
RESEARCH ARTICLE Open Access

Identification of ejaculated proteins in the house
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Abstract

Background: Seminal fluid plays an important role in successful fertilization, but knowledge of the full suite of
proteins transferred from males to females during copulation is incomplete. The list of ejaculated proteins remains
particularly scant in one of the best-studied mammalian systems, the house mouse (Mus domesticus), where
artificial ejaculation techniques have proven inadequate. Here we investigate an alternative method for identifying
ejaculated proteins, by isotopically labeling females with 15N and then mating them to unlabeled, vasectomized
males. Proteins were then isolated from mated females and identified using mass spectrometry. In addition to
gaining insights into possible functions and fates of ejaculated proteins, our study serves as proof of concept that
isotopic labeling is a powerful means to study reproductive proteins.

Results: We identified 69 male-derived proteins from the female reproductive tract following copulation. More
than a third of all spectra detected mapped to just seven genes known to be structurally important in the
formation of the copulatory plug, a hard coagulum that forms shortly after mating. Seminal fluid is significantly
enriched for proteins that function in protection from oxidative stress and endopeptidase inhibition. Females, on
the other hand, produce endopeptidases in response to mating. The 69 ejaculated proteins evolve significantly
more rapidly than other proteins that we previously identified directly from dissection of the male reproductive
tract.

Conclusion: Our study attempts to comprehensively identify the proteins transferred from males to females during
mating, expanding the application of isotopic labeling to mammalian reproductive genomics. This technique
opens the way to the targeted monitoring of the fate of ejaculated proteins as they incubate in the female
reproductive tract.
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Background
Successful fertilization occurs through complex interac-
tions among a diversity of proteins that mediate the
final fusion of male and female pronuclei. In internally
fertilizing species, sperm are accompanied by a non-
sperm component of seminal fluid that functions in a
variety of contexts. In mammals, this seminal fluid
derives from several compartments of the male repro-
ductive tract, the experimental removal of which leads
to reductions in fertility success [1,2], smaller litter sizes

[3] and delays in oocyte penetration and embryonic
development [4-6]. Seminal fluid also influences sperm
motility and physiological status [7-11], suppresses the
female immune system [12-14], protects sperm from
neutrophil attack in the female reproductive tract
[15,16], prepares the uterus for implantation [17], and
alters female mating behavior [18,19]. In insects, seminal
fluid induces egg laying and proper sperm storage
[20-24] and mediates sperm competition outcomes
[25-30].
Some properties of ejaculated proteins suggest they

may be a source of sexual conflict. In many animal spe-
cies, including worms [31,32], insects [33], reptiles
[34-36], and mammals [37-40], ejaculated proteins
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coagulate to form a copulatory plug (also referred to as
a mating plug or vaginal plug). By blocking access to the
uterus and oviducts, the plug is thought to be an adap-
tation by which males inhibit the passage of sperm from
competitor males, thus protecting their reproductive
investment. This hypothesis predicts that the copulatory
plug is on average deleterious to females because it inhi-
bits future mate choice. In mice, the copulatory plug is
probably effective at inhibiting sperm from other males,
because it remains intact for approximately 24 hours,
females are truly fertile for about 4-12 hours during the
estrus cycle, and sperm are not stored across estrus
cycles [40]. Nevertheless, multiple paternity is still com-
mon [41,42]. Species which do not form copulatory
plugs usually show alternative means of mate-guarding,
or have mating ecologies that tend towards monogamy
where mate-guarding would be unnecessary [38,40].
However, some apparently monogamous species of
rodents like Peromyscus polionotus, in which sexual con-
flict is expected to be less severe, also form a copulatory
plug [43].
Additional hypotheses for the function of the copula-

tory plug include male-female signaling necessary for
proper implantation of embryos. For example, copula-
tory stimulation is necessary to prime the female uterus
for implantation [44,45], and the plug may function in
this context. The hypothesis that the plug prevents leak-
age of semen is inconsistent with experiments showing
that removal of the plug does not inhibit fertilization,
pregnancy, or parturition [46,47]. Similarly, the hypoth-
esis that the plug acts as a reservoir regulating the
release of sperm [48] is inconsistent with plug transfer
experiments in guinea pigs [47].
A better understanding of the functions of seminal

fluid requires a fuller picture of the proteins that are
transferred from males to females in the ejaculate. Using
house mice (Mus domesticus) as a model system, we
mated vasectomized males to females that had been
metabolically labeled with a heavy isotope of nitrogen,
15N. We then used mass spectrometry to identify unla-
beled, ejaculated proteins directly from the female
reproductive tract. We identified 69 ejaculated proteins
from female reproductive tracts 6-14 hours post-coitus.
Using current functional annotations, we showed that
seminal fluid was significantly enriched for genes that
participate in two main processes: protection from oxi-
dative stress and endopeptidase inhibition. We also
found that more than a third of all identified spectra
mapped to just seven proteins known to form the copu-
latory plug, suggesting a large portion of the ejaculate is
dedicated to the formation of this structure. By compar-
ing mated to unmated females, we found that females
produced endopeptidases in response to mating. Inter-
estingly, the 69 ejaculated proteins were a non-random

subset of the ~500 proteins that we previously identified
directly from dissected regions of the male reproductive
tract [49]. The ejaculated proteins we detected here
evolved significantly more rapidly than the other male
reproductive proteins. These patterns are consistent
with the hypothesis that sexual selection has driven the
evolutionary dynamics of ejaculated proteins. Future
testing of this hypothesis is made possible by the techni-
ques implemented here.

Methods
Mice used
Breeding and genotypes followed Dean et al. [49]. We
generated F1 progeny from crosses between two differ-
ent wild-derived inbred strains of Mus domesticus
(female LEWES/EiJ x male WSB/Eij). F1 mice were then
mated with each other to identify proteins transferred
during mating. F1 mice were used rather than fully
inbred strains to avoid the deleterious effects of inbreed-
ing. We paired parental female LEWES/EiJ mice with
male WSB/EiJ mice for one week, then separated them
so the dam gave birth in isolation. At 21 days postpar-
tum, F1 males were weaned individually, and F1 females
were weaned in groups. Males were weaned individually
because grouped males have comparatively reduced fer-
tility [50], probably due to suppression by dominant
males. F1 females labeled with 15N (see below) were
then mated to unlabeled, vasectomized F1 males. All
husbandry and experimental manipulations were
approved by the University of Arizona Institutional Ani-
mal Care and Use Committee.
We measured the size of copulatory plugs in an addi-

tional set of mice derived from wild parents trapped
more than 100m apart around Tucson, AZ, USA and
then crossed in the laboratory. Wild derived F1 males
were then mated to a common female genotype (F1 of
female LEWES/EiJ x male WSB/Eij crosses). In total,
copulatory plugs were measured from 149 crosses from
47 different F1 males, derived from 9 wild caught sires
and 15 wild caught dams.

Isotopic labeling of females
Artificial ejaculation techniques such as electroejacula-
tion produce abnormal and inconsistent ejaculates in
mice [51,52], so we instead employed isotopic labeling
to differentiate male- and female-derived proteins [53].
15N-enriched diets were prepared by combining 15N-
labeled Spirulina platensis (>99 atom percent excess,
Spectra Gases Inc., now part of Cambridge Isotope
Laboratories, Inc., Andover, MA) with protein-free
rodent diet (TD 93328, Harlan, Indianapolis, IN) in a
1:2 (mass:mass) ratio as previously described [54,55].
The two food types were ground into a homogenous
powder with a mortar and pestle and worked into a
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dough by slowly adding water (roughly 5-6 ml water/30
grams powder mixture). The dough was formed into 1.5
cm3 pellets and placed in a food dehydrator set at 54°C
until completely dry.
Three-week-old females were weaned from their

mothers and immediately given 15N-enriched diet. In
contrast, all males used in this experiment were fed reg-
ular diet. Female proteins will have a shifted mass as a
result of incorporation of 15N. To gauge the effective-
ness of our labeling strategy, we analyzed two non-
reproductive tissues from a mated female: the liver, an
organ with a relatively high rate of protein turnover,
and the brain, which has a low rate of protein turnover.
Under unlabeled search conditions, we identified five
proteins from the liver and 103 proteins from the brain.
These data confirmed that 15N labeling more effectively
inhibited identification of female-derived proteins in tis-
sues with faster protein turnover. As discussed below
(Analyzing an unmated female), the low number of
unlabeled proteins identified from the unmated female
reproductive tract appears more similar to the high
turnover liver tissue, suggesting that our labeling strat-
egy was effective in masking female-derived proteins to
enable detection of ejaculated proteins.

Vasectomization of males
Males approximately eight weeks of age were anesthe-
tized with 2.5% avertin, then vasectomized using stan-
dard techniques [56]. We used vasectomized males
because we were interested in the seminal fluid proteins
and wanted to exclude the sperm proteome, which is
complex [57-60]. Males of this genotype are sexually
mature by eight weeks of age [61]. Cuts were closed
using surgical clips and males were checked several
times a day to monitor recovery. One week after vasect-
omy, clips were removed. One week following clip
removal, males were mated to tester females that had
been induced to ovulate using standard techniques
[56,62]. These test matings confirmed libido and the
absence of sperm in dissected female reproductive
tracts. Males were mated to tester females in consecu-
tive weeks; vasectomized males were mated to at least
three tester females prior to mating with labeled
females. In total, two vasectomized males were analyzed
in the present study.

Mating and collection of samples
After three to four weeks of feeding on 15N chow,
labeled females were induced to ovulate using standard
techniques [56,62]. Immediately following administration
of the hormone hCG, labeled females were paired with
vasectomized males. Between 12 and 20 hours after
initial pairing (likely to be 6-14 hours after mating),
females were sacrificed and reproductive tracts were

removed. Internal fluids were stripped from both uteri
and immediately frozen at -80°C, as were the copulatory
plug, the remaining reproductive tract, the brain, and
the liver. As a control, we collected a reproductive tract,
brain, and liver from a labeled female that was exposed
to a male but had not mated. In total, proteins from
two mated females and one unmated female were ana-
lyzed with mass spectrometry.

Protein preparation and mass spectrometry
As a result of labeling, female-derived proteins were
expected to have upward-shifted masses, making it pos-
sible to distinguish male- and female-derived proteins
sampled from mated female reproductive tracts. Samples
were generally prepared and analyzed by mass spectro-
metry as previously described [49,53] with some modifi-
cations. Tissue samples (dissected female reproductive
tracts, liver, brain) were homogenized in 50 mM ammo-
nium bicarbonate. The homogenate was centrifuged at
20,800 g for 5 min, and the soluble fraction was
retained. Soluble proteins were quantified with a BCA
assay (Thermo) and then mixed with PPS detergent
(Protein Discoveries) to a final concentration of 0.1%
PPS. Proteins were denatured, reduced and alkylated as
described previously [63] and then digested with trypsin.
PPS was hydrolyzed by the addition of HCl to a final
concentration of 200 mM. Copulatory plugs were pro-
cessed by placing slices of plug in 50 mM ammonium
bicarbonate with 0.1% PPS and then sonicating 10 times
with a probe sonicator, alternating 45 seconds of sonica-
tion with 45 seconds of ice incubation. Plug samples
were then boiled for 2 min and homogenized with a
pestle homogenizer. A few seconds of microcentrifuga-
tion removed remaining large pieces of solid plug, and
the remaining, cloudy supernatant was then reduced,
alkylated and trypsin digested as above.
Tryptic peptides of all samples were separated using

75-μm internal diameter fused silica HPLC columns
packed with 35 cm of Jupiter C12 (4 μm, 90 Å; Pheno-
monex) reversed phase material. These columns were
placed on-line with a LTQ-FT Ultra mass spectrometer
(Thermo), and peptides were eluted over a 3-hour gradi-
ent. For each sample analyzed, we ran 5-7 technical
replicates, each loading ~5 μg protein onto the column.
Except as described below (”Accurate mass-directed tan-
dem mass spectrometry“), mass spectra were obtained
using data-dependent acquisition. We focused on four
biological samples - two different copulatory plugs and
two different uterine fluid samples isolated from two
different matings - for analyses of reproductive proteins
(Additional File 1).
In making protein identifications from the collected

MS data, we purposely set our identification criteria to
have a high false negative and low false positive rate to
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lend confidence to protein identifications. MS2 files
from each experiment were searched against two data-
bases using the SEQUEST algorithm [64]: one database
contained all proteins from the NCBI build 37 mouse
genome, while the other contained randomly shuffled
protein sequences representing decoy proteins. Results
from these searches were analyzed with the PERCOLA-
TOR program [65,66] to improve discrimination
between correct and incorrect peptide-spectrum
matches and to set a per-spectrum false discovery rate
(FDR) of 0.01. However, previous research has shown
that with a per-spectrum FDR of 1%, the peptide and
the protein-level FDR can be much higher [8-11%,
depending on the search algorithm used, 67]. Most of
these false positive protein identifications were presum-
ably those proteins identified with a single peptide.
Thus, to consider a protein identified in this study, we
required it to have been matched by at least two pep-
tides, at least one of which was a unique match to a sin-
gle region in the genome.

Normalized Spectral Abundance Factor (NSAF)
It is difficult to relate spectral counts to protein abun-
dance because not all peptides within proteins are
equally identifiable [68]. The acquisition of tandem mass
spectrometry data is a semi-random process and is
highly dependent on the presence of co-eluting molecu-
lar species. Signal suppression during electrospray ioni-
zation can potentially alter the mass spectrometry signal
response within complex mixtures. Longer proteins may
be more detectable simply because they are more likely
to contain tryptic and ionizable peptides. Post-transla-
tional modifications such as glycosylation may further
hinder identification of unmodified proteins.
Nevertheless, more abundant proteins should have a

greater number of spectra mapping to their sequence
compared to low abundance proteins [69,70]. As a rough
proxy of relative protein abundance, we calculated the
normalized spectral abundance factor (NSAF) [69,70],
with some slight modifications. Here, we calculated a sin-
gle experiment-wide NSAF for each gene by summing all
spectral counts across the four main biological samples
(two copulatory plugs, two uterine fluid samples), divid-
ing this sum by the protein length, then dividing by the
sum of this value across all genes. NSAF therefore ranges
from 0 to 1 for each protein (actual observed range = 10-
5 to 0.21, median = 0.002) and sums to 1 across all 69
identified proteins. Relatively high NSAF may indicate
higher abundance in the sample, though the caveats dis-
cussed above suggest cautious interpretation.
for genes that encoded multiple alternative transcripts,

we divided by the median transcript length; our results
did not change if instead we divided by the shortest, the
longest, or a randomly chosen transcript length. Our

results also did not change if we calculated NSAF sepa-
rately for each of the four biological samples; we present
the experiment-wide NSAF for simplicity. For spectra
that mapped to more than one region of the genome,
we divided the number of spectra by the number of
regions it mapped to, adding the result to each gene’s
spectral count. However, as described above, a gene was
only considered present if at least two different peptides
mapped to it, at least one of which was a unique hit to
that gene product.
For comparison, we re-analyzed the proteins identified

from dissected regions of the male reproductive tract
[49]. We calculated NSAF as described above, summing
spectral count across the six distinct regions of the male
reproductive tract sampled.

Evaluating Detection Sensitivity
Three targeted searches provided support that we iden-
tified most detectable ejaculated proteins. These three
methods of evaluating detection sensitivity suggested
that additional technical and/or biological replicates
would not have yielded a substantially larger list of eja-
culated proteins under the experimental conditions
employed here.
Isolating insoluble proteins
In an attempt to detect male-derived proteins that could
be bound to the female epithelium, we ran five technical
replicates on the insoluble fraction of one of the mated
female’s reproductive tract. We isolated insoluble proteins
by resuspending the pellet from centrifugation in 0.5%
PPS and then sonicating twice with a probe sonicator.
Depletion of highly abundant proteins
In an attempt to unmask less abundant proteins, we re-
analyzed one of the copulatory plug samples and one of
the uterine fluid samples after depleting each of them of
highly abundant immunoglobulin- and albumin-like pro-
teins. We used the ProteoPrep ImmunoAffinity Albumin
and IgG Depletion Kit (Sigma) to reduce levels of albu-
min and IgG proteins.
Accurate mass-directed tandem mass spectrometry
We also used an analytical method to direct the mass
spectrometer to specifically fragment male-derived pep-
tides that had not been previously sampled in a prior
technical replicate [71]. We re-analyzed one of the plug
samples and one of the uterine fluid samples, first run-
ning one technical replicate using data-dependent acqui-
sition. We then used the HARDKLÖR algorithm [71,72]
to identify peaks from MS1 signals that were predicted
to come from a peptide with a natural abundance iso-
tope distribution (i.e., an unlabeled male peptide). We
constructed a list of these peptides’ m/z (+/- 10 ppm)
and elution times (± 1.5 min) off of the HPLC column
and used this list to direct the mass spectrometer’s pep-
tide sampling for two subsequent technical replicates. If
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no peptides on the list were detected at a given elution
time, the instrument used standard data-dependent
acquisition to sample peptides from that MS1 scan.
Finally, we compared the number of proteins and pep-
tides identified from three technical replicates that used
this method to the number identified by three standard,
data-dependent technical replicates performed on the
same samples.

Testing for functional overrepresentation
We took two approaches to identify important functions
in ejaculated proteins. First, we tested for statistical
enrichment of genes with particular Gene Ontology func-
tional annotations [73], using ONTOLOGIZER version
2.0 [74], with the “Term-for-Term” calculation method
and Bonferroni-corrected P < 0.05. Among the 69 ejacu-
lated proteins, 68 could be linked to Gene Ontology data.
Second, we qualitatively examined genes to look for com-
monality of function among proteins with high NSAF.

Analyzing female-derived proteins
Analyzing an unmated female
As a negative control, we attempted to identify unla-
beled proteins from a female that had undergone 15N
labeling for three weeks and was paired with a male for
approximately 20 hours, but where copulation did not
take place, as confirmed by the absence of a copulatory
plug. In theory, we should not identify unlabeled pro-
teins unless i) certain proteins fail to incorporate 15N,
for example proteins with low rates of turnover, or ii)
the male mounted and transferred some proteins with-
out true ejaculation. We identified two large hemoglobin
families, an actin family, and SVS4 when searching mass
spectra from this virgin female’s reproductive tract
under the assumption of naturally occurring isotope dis-
tributions. The hemoglobin and actin families could
plausibly be explained by their apparently high abun-
dance - by chance we may have sampled a few relatively
unlabeled peptides. Identification of SVS4, from five
spectra derived from two uniquely mapping peptides,
was surprising because this is a quintessential seminal
vesicle secretion that is derived from the male reproduc-
tive tract. It is possible that mounting without ejacula-
tion occurred and some male proteins were transferred
at a low level. Notably, unlabeled SVS4 was identified
with roughly two orders of magnitude more spectra
from mated females, suggesting the SVS4 identified in
the virgin female was an anomaly and that this is truly a
male-transferred protein.
Labeled protein searches
Although this experiment was specifically designed to
identify ejaculated proteins, we also identified female-
derived proteins that could be induced from mating. We
performed SEQUEST searches in which we adjusted the

search parameters to find proteins that were labeled
with 95% 15N incorporation. Specifically, we altered the
SEQUEST search parameters such that the expected
molecular mass of each amino acid was increased by
(0.95 Daltons) x (the number of nitrogen atoms in the
amino acid), which corresponds to an expected 95%
labeling. We analyzed the two copulatory plug samples
in this manner. Because the SEQUEST algorithm allows
some deviation between the theoretical mass of a pep-
tide and the mass observed by the mass spectrometer,
assuming an additional mass of 0.95 Daltons/nitrogen
atom would not necessarily preclude identification of
labeled proteins with similar levels of 15N incorporation
(e.g., 92% labeled peptides may still be identified).

Estimating evolutionary rate and adaptive evolution
We analyzed pairwise dN/dS estimates of all genes in the
genome that have one-to-one orthologs between mouse
and rat, taken from Dean et al. [49]. Briefly, all orthol-
ogy assignments and sequences were downloaded from
Ensembl version 48, NCBI mouse build 37 (http://www.
ensembl.org). Protein sequences were aligned using
CLUSTALW version 1.83 [75], associated with their
coding DNA sequences using REVTRANS version 1.5
[76], and dN/dS estimated using the method of Goldman
and Yang [77] as implemented in PAML version 3.15
[78]. We removed any genes with fewer than 100
aligned codons, an estimated dN>1, or an estimated
dS≥0.381 as quality control measures [details in 49]. We
analyzed the full genome in this manner.
Tests for recurrent positive selection were also taken

from Dean et al. [49], who analyzed evolutionary rates
across five species with the phylogeny of ((mouse, rat),
human, (dog, cow)). Briefly, a gene was considered to
have experienced a history of recurrent adaptive evolu-
tion if five criteria were met: 1) the data fit the M8 model
significantly better than M7 at P < 0.01 [79], 2) the data
fit the M8 model significantly better than M8a at P <
0.01 [80], 3) the additional class of dN/dS estimated by
M8 was greater than 1.1, 4) at least 1% of the codons
belonged to this additional class of dN/dS, and 5) Fixed
Effect Likelihood (FEL) analyses [81] revealed significant
evidence of positive selection in at least one codon [dN/
dS > 1.1 at P < 0.10, the p-value recommended by 82]. As
a quality control measure, we excluded any genes whose
pairwise dS exceeded twice the genome median across
any of the pairwise combinations of species [details in
49]. We analyzed the full genome in this manner.

Results
Identification of ejaculated proteins from the female
reproductive tract
We directly identified ejaculated proteins from four bio-
logical samples: the two copulatory plugs and two
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samples of the uterine fluids, from two different male-
female matings. The costs associated with isotopic label-
ing inhibited additional sampling. We considered a gene
to be positively identified if at least two different pep-
tides mapped to it, at least one of which mapped
uniquely to a single location in the genome. With these
criteria, we identified 69 genes total (Additional File 1)
from 27,565 spectra representing 827 different peptides,
795 of which mapped to a single location in the gen-
ome. Each gene was identified with a median of 80 spec-
tra, seven different peptides (a median six of which
mapped uniquely to that gene), at a median coverage of
21.4% of the protein. The median number of spectra per
gene is ~ four times lower than the mean number of
spectra per gene ( = 399 spectra), indicating that a rela-
tively few genes were identified with a high number of
spectra. Genome duplications and high relatedness
among certain gene families prevented some gene iden-
tifications because associated peptides did not map to a
single genomic location. These ambiguous gene identifi-
cations are not considered further here but are pre-
sented in Additional File 2.

Evaluating detection sensitivity suggests most detectable
proteins were identified
Technical replication verified that most detectable pro-
teins were identified under our experimental conditions.
The two uterine samples were each run through five
technical replicates, and the two plugs were each run
through seven technical replicates. Only four additional
proteins were identified in the sixth and seventh plug
replicates combined (Figure 1). Furthermore, proteins
identified for the first time in later technical replicates
showed lower median NSAF (Figure 2), suggesting most
proteins that were reasonably abundant (and detectable)
had been sampled.
Three targeted searches provided additional evidence

that we identified most detectable ejaculated proteins.
First, we isolated insoluble proteins from the female
reproductive tract. In this insoluble fraction, we identi-
fied an additional six proteins that were not identified in
any other samples (POU domain class 4 transcription
factor 1, elastin, DEAH box polypeptide 9, AT rich inter-
active domain 1B, histone cluster 1 H1e, and tubulin
beta 2c, identified with 2, 2, 3, 4, 8, and 26 spectra,
respectively). Second, we re-analyzed one of the copula-
tory plug samples and one of the uterine fluid samples
after depleting each of them of immunoglobulin- and
albumin-like proteins, which were highly represented in
early technical replicates. Only four additional proteins
were newly detected (major urinary protein 4, transfer-
rin, aldolase 1 A isoform, and cathepsin L, identified
with 2, 2, 3, and 7 spectra, respectively) in depleted sam-
ples. Third, we re-ran several experiments after directing

the mass spectrometer to only fragment peptides that
had previously gone unanalyzed [72]. This directed sam-
pling method had a minimal effect. A median of only 2
additional spectra were detected per gene for the copu-
latory plug sample, out of a total of 13,299 spectra used
to identify 62 genes. For the uterine fluid sample, a
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Figure 1 A cumulative distribution showing new genes
discovered across technical replicates. The sixth and seventh
technical replicate added a combined total of four new genes (out
of 69 total), suggesting we have approached an asymptote of new
gene discovery.
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Figure 2 Genes discovered in the first replicate had higher
NSAF (arcsin square root transformed) than genes discovered
in later replicates. This pattern was seen in all four biological
samples; we present one of the copulatory plug samples here. This
result suggests that we have identified all reasonably abundant (and
detectable) proteins under the experimental conditions employed.
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median of 7 fewer spectra were detected per gene, out
of a total of 9,725 spectra mapping to 50 genes. In sum,
our evaluations of detection sensitivity provided support
that we have identified the major ejaculated proteins
present in the female, at least given the experimental
conditions employed here.

Ejaculated proteins were statistically enriched for genes
that protect from oxidative stress and inhibit
endopeptidases
Two main branches in the Gene Ontology were signifi-
cantly overrepresented among the 69 ejaculated pro-
teins compared to the entire genome: antioxidant
activity and endopeptidase inhibitor activity. Both
functions were overrepresented among genes identified
directly from male reproductive tissues [49]. Both
functions were also overrepresented in human ejacu-
lates, revealing commonalities among mammalian eja-
culate function [49, their supplementary table 4, 83].
Five ejaculated proteins had antioxidant activity (com-
pared to 57 of 14,720 annotated genes across the gen-
ome, Bonferroni-corrected P < 0.01). Six ejaculated
proteins showed evidence of endopeptidase inhibitor
activity (vs. 148/14,720 in the genome, Bonferroni-cor-
rected P < 0.02).

Most spectra map to proteins associated with the
copulatory plug
A large proportion of the proteins detected were asso-
ciated with the copulatory plug. Of the 69 genes identi-
fied, 62 were found in the copulatory plug samples. It is
thought that the copulatory plug forms via the action of
the prostate-derived transglutaminase 4, which cross-
links proteins of at least six seminal vesicle secretions -
SVS1, SVS2, SVS3a, SVS3b, SVS4, and SVS5 [84-87]. In
total, these seven proteins were identified with 10,239
spectra, accounting for 37% of all identifiable spectra
generated across the four biological samples (two copu-
latory plugs, two uterine fluid samples), in spite of the
fact that their combined length accounted for only 8%
of the combined length of all proteins identified.
To further explore the investment that males make in

copulatory plugs, we made 149 crosses from 47 different
F1 males derived from wild caught parents. These crosses
using wild-caught mice were only used to assess natural
variation in the weight of the copulatory plug; all other
data in this manuscript were derived from F1 (male WSB/
Eij x female LEWES/EiJ) matings as described above.
Approximately 12 hours after mating, the copulatory plug
weighed a median 31 mg, which represented approxi-
mately 0.3% of the body weight of the females from which
these plugs were collected. We corrected by female weight
as a rough proxy for the size of the vaginal-cervix canal,
which may constrain the size of the plug. By comparison,

a single testis from the male mice that formed these plugs
accounts for a median 0.5% of its body mass, suggesting
the plug represents a significant investment for males.

Female-derived proteins
To demonstrate another potential application of the dif-
ferential labeling method, we identified 15N-labeled (pre-
sumably female-derived) proteins by computationally
adjusting the SEQUEST search algorithm to assume
95% 15N incorporation into peptides. Three additional
criteria facilitated identification of female-derived pro-
teins that were indeed produced in response to mating.
We required female-derived proteins to i) have a secre-
tion signal at P > 0.90, as predicted by TargetP [88], ii)
not be identified from an unmated 15N-labeled female
reproductive tract, and iii) not be identified as a male-
derived seminal fluid gene. Using these criteria, we iden-
tified six female-derived proteins produced in response
to mating - lactotransferrin (54 spectra, 14 peptides),
kallikrein-related peptidase 14 (14 spectra, 3 peptides),
lipocalin 2 (32 spectra, 2 peptides), chloride channel cal-
cium activated 3 (65 spectra, 15 peptides), corneodesmo-
sin (, and alpha-2-HS-glycoprotein (6 spectra, 2
peptides). Two of these proteins (lactotransferrin and
kallikrein-related peptidase 14) included domains indica-
tive of endopeptidases [89-91], which are proteins that
cleave other proteins.

The 69 ejaculated proteins identified were a non-random
subset of proteins produced in the male reproductive
tract
Previously [49], we identified 506 proteins from six dis-
tinct regions of the reproductive tract - seminal vesicles,
anterior prostate (a.k.a. the coagulating gland), ventral
prostate, dorsolateral prostate, bulbourethral diverticu-
lum, and the bulbourethral gland (a.k.a. Cowper’s gland)
- from the same genotype analyzed here (an F1 male
derived from a cross between a male WSB/Eij and a
female LEWES/EiJ). We re-analyzed those data with the
same criteria presented above, producing a list of 483
total single-region proteins (Additional File 3). We
found that 54 genes overlapped between the two studies,
while 429 genes that were detected in our previous
study of the male reproductive tract were not identified
here. For simplicity, we refer to these as the 429 “non-
overlapping” proteins. If we required only a single
uniquely mapping peptide (rather than requiring at least
two peptides mapped, at least one of which was unique),
we still only observed 72 of the 483 previously identified
proteins.
The 54 overlapping genes evolved significantly more

rapidly than the 429 non-overlapping genes (Figure 3).
Of the 54 overlapping genes, 29 had a one-to-one ortho-
log in rat and produced estimates of evolutionary rate
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that satisfied various measures of quality control (see
Materials and Methods). The median dN/dS for these 29
genes (dN/dS = 0.27, Q1-Q3 = 0.16-0.49) was signifi-
cantly higher than the median estimated dN/dS for the
429 non-overlapping genes (N = 303 of 429 non-over-
lapping genes with quality one-to-one orthologs, median
dN/dS = 0.06, Q1-Q3 = 0.02-0.14) (Wilcoxon Rank Sum
Test [WRST] W = 7,336, P < 10-8) (Figure 2). In addi-
tion to these sequence-based metrics, the 54 overlapping
genes had fewer one-to-one orthologs between mouse
and rat compared to the non-overlapping genes (29/54
vs. 303/429, respectively[http://www.ensembl.org, ver-
sion 48], Fisher’s Exact Test P < 0.02). This result sug-
gests these genes are evolving so rapidly that orthology
is difficult to detect, that they undergo more gene con-
version which obscures orthology, and/or that they
experience higher rates of gene birth and death.
These patterns of rapid evolution derived from

mouse-rat comparisons were robust to the precise set of
non-overlapping genes investigated. All patterns
remained statistically significant even if we compared
the 54 overlapping genes to the 88 (of 429) non-overlap-
ping genes that i) have a one-to-one ortholog found in
human ejaculates [83], and ii) have a one-to-one ortho-
log in rat. These additional comparisons represented an
attempt to control for possible protein contamination,
and to focus on those proteins that show the most evi-
dence of being ejaculated [following, 49].
Unfortunately, we cannot perform deeper evolutionary

analyses for most of these genes because orthology

across the five mammalian genomes analyzed here
(mouse, rat, dog, human, cow) is lacking. It is possible
that rapid evolution has obscured orthology assignment.
Similar patterns have been observed in insects [92]. Of
the 54 overlapping proteins, only 15 have orthologs
across the five species, which is a significantly smaller
proportion than the 216 (of 429) non-overlapping pro-
teins that have orthologs across the five species (FET, P
= 0.001). Of the 15 overlapping proteins with orthologs,
two showed statistically significant evidence of adaptive
evolution according to the five criteria above (tissue
inhibitor of metalloproteinase 1 and plasminogen activa-
tor urokinase), which was not significantly different than
the 17 adaptively evolving genes identified from the 216
non-overlapping proteins with orthologs (FET, P =
0.36). Attempts to gain power by analyzing more closely
related genomes of rabbit, guinea pig, kangaroo rat, and
squirrel (http://www.ensembl.org) were inconclusive due
to the low coverages of these additional genomes (data
not presented).
Of the 69 ejaculated proteins detected in the present

study, 15 were not observed in our previous analysis of
the male reproductive tract (Figure 3). These proteins
may derive from regions of the male reproductive not
sampled in our previous study, for example the ampul-
lary gland, a small swelling in the vas deferens. It is also
possible some of these 15 proteins were more easily
detected after ejaculation into the female reproductive
tract. These 15 proteins evolved at a rate similar to the
54 overlapping proteins (Figure 3).

Rapid evolution of female-derived endopeptidases, male-
derived endopeptidase inhibitors, and copulatory plug
genes
Female-derived endopeptidases and male-derived endo-
peptidase inhibitors evolve relatively rapidly, although
our study is underpowered given the low number of
genes in both categories. In pairwise mouse-rat esti-
mates, the female-derived endopeptidases lactotransfer-
rin and kallikrein related peptidase 14 showed a dN/dS
of 0.78 and 0.32, respectively, values that are substan-
tially higher than the genome of median 0.13. Further-
more, lactotransferrin showed statistically significant
evidence of recurrent positive selection across a phylo-
geny of five mammalian species (according to five cri-
teria discussed previously, 1: the data fit the M8 model
significantly better than M7 [2ΔL = 29.8, P < 10-6], 2:
the data fit the M8 model significantly better than M8a
[2ΔL = 22.9, P < 10-5], 3: the additional class of dN/dS
estimated by M8 = 3.8, 4: an estimated 4.9% of codons
belonged to this additional class, and 5: FEL analyses
estimated that 2% of codons experienced dN/dS>1.1 at P
< 0.10). Only three male-derived endopeptidase inhibi-
tors - cystatin C, spink5, and timp1 - had high quality
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Figure 3 Genes identified in the present study, including 15
unique to ejaculates (ejac.) and 54 that overlapped with our
previous study of the male reproductive tract (RT), evolve
significantly more rapidly than the 429 non-overlapping
proteins identified in our previous study [49].
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orthologs between mouse and rat, but all three showed
high dN/dS of 0.41, 0.49, and 0.52, respectively. Timp1
showed statistically significant evidence of recurrent
adaptive evolution across the five mammalian species (1:
2ΔL = 9.81, P < 0.01, 2: 2ΔL = 4.82, P < 0.03, 3: addi-
tional class of dN/dS = 2.9, 4: estimated 4.9% of codons
belonged to this class, and 5: FEL estimated 1.4% of
codons with dN/dS>1.1), spink5 did not, and cystatin C
could not be analyzed due to a lack of orthology. Rapid
evolution of female-derived endopeptidases and male-
derived endopeptidase inhibitors is consistent with a
model of sexual conflict between these two molecular
classes [93,94], though additional functional experiments
are required to evaluate this hypothesis further.
Proteins involved in the formation of the copulatory

plug showed especially rapid evolution. Four genes
known to form a large proportion of the copulatory
plug - SVS1, SVS2, SVS5, and Tgm4 (the other SVS
genes drop out of pairwise mouse-rat comparisons due
to either lack of orthology or failed quality control) -
have dN/dS estimates of 0.36, 0.40, 0.67, and 0.33,
respectively, which are approximately three or more
times the genome median (0.13).

Discussion
A major finding over the past ~15 years is that male
reproductive proteins diverge rapidly in sequence
[reviewed by 95], gene birth/death processes [96-99],
expression [100-103], and protein size or composition
[104-107]. Adaptive evolution of copulatory plug pro-
teins is especially strong in species with relatively high
levels of polyandry [106,108-110]. In primates, copula-
tory plug proteins also show signs of rapid evolution
[111,112], and the solidification intensity of the plug is
positively correlated with the level of sperm competition
[39]. In Drosophila, both male- and female-derived pro-
teases have undergone rampant duplication, gene con-
version, and/or adaptive evolution [93,113-115]. There
are several hypotheses to account for this elevated rate
of divergence, including adaptive evolution related to
natural selection and/or intra- or inter-sexual selection.
Disentangling these alternative hypotheses requires a
better understanding of the function of ejaculated pro-
teins. Here we used isotopic labeling to separate female-
from male-derived proteins taken from the female
reproductive tract, identifying 69 proteins that are trans-
ferred during mating.
Two functions - antioxidant activity and endopepti-

dase inhibitor activity - were significantly enriched
among the 69 identified proteins. Sperm are particularly
susceptible to oxidative stress as a result of their high
metabolic rate, their high level of polyunsaturated fatty
acids in their membranes, and their lack of most cyto-
plasmic components of the antioxidant system.

Oxidative stress can damage the paternal genome, lead-
ing to aberrant embryonic development [116]. Male
hamsters that had their accessory glands surgically
removed ejaculated sperm with elevated DNA damage
compared to sham-operated controls [117]. In humans,
sub-fertile men had a higher level of reactive oxygen
species and lower antioxidant ability in their seminal
fluid, compared to normally fertile men [118]. In some
birds, more colorful males harbor sperm that are more
resistant to oxidative stress, raising the possibility that
males advertise their ability to protect sperm [119].
Male seminal fluid was also significantly enriched for

proteins with endopeptidase inhibitor activity. Such pro-
teins are involved in a diversity of physiological func-
tions including modulation of immune response and
sperm capacitation. Dean et al. [49] hypothesized that
endopeptidase inhibitors may protect the copulatory
plug from degradation.
On the female side of the equation, two of the six

identified female-derived genes, lactotransferrin and kal-
likrein related-peptidase 14, included domains indicative
of endopeptidases. One possible function for female-
derived endopeptidases is the degradation of the copula-
tory plug [49]. While there is some reference in the lit-
erature to the plug “falling out” or being easily dislodged
by females or other males [56], in our extensive experi-
ence with wild-derived mice (like those of the present
study), the plug is strongly attached to the tissues of the
vagina and cervix, rarely visible externally, and requires
considerable effort to dissect. Female-derived endopepti-
dases might degrade the plug and/or detach the plug
from its close association to female tissue as an initial
step in dislodgement.
Female-derived endopeptidases might be targeted by

male-derived endopeptidase inhibitors. Of the six male-
derived endopeptidase inhibitors identified above, three
were characterized as I4 subfamily members and two as I1
subfamily members [the sixth is not characterized, mer-
ops.sanger.ac.uk 120]. Members of subfamily I1 are known
to inhibit endopeptidases of the S1 family [121], like the
female-derived kallikrein related peptidase 14 that we
identified here. The other female-derived endopeptidase
that we identified, lactotransferrin, is part of the S60 family
of endopeptidases, which is not known to be inhibited by
any of the male-derived endopeptidase inhibitors identified
here [120]. More direct experiments are needed to test
whether female-derived endopeptidases and male-derived
endopeptidase inhibitors interact directly.
Curiously, an additional 429 proteins previously iden-

tified in the male reproductive tract by Dean et al. [49]
were not observed here. We consider three hypotheses
to explain why we did not identify these 429 non-over-
lapping proteins in this study. One hypothesis is these
429 non-overlapping proteins were not ejaculated. Our
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earlier work was based on tissue dissection and may
therefore have included some contamination by non-
ejaculated proteins. This hypothesis seems unlikely to be
the main explanation because 327 of the 429 non-over-
lapping proteins had a one-to-one ortholog in humans,
and of those, 114 were detected in human ejaculates [83].
We note that the general findings in either study were
not altered if we confined analyses to those genes that
had a one-to-one ortholog to a human-ejaculated gene.
A second hypothesis is that even though female pro-

teins were labeled with heavy nitrogen, their presence
still reduced the signal-to-noise ratio at various stages
throughout the mass spectrometry pipeline employed
here. This hypothesis also seems unlikely because techni-
cal replication (Figsures 1,2) as well as three independent
targeted searches (see Evaluating Detection Sensitivity in
Results) all suggested we have identified most detectable
proteins. Because we used the same mass spectrometry
techniques in both studies and the same mouse genotype,
the 429 non-overlapping proteins should have been
detected if present, unless they were post-translationally
modified in ways that make them undetectable only after
ejaculation. Other technical artifacts associated with
mass spectrometry, such as random loss of signal due to
precise composition of co-eluting molecular species, pre-
dict a random subset of genes would be identified in our
heavy isotope framework, which was not observed here.
A third hypothesis is that many of the 429 non-over-

lapping proteins were degraded in the female reproduc-
tive tract after ejaculation but prior to our sampling of
female reproductive tracts. Wild-derived mice demon-
strate complicated mating behaviors, so sampling female
reproductive tracts immediately after ejaculation is diffi-
cult. Thus, for these initial experiments, female repro-
ductive tracts were sampled 6-14 hours after copulation.
During this interval, changes in the number and relative
abundance of male proteins may have occurred. Consis-
tent with this hypothesis, females produced endopepti-
dases in response to mating, which may actively degrade
ejaculated proteins. Under this scenario, male proteins
might be under selection to evolve rapidly, thus evading
female degradation machinery. The 69 ejaculated pro-
teins indeed evolved significantly more rapidly than
other male reproductive proteins.

Conclusion
We applied isotopic labeling to directly identify 69 pro-
teins transferred from males to females during mating.
The techniques applied here make it possible to study the
fate of ejaculated proteins over time. Future experiments
can use targeted proteomic methods to follow in vivo the
localization and degradation of specific male proteins in
the female reproductive tract, to more fully appreciate
their roles in reproduction and evolutionary fitness.

Additional material

Additional file 1: Male-derived genes detected in the female
reproductive tract. The 69 genes that code proteins transferred from
males to females.

Additional file 2: Ambiguous male-derived genes. 30 genes that were
only identified with ambiguously mapping spectra from the female
reproductive tract.

Additional file 3: Genes detected from the male reproductive tract.
483 genes identified from dissected regions of the male reproductive
tract [a re-analysis of 49].
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