal, 2020; Luo et al., 2020; Moosa and Banerjee,
2020; Perdikari et al., 2020). Our NMR data showed that N
protein non-specifically interacts with the LC domains of FUS
and TDP43. Given that the SG-related RNA-binding proteins
generally contain intrinsically disordered sequences, N pro-
tein may interact with other SG proteins via a similar
mechanism. Direct interactions with various SG proteins
underlie the partition of N protein into SGs; however, whether

Figure 6. Schematic diagram for the interplay between SARS-CoV-2 and host SGs. During SARS-CoV-2 replication in host

cells, the viral N protein enters the host SGs and directly interacts with SG-related amyloid-forming proteins (e.g., FUS, hnRNPA1 and

TDP43), which stimulates the liquid to solid phase transition (amyloid formation) of these host proteins. Inefficient maintenance of

proteostasis may result in accumulation of the pathological amyloid fibrils and development of neurodegeneration.
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this process is active or passive is obscure. SG formation is
part of the antiviral responses of cells, which can assemble
in response to viral infection and function to sequester host
and viral mRNAs and proteins (Onomoto et al., 2012; Jain
et al., 2016). On the other hand, N protein incorporation may
hijack host SGs and alter their attributes. In addition, the viral
genomic RNA, that assembles with N protein to form
nucleocapsid, may facilitate the SG incorporation of N pro-
tein. Indeed, we observed that single-stranded RNA lowered
the critical concentration of N protein for LLPS (Fig. S5).
Note that in our experiments, we did not observe viral
infection-triggered SG formation in either human HeLa cells
or monkey Vero cells, which may be caused by reasons
such as cell sensitivity, virus infection titer and time.

Many evidences have indicated that disruption of SG
dynamics is closely associated with neurodegenerative dis-
eases such as ALS and FTD (Molliex et al., 2015; Duan
et al., 2019; Wolozin and Ivanov, 2019; Zhang et al., 2020).
Our work demonstrates that SARS-CoV-2 infection can
impair the dynamics of SGs and promote amyloid aggrega-
tion of SG-related proteins. In addition, our data show that
HeLa cells, that same as neurons, lack the ACE2 receptor,
can be infected by SARS-CoV-2 (Fig. S1B). Consistently,
recent studies have identified several other receptors that
may contribute to ACE2-independent cell entry of SARS-
CoV-2 (Gao et al., 2020; Amraei et al., 2021; Chen et al.,
2021; Gu et al., 2021b). These indicate that neurons are
likely to be infected by SARS-CoV-2 as the virus invades the
human brain. Our work provides molecular evidence for the
increased risk of neurodegeneration after SARS-CoV-2
infection, and suggests paying a special attention to the
incidence of neurodegenerative diseases in aged people
under the current circumstances of ongoing widespread of
SARS-CoV-2.
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