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The tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a widely

expressed cytokine that can bind five different receptors. TRAIL has been of particular

interest for its proposed ability to selectively induce apoptosis in tumour cells. However,

it has also been found to regulate a wide variety of non-canonical cellular effects

including survival, migration and proliferation via kinase signalling pathways. Lung

diseases represent a wide range of conditions affecting multiple tissues. TRAIL has

been implicated in several biological processes underlying lung diseases, including

angiogenesis, inflammation, and immune regulation. For example, TRAIL is detrimental

in pulmonary arterial hypertension—it is upregulated in patient serum and lungs, and

drives the underlying proliferative pulmonary vascular remodelling in rodent models.

However, TRAIL protects against pulmonary fibrosis in mice models—by inducing

apoptosis of neutrophils—and reduced serum TRAIL is found in patients. Conversely,

in the airways TRAIL positively regulates inflammation and immune response. In COPD

patients and asthmatic patients challenged with antigen, TRAIL and its death receptors

are upregulated in serum and airways. Furthermore, TRAIL-deleted mouse models have

reduced airway inflammation and remodelling. In the context of respiratory infections,

TRAIL assists in immune response, e.g., via T-cell toxicity in influenza infection, and

neutrophil killing in S. pneumoniae infection. In this mini-review, we examine the functions

of TRAIL and highlight the diverse roles TRAIL has in diseases affecting the lung.

Disentangling the facets of TRAIL signalling in lung diseases could help in understanding

their pathogenic processes and targeting novel treatments.

Keywords: TRAIL, TNF-related apoptosis-inducing ligand, pulmonary arterial hypertension, immune regulation,

pulmonary vascular disease, pulmonary fibrosis, respiratory tract infections, chronic obstructive pulmonary

diseases

INTRODUCTION

The tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), also known as Apo2 ligand
is an apoptosis-inducing cytokine that is expressed in most cell types. As its name suggests, TRAIL
was primarily of particular interest for its ability to selectively induce apoptosis in tumour cells
in vitro and in vivo, while apparently exhibiting minimal off-target effects (1–3). TRAIL-deficient
mice are also more susceptible to tumour formation and metastasis (4), suggesting TRAIL has a
protective role in cancer suppression. Consequently TRAIL signalling has been targeted for use
in several anticancer therapies (5), however several types of cancer cells are resistant to TRAIL-
induced apoptosis. In these cells, TRAIL can activate pro-inflammatory signalling pathways (6, 7),
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proliferation (8–10) and metastasis (11). The purpose of this
mini-review is to discuss how the known function of TRAIL
has evolved beyond apoptosis to these alternative effects and
highlight the different roles TRAIL has in diseases affecting the
lung (Figure 1), where TRAIL is widely expressed (12, 13). The
better understanding of the diverse roles for TRAIL in lung
disease could lead to the development of more effective, and
novel treatments.

TRAIL MOLECULAR SIGNALLING

TRAIL, a type II transmembrane protein, is a member of the
death receptor ligand family; a subclass of the tumour necrosis
factor family (14) and is widely expressed in a variety of human
tissues, most predominantly in lung, spleen and prostate (14).
TRAIL is proteolytically-cleaved and its extracellular domain can
bind five TRAIL receptors: membrane-bound death receptors
DR4 (TRAIL-R1) and DR5 (TRAIL-R2), membrane-bound
decoy receptors DcR1 (TRAIL-R3), and DcR2 (TRAIL-R4) and
the soluble decoy osteoprotegerin (OPG) (15–21) [TRAIL is
conserved in mice—they have two decoy receptors and a single
TRAIL death receptor, mDR5, which is more similar to DR5 than
DR4 (22)].

TRAIL is composed of 281 amino acids and forms
a homotrimeric structure upon binding three receptor
molecules (23). The death receptors DR4 and DR5 are
type I transmembrane proteins containing a cytoplasmic
death domain. In the canonical TRAIL apoptosis signalling
pathway (Figure 2A), binding of death receptors by TRAIL
leads to recruitment of Fas-associated protein with death
domain (FADD), formation of a complex known as death-
inducing signalling complex (DISC), activation of caspase-8 and
subsequently downstream caspase-3 dependent apoptosis of the
cell [Figure 1; (24–26)]. Unlike the TRAIL death receptors, the
decoy receptor DcR1 has no death domain (15, 18) and DcR2
has a truncated, non-functional death domain (15, 17, 27). These
decoy receptors, and additionally binding with lower affinity, the
soluble OPG, are suggested to suppress apoptotic signalling by
competitively binding TRAIL (28, 29).

Conversely, TRAIL can also stimulate pathways promoting
cell survival, proliferation and migration via activation of
kinase signalling pathways (Figure 2B) (30). This non-canonical
signalling may depend on the formation of a secondary signalling
complex after initial DISC assembly (31), recruiting other
factors including FADD, Caspase 8, RIPK1, TNF receptor-
associated factor 2 (TRAF2) and inhibitor of NF-κB kinase
subunit gamma (IKK-γ). Activation of non-canonical TRAIL
signalling pathways may also be regulated by expression of
DcR1, as antibody neutralisation of this decoy receptor can
inhibit TRAIL-induced cell proliferation (30). Downstream non-
canonical signalling by TRAIL has been shown to be effected

Abbreviations: COPD, Chronic obstructive pulmonary disease; DcR1/2, Decoy

receptor 1/2; DISC, Death-inducing signalling complex; DR4/5, Death receptor

4/5; EC, Endothelial cell; PAH, Pulmonary arterial hypertension; PF, Pulmonary

fibrosis; SMC, Smooth muscle cell; SSc, Systemic sclerosis.

by activation of kinase signalling e.g., NF-κB, p38, c-Jun N-
terminal kinase (JNK), phosphatidylinositide 3-kinases (PI3K),
Akt, and extracellular signal-regulated kinases (ERK); leading to
activation of gene transcription (32). By activating NF-κB, TRAIL
can also modulate levels of FADD-like interleukin-1β-converting
enzyme)-inhibitory protein [c-FLIP; (33)], a negative regulator
of caspase-mediated apoptosis—a further mechanism by which a
cell may deviate from pro-apoptotic to pro-survival signalling in
response to TRAIL.

PULMONARY ARTERIAL HYPERTENSION

TRAIL has been implicated in the pathobiology of pulmonary
arterial hypertension (30, 34). This is indicated by elevated levels
of soluble TRAIL found in the serum of PAH patients, and
increased abundance of serum TRAIL, which is associated with
worsened clinical severity (35). The pulmonary vasculature is
complex, and many aberrant processes can lead to disease. PAH
is a multifactorial disorder characterised by remodelling of the
pulmonary arteries and a progressive increase in pulmonary
vascular resistance, leading to raised afterload on the right
ventricle and ultimately right heart failure (36). The most
frequent alterations are sustained pulmonary vasoconstriction
and remodelling of the pulmonary arteries and arterioles. The
arterial remodelling is characterised by medial hypertrophy,
intimal fibrosis and often the development of thrombotic or
plexiform lesions (37). Together, these processes cause the
occlusion of small pulmonary arteries. Combined with the
muscularisation and progressive obliteration of distal vessels,
the subsequent loss of cross-sectional area generates increased
right ventricular afterload. At the cellular level, the neoplastic
pathologies of PAH are thought to be driven by excessive
proliferation of apoptosis-resistant endothelial cells (ECs),
together with proliferation and migration of medial smooth
muscle cells (SMCs) and fibroblasts.

TRAIL immunoreactivity has been shown in pulmonary
vascular lesions from idiopathic PAH patients (13) and increased
TRAIL mRNA expression is detected in the lungs of rodent
models of PAH (35, 38). Furthermore, TRAIL has been
demonstrated—by knockout and by inactivation—as necessary
for the development of PAH in multiple pre-clinical models of
PAH (30). Reversal of established PAH in rodent models was
also demonstrated by administration of an anti-TRAIL antibody
(30). TRAIL knockout also had a similar protective effect in a
Sugen5416 and hypoxia mouse model of PAH (34). Increased
TRAIL, DR4 and DcR1 mRNA levels have been detected in
explanted pulmonary artery SMCs from idiopathic PAH patients,
compared to healthy control cells (30). Additionally, TRAIL
depletion or blockade in rodent models of PAH is associated with
reduced pulmonary arterial remodelling with fewer proliferating
pulmonary artery SMCs (30, 34). This evidence indicates that
TRAIL is a key promoter of the pulmonary arterial SMC
proliferation associated with the pathogenic vascular remodelling
in PAH. Recombinant TRAIL was also shown to induce
proliferation andmigration of idiopathic PAHpatient pulmonary
artery SMCs in vitro, via phosphorylation of ERK1/2 (30). The
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FIGURE 1 | TRAIL functions in lung disease. A brief summary of evidence for the varied roles of TRAIL in different lung diseases. ↑ and ↓ represent up- and

down-regulation, respectively. Akt, protein kinase B; COPD, chronic obstructive pulmonary disease; DR4/5, TRAIL death receptor 4/5; ERK, extracellular

signal-regulated kinase; PAH, pulmonary arterial hypertension; PF, pulmonary fibrosis; RSV, respiratory syncytial virus; SSc, systemic sclerosis; TRAIL, tumour necrosis

factor-related apoptosis-inducing ligand.

pro-proliferative effect of TRAIL was reversed by the addition
of DcR1 neutralising antibody, suggesting this decoy receptor
is essential to non-canonical TRAIL signalling in pulmonary
artery SMCs. Other studies have similarly demonstrated that
TRAIL can stimulate proliferation and migration of vascular
SMCs via non-canonical kinase signalling cascades (39, 40).
Additionally, following activation of NF-κB, TRAIL has been
shown to stimulate production and release of pro-inflammatory
cytokines in vascular SMCs (41).

EC dysfunction is another key aspect of the angioproliferative
state of pulmonary arteries in PAH. Several studies have
demonstrated that TRAIL can stimulate angiogenic processes

in vascular ECs in vitro, including proliferation (33, 42, 43),
migration (33, 43, 44) and tubule formation (43). Similarly to
non-canonical TRAIL signalling in SMCs, its angioproliferative
effect in ECs has been linked to activation of Akt and ERK
pathways (42), as well as upregulation of DcR2 (45). Conversely,
TRAIL has also been demonstrated to have apoptotic (12, 46)
and anti-angiogenic (47) effects on vascular ECs. The reason for
this disparity is unclear, although each of these studies used a
relatively high concentration of recombinant TRAIL (100 ng/ml),
suggesting the pro-angiogenic signalling in endothelium may
preferentially occur at lower TRAIL concentrations. In Cantarella
et al. (33), high levels of TRAIL were shown to induce caspase
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FIGURE 2 | Molecular signalling of TRAIL. (A) Three proteolytically-cleaved tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) proteins form a

homotrimeric structure when binding death receptor 4 (DR4) or death receptor 5 (DR5) at the cell membrane. These are joined by Fas-associated death domain

(FADD) and procaspase-8 to form the so-called death-inducing signalling complex (DISC). The DISC causes activation of the caspase cascade, leading to apoptosis

of the cell. TRAIL may also bind the membrane decoy receptors (DcR1/2) or soluble osteoprotegerin (OPG), which do not contain a death domain, thus preventing

TRAIL-induced apoptosis. Apoptosis can also be suppressed by (FADD-like interleukin-1β-converting enzyme)-inhibitory protein (c-FLIP), which inhibits the function of

the DISC. (B) In the non-canonical signalling pathway, the receptor and ligand are thought to be lost, leaving FADD and caspase-8 to be joined by receptor-interacting

serine/threonine-protein kinase 1 (RIPK1), TNF receptor-associated factor 2 (TRAF2) and inhibitor of NF-κB kinase subunit gamma (IKK-γ). This secondary signalling

complex initiates protein kinase signalling pathways, leading to activation of kinases including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB),

p38 (mitogen-activated protein kinase; MAPK), c-Jun N-terminal kinase (JNK), phosphatidylinositide 3-kinases (PI3K) and extracellular signal-regulated kinase (ERK).

The effects of these kinases include survival, proliferation and migration.

8-mediated apoptosis of ECs, whereas low levels of TRAIL were
pro-angiogenic. Interestingly, these dose-dependent opposing
effects of TRAIL in ECs were linked to modulation of levels
of c-FLIP, a procaspase-8 homolog and negative regulator of
apoptosis (33).

AUTOIMMUNE DISEASE

TRAIL is now known to have crucial functions in regulation
of inflammation and immune response. These systems are
significant in the pathogenesis of many forms of lung disease,
including autoimmune disorders and respiratory infection in
addition to pulmonary vascular disease (Figure 2). A role for
TRAIL in regulating inflammation via apoptosis was highlighted
in a knockout of the mouse TRAIL death receptor, as in
addition to tumour formation, the mice were prone to chronic
inflammation (48). Additionally, TRAIL has been demonstrated
to suppress the early inflammatory response via apoptosis of
neutrophils (49).

PAH is an associated complication in autoimmune disease,
e.g., 7–12% of patients with systemic sclerosis (SSc) develop

PAH (50, 51). SSc is a heterogeneous autoimmune disorder,
characterised by tissue fibrosis and vascular injury. Pulmonary
fibrosis (PF) is a condition often found in interstitial lung
disease and autoimmune disorders of the connective tissue,
including SSc and rheumatoid arthritis. Elevated serum TRAIL
levels have been found in SSc patients compared to healthy
controls, in addition to being elevated in SSc patients with
either PAH or PF compared to those without pulmonary
involvement (52), suggesting that TRAIL may also may play
a key role. In contrast, soluble TRAIL has been found at
lower levels in the serum of patients with the idiopathic
form of PF than health controls (53). Within the idiopathic
PF patient group, lung function—shown by transfer factor of
the lung for carbon monoxide—was correlated with serum
levels of TRAIL, suggesting it may have a protective role in
idiopathic PF (53). Furthermore, a direct link to PF pathobiology
is illustrated in TRAIL-deficient mice, where fibrosis in the
bleomycin model of PF was enhanced in comparison to wild-
type mice (53). In this model, TRAIL deletion also increased
pulmonary inflammation (neutrophil counts in bronchoalveolar
lavage fluid). The inflammatory phenotype in TRAIL knockout
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mice was accompanied by a reduced number of apoptotic cells
in lung tissue, with a corresponding reduction of apoptotic
neutrophils in bronchoalveolar lavage fluid. This suggests that
TRAIL-mediated apoptosis of neutrophils is a protective process
in this form of PF.

AIRWAY INFLAMMATION

Contrary to its protective effect in idiopathic PF, TRAIL appears
to have a detrimental role in the context of both acute and
chronic airway inflammation, by upregulating inflammation
and autoimmune responses (Figure 2). TRAIL is elevated in
bronchoalveolar lavage fluid from asthmatic patients following
antigen challenge, and isolated eosinophils express more TRAIL
and DcR2, but less DR4 and DR5 (54). Deletion of the TRAIL
gene in mice diminishes airway hyper-reactivity, inflammation
and remodelling in an ovalbumin-induced model of allergic
asthma (55, 56) and a rhinovirus-induced asthma model (57).
Additionally, chronic asthmatic inflammation, remodelling and
lung function are worsened by TRAIL deletion in mice infected
as neonates with chlamydia (58).

Prolonged exposure to irritants and inflammation can lead
to chronic obstructive pulmonary disease (COPD). A role for
TRAIL in COPD has been highlighted by its elevated levels
in the lungs of COPD patients. One study found increased
TRAIL, DR4, DR5, and DcR1 protein in lung parenchyma from
COPD patients (59). Higher levels of TRAIL, DR4, and DR5
mRNA were also found in airway epithelial brushing of COPD
patients compared to healthy controls (60). Another study found
increased levels of serum TRAIL and DR5 in COPD patients
compared to healthy controls (61). Additionally, with the COPD
patient group serum levels of TRAIL and DR5 were found
to be inversely correlated with forced expiratory volume (61).
Inflammation and alveolar cell apoptosis are key processes in
many forms of COPD. A pro-apoptotic function of TRAIL
in COPD was originally suggested, as emphysematous lung
tissue is more sensitive to TRAIL-induced apoptosis than health
lung (62). However, a pro-inflammatory element may also be
important. In a chronic cigarette smoke-exposure mouse model
of COPD, TRAIL mRNA, and protein expression was increased
in the airway epithelium and parenchyma, and in mice with
TRAIL deletion, airway inflammation—as well as remodelling—
was reduced (60). The activation by TRAIL of both apoptotic and
inflammatory pathways within COPD highlights its varied roles
and how specific cell types are targeted—whether or not this is
this mediated by differential receptor expression or some other
mechanism remains unclear.

RESPIRATORY INFECTION

In lower respiratory tract infections, TRAIL has differing roles
in immune response and damage to host tissues (Figure 2).
Apoptosis of virus-infected cells is a key mechanism for clearance
of viral infection and in vitro. In the context of influenza
infection, TRAIL-induced apoptosis of human lung alveolar

epithelial cells is enhanced; an effect which is inhibited by
blocking DR5 (63). Similarly, TRAIL, DR4, and DR5 are strongly
upregulated in response to respiratory syncytial virus infection
in pulmonary epithelial cells, leading to increased sensitivity to
apoptosis (64). In animal models, TRAIL expressed by CD8+ T-
cells has been demonstrated as essential for viral immunity, with
TRAIL knockout mice exhibiting increased influenza-associated
morbidity and reduced CD8+ T-cell cytotoxicity (65–67). DR5
expression was also shown to be upregulated in influenza-
infected pulmonary epithelial cells in vivo (63, 65).

In opposition to its protective role in viral clearance, other
studies have shown that TRAIL expressed by macrophages is
instrumental in damage to airways caused by apoptosis of
alveolar epithelial cells in influenza infection (68, 69). Deletion
of TRAIL in mice led to a reduction in mortality and the alveolar
epithelial apoptosis and alveolar leakage associated with influenza
virus pneumonia (68). This highlights an interesting situation
whereby TRAIL death signalling may be used for host for viral
clearance, while also assisting in viral infection via tissue damage.
TRAIL has also been demonstrated as important in immune
response to bacterial respiratory infection. In the context of
Streptococcus pneumoniae infection, deletion of TRAIL in mice
reduces bacterial clearance in the lungs and worsens survival—an
effect that is reversed by treatment with TRAIL or DR5 agonist
antibody (70). In the same study, neutrophils were found to be
the key source of TRAIL (70).

CONCLUSIONS

As highlighted in this mini-review, TRAIL is multifaceted in a
variety of lung diseases. TRAIL also has the ability to function
as either pro-apoptotic or pro-survival depending on the cells
type, and receptor expression on local tissue to mediate either
protective or pathogenic mechanisms. The exact mechanism by
which TRAIL modulates these functions is not fully understood,
although regulation of TRAIL, and its cleavage, as well as
the expression of receptors by specific cell types is clearly
important in determining its effects. Further work is required
to fully elucidate the divergent roles of TRAIL to gain a better
understanding of the role it plays in underlying processes of
lung disease, and its potential as a therapeutic agent—or target—
depending on disease context.
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