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Abstract Atherosclerosis is the major cause of cardiovascular disease (CVD). Monocyte-derived

macrophages are the most abundant immune cells in atherosclerotic plaques. In patients with

atherosclerotic CVD, leukocytes have a hyperinflammatory phenotype. We hypothesize that

immune cell reprogramming in these patients occurs at the level of myeloid progenitors. We

included 13 patients with coronary artery disease due to severe atherosclerosis and 13 subjects

without atherosclerosis in an exploratory study. Cytokine production capacity after ex vivo

stimulation of peripheral blood mononuclear cells (MNCs) and bone marrow MNCs was higher in

patients with atherosclerosis. In BM-MNCs this was associated with increased glycolysis and

oxidative phosphorylation. The BM composition was skewed towards myelopoiesis and

transcriptome analysis of HSC/GMP cell populations revealed enrichment of neutrophil- and

monocyte-related pathways. These results show that in patients with atherosclerosis, activation of

innate immune cells occurs at the level of myeloid progenitors, which adds exciting opportunities

for novel treatment strategies.
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Introduction
Atherosclerotic cardiovascular disease (CVD), including myocardial infarction and stroke, is the lead-

ing cause of death worldwide. Major risk factors for CVD include dyslipoproteinemia, smoking,

hypertension, obesity, and diabetes. However, despite optimal pharmacological treatment of these

risk factors, a considerable residual CVD risk remains. Evidence is rapidly accumulating that chronic

low-grade inflammation of the vascular wall is a key pathophysiological component of atherosclero-

sis, and that treatment with anti-inflammatory drugs, such as canakinumab and colchicine, addition-

ally lowers future CVD risk (Nidorf et al., 2020; Ridker et al., 2017; Tardif et al., 2019). More

detailed knowledge of this inflammatory process and the role of individual immune cells would allow

the development of more specific and safe anti-inflammatory therapies.

Within atherosclerotic plaques, monocyte-derived macrophages are the most abundant immune

cells, which play a key role in initiation, progression, and destabilization of these plaques, although

the mechanisms driving the persistent inflammatory activation are poorly understood (Moore et al.,

2013). In patients with CVD or risk factors for CVD, circulating leukocytes show differences in com-

position and individual cell phenotypes, compared to healthy individuals. Isolated monocytes from

patients with CVD are characterized by an increased cytokine production capacity and higher glyco-

lytic metabolism (Bekkering et al., 2016; Elsenberg et al., 2013; Shirai et al., 2016). This also holds

true for patients with increased CVD risk due to familial hypercholesterolemia (Bekkering et al.,

2019). In addition, higher circulating levels of granulocytes are associated with an increased CVD

risk in a general population study (Fani et al., 2020).

Experimental studies in animal models of atherosclerosis have revealed reprogramming of

hematopoietic stem and progenitor cells (HSPCs) in the bone marrow as a cause of these changes in

circulating innate immune cells under conditions that predispose to CVD, including hyperlipidemia

(Christ et al., 2018), and stress (Heidt et al., 2014). Western-type diet feeding of low-density lipo-

protein receptor deficient (Ldlr-/-) mice induces inflammatory activation of monocytes by epigenetic

reprogramming of HSPCs which persists in normocholesterolemic conditions (Christ et al., 2018).

This resembles the finding of persistent functional and transcriptional hyperresponsive monocytes in

patients with dyslipidemia despite cholesterol-lowering treatment (Bekkering et al., 2019). In a ret-

rospective analysis of bone marrow samples from cancer patients, HSPCs had a higher proliferative

potential in patients with known atherosclerotic CVD than in control patients (van der Valk et al.,

2016). A detailed assessment, however, of HSPC composition and function in patients with athero-

sclerosis is lacking.

Here we performed a comprehensive study in patients with and without coronary artery disease

(CAD). We obtained circulating leukocytes and HSPCs and assessed composition with flow cytome-

try, as well as cytokine production capacity, metabolism, and the transcriptional profile. In addition,

we performed 2’-deoxy-2’-[18F]fluoro-D-glucose positron-emission-tomography ([18F]FDG PET/CT)

scanning to detect bone marrow and splenic activity. We report that bone marrow mononuclear cells

in patients with atherosclerosis are characterized by enhanced cytokine production capacity and an

increased metabolic rate. Flow cytometry and RNAseq analysis revealed inflammatory transcriptional

reprogramming and myeloid skewing. These results show that in patients with atherosclerosis, acti-

vation of the innate immune system occurs at the level of bone marrow myeloid progenitors, which

adds exciting opportunities for novel treatment strategies.

Results

Group characteristics
Thirteen individuals with CAD due to severe atherosclerosis with a median Total Plaque Score (TPS)

of 14[9-15], and thirteen individuals without coronary atherosclerosis (TPS = 0) participated in the

study (Table 1). As expected, patients with atherosclerosis more often received lipid-lowering ther-

apy with statins, which was associated with a lower total and LDL-cholesterol concentration. All out-

comes were corrected for the age and BMI because these are known modulators of innate immune

cell function (Ter Horst et al., 2016).
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Circulating inflammatory markers
The distribution of immune cells and monocyte subpopulations was similar between groups (Table 2).

Integrin CD11b expression on monocytes tended to be higher in patients with CAD (p=0.09). Circu-

lating endothelial dysfunction marker E-selectin was higher in patients with atherosclerosis (p<0.05).

Cytokine production capacity of circulating PBMCs is higher in
atherosclerosis
Previously, we showed in a comparable study cohort that the LPS-induced production of IL-6, TNFa,

IL-1b, and IL-8 in PBMCs was higher in patients with CAD compared to controls (Bekkering et al.,

2016). We could confirm this in the current study for IL-8 (p<0.01), with a similar pattern for IL-6

(p=0.08) and TNFa (p=0.13) (Figure 1A). There were no significant differences in response to TLR2

agonist Pam3Cys stimulation (Figure 1B).

HSPC composition is changed in patients with CAD
We assessed the HSPC composition using flow cytometry. Although the total percentage of HSPCs

was similar between groups, the percentage of multipotent progenitors (HSC/MPP, p<0.05) was

higher in patients with CAD (Figure 2A,B). Trends for a higher percentage of common myeloid pro-

genitors (CMP, p=0.06) and common lymphoid progenitors (CLP, p=0.08) were observed in patients

with CAD (Figure 2C,D). In addition, the percentage of pre-monocytes was higher (p<0.05), which

was associated with lower megakaryocyte erythrocyte progenitor percentages (MEP, p<0.05)

(Figure 2F,G). Within the bone marrow, no difference in the percentage of monocytes (3.3 [3.1–

4.4]% in patients versus 3.4 [3.0–4.6] in controls), and monocyte subpopulations, that is, classical (87

[82–88] % versus 82 [79-89]), intermediate (7.5 [7.1–10.8]% versus 9.3 [6.1–11.5]) and non-classical

monocytes (5.1 [4.2–8.1]% versus 8.1 [3.6–11.4]), was observed. Interestingly, the percentage of

Table 1. Group characteristics.

Characteristics Individuals with CAD (n = 13) Individuals without atherosclerosis (n = 13)

Age (years) 59.8 ± 9.7 52.2 ± 10.4

Sex (% men, n) 100 (13) 100 (13)

BMI (kg/m2) 27.8 ± 2.8 25.8 ± 2.5

SBP (mm Hg) 133 ± 15 126 ± 10

DBP (mm Hg) 90 ± 8* 84 ± 6

Hypertension (%, n) 93 (12)** 31 (4)

Current smoking (%, n) 23 (3) 31 (4)

Calcium score (HU) 445 [213-781]** 0 [0]

Total Plaque score (0–16)‡ 14 [9-15]*** 0 [0]

Lipid-lowering therapy (%, n) 77 (10)*** 8 (1)

Acetylsalicylic acid use (%, n) 69 (9)*** 0 (0)

ACE-inhibitor use (%, n) 23 (3) 8 (1)

b-blocker use (%, n) 23 (3) 8 (1)

Glucose (mmol/L) 5.9 ± 0.8 †5.7 ± 0.7

Creatinine (mmol/L) 89 ± 14 91 ± 16

Tchol (mmol/L) 4.51 ± 0.86** 5.61 ± 0.61

LDLc (mmol/L) †2.52 ± 0.97** 3.56 ± 0.64

HDLc (mmol/L) 1.25 ± 0.31 1.51 ± 0.34

TG (mmol/L) 1.98 ± 1.97 1.20 ± 0.38

nHDLc (mmol/L) 3.26 ± 1.06* 4.11 ± 0.75

Data are reported as mean ± SD, as mean (number of participants), or as median [interquartile range] and compared with the appropriate statistical tests.

‡ TPS was calculated for participants with a calcium score of <400 HU (n = 6). † Data is missing for one participant. * indicates p<0.05, **: p<0.01, ***:

p<0.001.
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circulating multipotent progenitors (HSC/MPP) was higher in patients with CAD (p<0.05) (Figure 2I).

Similar patterns were found using absolute cell counts of progenitor populations.

Functional and metabolic reprogramming of bone marrow MNCs in
atherosclerosis
The immune response of BM-MNCs was determined after ex vivo 24-hour stimulation with TLR ago-

nists. TNFa production after LPS stimulation was higher in patients with atherosclerosis (p<0.05),

with similar patterns for IL-6 (p=0.12), IL-8 (p=0.10), and IL-1Ra (p=0.11) although these differences

did not reach statistical significance (Figure 3A). There were no significant differences in response to

Pam3Cys stimulation (Figure 3B).

Seahorse respirometry revealed that both the basal and maximal OCR was higher (p<0.01 and

p<0.05) in BM-MNCs from patients with CAD compared to control subjects (Figure 4A,C), as well as

the basal and maximal ECAR (p<0.01 and p<0.05) (Figure 4B,D). The measurements were repeated

2 hours after IFN-g/LPS pre-incubation, in order to assess metabolic function during activation.

Again, the maximal OCR (p<0.01) and maximal ECAR (p<0.05) were higher in patients with CAD.

Proliferation of BM-MNCs
Proliferation assays of BM-MNCs did not reveal significant differences in erythroid-, myeloid-, or

granulocyte-macrophage progenitor proliferation rates between patients with CAD and healthy con-

trols (Figure 5).

Table 2. Circulating immune cells and inflammatory markers in patients and controls.

Cell types Individuals with CAD Individuals without atherosclerosis

WBC (106/mL) †5.5 [4.9–6.0] 5.4 [4.8–6.7]

Neutrophils (106/mL) †3.2 [2.5–3.6] 3.0 [2.6–4.0]

Lymphocytes (106/mL) 1.7 [1.3–1.9] 1.8 [1.5–2.5]

Monocytes (106/mL) 0.53 [0.42–0.67] 0.55 [0.45–0.66]

Monocytes (%) 9.8 [8.0–11.5] 9.3 [7.7–11.1]

Classical monocytes (%gated) 78.1 [72.8–80.3] 72.8 [70.1–85.5]

Intermediate monocytes (%gated) 9.8 [8.2–14.2] 10.1 [7.6–13.7]

Nonclassical monocytes (%gated) 12.2 [9.3–14.3] 13.1 [6.3–18.2]

CCR2+ monocytes (%gated) 80.5 [73.0–82.3] †77.6 [71.4–86.3]

CD11b expression monocytes (MFI) 10490 [7814–12025]̂ ††6978 [6512–10041]

CD41+ monocytes (%gated) 7.8 [6.5–9.7] 8.7 [7.6–8.9]

Inflammatory markers

IL-1b (pg/mL) †0.12 [0.09–0.17] 0.12 [0.06–0.15]

IL-1Ra (pg/mL) 271 [197-338] 212 [165-253]

IL-6 (pg/mL) 2.31 [1.37–2.86] †1.61 [1.23–2.19]

IL-18 (pg/mL) 162 [127-227] 195 [144-236]

hsCRP (pg/mL) 1.66 [0.83–4.87] 1.37 [0.53–3.84]

E-selectin (ng/mL) †11.74 [7.65–15.10]* 8.45 [4.52–14.06]

VCAM-1 (ng/mL) 773 [711-859]̂ 769 [643-844]

MMP2 (ng/mL) 354 [264-434] 341 [250-427]

Circulating concentrations of cells and inflammatory markers in individuals with CAD (n = 13) compared to individuals

without atherosclerosis (n = 13). Median with [IQR]. P-values are corrected for age and BMI with ANCOVA. Outliers

were removed with an SD of >2.5 of Z-scores. † Data is missing for one participant. *p<0.05, **p<0.01. HSPCs:

hematopoietic stem and progenitor cells.
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Bone marrow progenitors of patients with CAD are primed to
differentiate into an inflammatory myeloid lineage
To further understand the functional changes in HSPCs, we explored the transcriptional signature of

HSC, MPP, and GMP cell populations. Differential expression analysis was applied to each popula-

tion separately and a combined analysis of the populations to identify differentially expressed (DE)

genes between patients and control samples. This identified 1747 genes that were differentially reg-

ulated in at least one of the cell populations (p�0.05). A PCA analysis based on DE genes of HSC

populations revealed a clear separation between patients and controls (Figure 6A). This was less

pronounced for the MPPs and GMPs (Figure 6—figure supplement 1). Among those DE genes, we

observed that four genes were significantly upregulated in the patients compared to the controls in

a combined analysis of HSCs, MPPs, and GMPs (Figure 6B, padj <0.1), including CCR2, EPB42,

FNDC3B, and RBMS1. For individual log fold change (FC) and adjusted p-values, please see Fig-

ure 6—source data 1 and the combined and separated heatmaps for the top 50 DE genes for each

population (Figure 6—figure supplements 2 and 3). Seven genes were differentially downregulated

in the patients, including PFKP, CCDC163P, ARMCX4, PTK7, WDR90, ROBO3, and FAM84B. Within

the HSC population, only PROK2 showed a significant upregulation (Figure 6—figure supplement

3), whereas in the MPPs and GMPs no genes showed significantly differential upregulation (Fig-

ure 6—figure supplement 3).
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Subsequently, we performed pathway enrichment analyses on disease-specific DE genes. The dif-

ferentially upregulated genes of HSCs (p<0.05) showed significant enrichment for neutrophil and

monocyte biological processes. These include neutrophil activation pathways, cytokine production

pathways, and macrophage activation pathways (FDR <0.05) (Figure 6C). Transcriptional signatures

of the genes enriched in the neutrophil-related pathways indicated upregulation of genes involved

in the development and activation of neutrophils, such as insulin like growth factor two receptor

(IGF2R), S100A11, and TNFRSF1B (Figure 6—source data 2). Additionally, there was an upregula-

tion of signalling genes in the myeloid lineage, such as CCR2, innate immune signal transduction

adaptor (MYD88), IL1RN, IL18R1, and Toll-like receptors TLR2 and TLR4. The differentially upregu-

lated genes in the GMPs showed a similar enrichment for neutrophil-related pathways, and pathways

related to myeloid cell differentiation and migration (Figure 6C). Upregulated genes in myeloid cell

differentiation and regulation of hematopoiesis pathways revealed upregulation of important signal-

ling and transcription factors, such as colony stimulating factor three receptor (CSF3R), NFKB inhibi-

tor alpha (NFKBIA), signal transducer and activator of transcription 1 (STAT1), STAT3, and
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The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Gating strategy of hematopoietic stem and progenitor cells in the bone marrow.
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transforming growth factor beta 1 (TGFB1). Repeating these analyses using p<0.01 showed that the

observed enriched terms were robust (FDR <0.05).

RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/

arrayexpress) under accession number E-MTAB-9399.

Vascular wall inflammation and hematopoietic tissue activation
measured with [18F]FDG PET/CT is not higher in patients with CAD
Vascular wall inflammation and hematopoietic tissue activity, as determined by [18F]FDG PET/CT-

scan, was similar between patients with CAD and individuals without atherosclerosis (Figure 7). Cor-

rection for age, BMI, and glucose concentrations did not influence the results.

Interestingly, although the splenic activity was not significantly higher in patients with CAD, the

splenic [18F]FDG-uptake correlated with HSPCs and with circulating immune cells (Figure 7—figure

supplement 1). Splenic [18F]FDG-uptake correlated positively with CCR2 expression on HSPCs

(rs = 0.604, p<0.01), with GMPs (rs = 0.405, p<0.05), and with circulating leukocyte (rs = 0.393,

p<0.05) and monocyte counts (rs = 0.588, p<0.01).
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Discussion
The role of activated innate immune cells in the development of atherosclerotic plaques is well-

established. In the current paper we add an important dimension to this pathophysiological frame-

work by showing for the first time that inflammatory reprogramming of innate immune cells in
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Figure 4. Metabolism of BM-MNCs assessed with Seahorse respirometry in unstimulated condition and 2 hours

after IFN-g+LPS stimulation. (A, B) Oxygen consumption and extracellular acidification rates over time using

treatment with Oligomycin, FCCP, and Rotenone/Antimycin A. (C, D) Bar graphs of control individuals (white bars,

n = 13) and individuals with CAD (gray bars, n = 13). Geometric mean with 95% CI. The p-values are corrected for

age and BMI with ANCOVA. * indicates p<0.05, **: p<0.01. IFN-g+LPS: 2 hr IFN-g and LPS stimulation.
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humans with coronary artery disease occurs at the level of HSPCs in the bone marrow. In patients

with chronic CAD due to severe coronary atherosclerosis, isolated bone marrow mononuclear cells

showed a higher cytokine production capacity and increased metabolic rate compared to individuals

without coronary atherosclerosis. Transcriptional signatures of HSPCs were enriched for neutrophil

and monocyte related pathways, indicating that the HSPCs are primed to differentiate into an

inflammatory myeloid lineage. These findings addinclude an additional layer of inflammatory regula-

tion in atherogenesis which potentially offers novel targets for pharmacological strategies to prevent

or treat atherosclerotic CVD.

Our findings align with previous studies in animal models in atherosclerosis that show increased

myelopoiesis in specific conditions that promote CVD. Accumulation of cholesterol in HSPC

increases proliferation and mobilization from the bone marrow and a differentiation bias towards the

myeloid lineage, which is associated with accelerated atherosclerosis (Yvan-Charvet et al., 2010). In

an animal model of diabetes, higher circulating numbers of inflammatory Ly6-Chi monocytes and

neutrophils are present, which is due to increased myelopoiesis. In this model, the increased myelo-

poiesis is driven by the increased expression of S100A8 and S100A9 in neutrophils

(Nagareddy et al., 2013). Interestingly, the expression of one of the S100 proteins (S100A11) was

also increased in the HSCs in patients with CAD in our study. Chronic psychological stress and dis-

turbed sleep have also been reported to increase myelopoiesis, which is associated with elevated cir-

culating levels of neutrophils and Ly6Chigh monocytes and augmented atherosclerosis compared

with control mice (Heidt et al., 2014; McAlpine et al., 2019).

Since we did not include patients with specific cardiovascular risk factors, but rather with estab-

lished symptomatic coronary atherosclerosis, we cannot conclude which factors are responsible for

the HSPC reprogramming in our patients. BMI and blood pressure were slightly higher in the

patients compared to the controls. Cholesterol concentrations were lower at the moment of inclu-

sion in our study, but might well have been higher previously, since the patients also used more sta-

tins. We do not have information about stress and sleep patterns. Another mechanism that might

contribute to the HSPC functional reprogramming is trained immunity. Trained immunity describes

the phenomenon that brief stimulation of innate immune cells leads to the development of a long-

term hyperresponsive phenotype. This is mediated by profound intracellular metabolic and epige-

netic reprogramming and occurs both at the level of mature circulating monocytes as well as at the

level of their bone marrow progenitors (Netea et al., 2020). Christ et al have recently described

that a 4-week period of Western-type diet feeding in atherosclerosis prone Ldlr-/-mice induced a

functional, transcriptional and epigenetic reprogramming of circulating myeloid cells and their bone

marrow progenitors, which persisted for at least for weeks after switching back to a chow diet

(Christ et al., 2018). This was associated with increased circulating concentrations of inflammatory

monocytes and granulocytes. Functional enrichment analysis of GMPs showed overrepresentation of

TNF and Toll-like receptor signaling pathways, which align with our observations. In contrast,

although monocytic signature genes were enriched, most of the granulocytic signature genes were

downregulated, including S100A8 and S100A9, in GMPs isolated from WD-fed as compared to CD-
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fed mice (Christ et al., 2018). Patients with hypercholesterolemia also have circulating monocytes

with augmented cytokine production capacity, increased glycolytic metabolism, and enrichment of

activating histone modifications, which persist for three months despite cholesterol lowering with

statin therapy. Circulating monocyte and neutrophil numbers, however, were not increased in these

patients (Bekkering et al., 2019). In our current patient cohort, it remains to be established whether

trained immunity is present since we did not assess epigenetic markers in the HSPCs.

The observation that absolute numbers of myeloid progenitors and circulating monocytes and

neutrophils are not increased, despite functional and transcriptional inflammatory programming, fits

with the effects of alternative inducers of trained immunity in humans. Vaccination with the Bacille

Calmette-Guérin (BCG) vaccine induces trained immunity in humans in vivo (Arts et al., 2018). This

is accompanied by an increased cytokine production capacity of bone marrow mononuclear cells,
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Figure 6. Transcriptome analyses of HSC, MPP, and GMP populations. Control individuals (n = 10) versus individuals with CAD (n = 10) for each cell

population. (A) Principle component analysis (PCA) based on differentially expressed (DE) genes of the HSC population; (B) Volcano plot showing

differential expressed genes between patients with CAD and individuals without atherosclerosis, controlled for age, in a combined analysis of HSC,

MPP, and GMP population. Genes with an FDR <0.1 are named; (C) Gene ontology enrichment analysis of DE genes from HSCs, MPPs, and GMPs,

depicting the FDR and enrichment ratio.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Contains source data for Figure 6B, and Figure 6—figure supplements 1B, 2, 3.

Source data 2. Contains source data for Figure 6C.

Figure supplement 1. Transcriptome of HSC, MPP, and GMP populations.

Figure supplement 2. Combined heatmap showing the top 50 DE genes for the HSC, MPP, and GMP cell populations in the patients and the control

subjects.

Figure supplement 3. Separated heatmap showing the top 50 DE genes for each of the HSC, MPP, and GMP cell populations in the patients and the

control subjects.
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comparable to the result in patients with CAD in the current study (Cirovic et al., 2020). Also, 90

days post-BCG administration, HSPCs showed myeloid skewing with activation of neutrophil-associ-

ated pathways and pathways associated with regulation of immune responses, comparable to our

patients. This functional and transcriptional reprogramming was accompanied by an increase in num-

bers of circulating myeloid cells in large cohorts of infants vaccinated with BCG (Cirovic et al.,

2020).

In the patient group with CAD, the increased cytokine production capacity of the bone marrow

mononuclear cell fraction was accompanied by an upregulation of both glycolytic metabolism as well

as oxygen consumption by oxidative phosphorylation. It is important to realize that the bone marrow

mononuclear fraction also contains large amounts of mature monocytes, so we cannot conclude on

the metabolic landscape of HSPCs and specific progenitor subtypes. Isolated monocytes and mono-

cyte-derived macrophages from patients with atherosclerosis are characterized by increased glycoly-

sis, which is coupled to the hyperresponsiveness in terms of cytokine release (Bekkering et al.,
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Figure 7. Vascular wall inflammation and hematopoietic tissue activation on [18F]FDG PET/CT scan. Standard uptake value of each region in control

individuals (white bars, n = 13) and individuals with CAD (gray bars, n = 13). Geometric mean with 95% CI. The p-values are corrected for age and BMI

with ANCOVA.* indicates p<0.05, **: p<0.01. TBR: target SUV/mean blood pool SUV or mean liver SUV as background.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Splenic activity correlates with progenitor cells and circulating immune cells.
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2016; Shirai et al., 2016). Also, HSPCs of mice after induction of trained immunity with b-glucan

have an upregulation of the glycolytic pathway (Mitroulis et al., 2018).

Analysis of the differentially upregulated genes transcriptome of the flow-sorted HSCs and GMPs

showed significant enrichment for neutrophil activation pathways. This further supports a role for

neutrophils in the pathophysiology of atherosclerotic CVD, which is suggested by various recent

findings in the literature. Although neutrophils are the most abundant circulating white blood cell

type, neutrophils only recently received attention in the context of cardiovascular inflammation. A

large epidemiological study shows that circulating granulocyte counts are strongly associated with

the occurrence of CVD (Fani et al., 2020). During atherogenesis, platelet-derived chemokines, such

as CC-chemokine ligand 5, promote neutrophil activation and recruitment (Silvestre-Roig et al.,

2020). At the luminal side, these activated neutrophils secrete granule proteins, including cathepsin

G, which further promotes myeloid cell recruitment. Several actions further fuel atherosclerotic pla-

que formation, including secretion of reactive oxygen species and myeloperoxidase, which mediates

oxidation of LDL, promoting foam cell formation (Silvestre-Roig et al., 2020). Also, neutrophils can

form neutrophil extracellular traps (NETs) (Döring et al., 2020) and they can secrete pro-inflamma-

tory microvesicles, which further fuel vascular wall inflammation and atherosclerosis (Gomez et al.,

2020). Interestingly, a recent study used plasma proteomics analysis to explore the mechanism by

which colchicine lowers cardiovascular risk in patients with CAD and showed mainly a downregula-

tion of neutrophil activation pathways (Opstal et al., 2020).

Analysis of the individual significantly differentially expressed genes in the HSPCs showed that

the glycolytic enzyme phosphofructokinase (PFKP) was downregulated in patients with CAD. Quies-

cent HSCs depend mainly on anaerobic glycolysis to sustain survival, quiescence, and retention

within the bone marrow (Takubo et al., 2010). Once stimulated to divide, HSCs start to activate

OXPHOS to meet metabolic demands of proliferation and differentiation (Karigane and Takubo,

2017). Therefore, the downregulation of PFKP might be related to the activation of HSCs. This find-

ing is in contrast to the higher extracellular acidification rate of the bone marrow mononuclear cells

which points to the activation of glycolysis. We speculate that this finding is dominated by the

inflammatory activation of bone marrow monocytes, which constitute a large percentage of the

bone marrow mononuclear cells. The chemokine receptor CCR2 showed significant upregulation in

the HSPCs of the patients with CAD. CCR2 is critical for monocyte egress from the bone marrow

and for the recruitment of circulating monocytes to the arterial wall (Tsou et al., 2007). The upregu-

lation of CCR2 in our study might contribute to the increased circulating HSC percentage in

patients with CAD. In mice, increased levels of circulating HSPCs are found after myocardial

infarction that migrate to the spleen for extramedullary hematopoiesis (Dutta et al., 2012). In

humans, splenic extramedullary hematopoiesis can occur in response to extreme physiologic stress

(e.g. sepsis or hematologic malignancies), but has not been described yet during the development

of CVD. Indirect evidence shows that splenic activity in humans is increased after myocardial infarc-

tion assessed with PET/CT scanning (van der Valk et al., 2016), suggesting increased immune cell

activation. In our study, we observed a correlation between splenic activity and CCR2 expression on

circulating HSPCs which might suggest that the spleen performs a role in human atherosclerosis.

Our study has several limitations. First, the sample size is relatively small. However, this sample

size needs to be considered in the context of the invasive and complex nature of the study, and this

sample size usually allows to detect relevant differences (Cirovic et al., 2020; van der Heijden

et al., 2020). The sample size might also be an explanation for the lack of a significant difference in

FDG uptake in the large arteries, which has been shown previously in patients with CVD.

(Tarkin et al., 2014; van Wijk et al., 2014). Another possible explanation for our results is that our

patients had severe mature coronary atherosclerotic plaques with calcium deposits, which are known

to have less FDG uptake than uncalcified arterial plaques at the early stage of atherosclerosis (Fer-

nández-Friera et al., 2019). In addition, lipid-lowering therapy is effective in reducing vascular wall

inflammation (Pirro et al., 2019). Second, we did not explore epigenetic programs of the HSPCs. As

such, we cannot conclude whether the mechanism of trained immunity contributes to our findings.

This should be the focus of future studies. Third, in a study on symptomatic patients with CVD, it is

inevitable to have differences in medication use compared to the healthy control group.

To summarize, our study is the first to prospectively assess HSPC phenotype in patients with CAD

and is unique in providing a comprehensive phenotype by the integration of powerful tools such as

RNAseq on flow-sorted HSPC populations, functional parameters, Seahorse respiratory, and PET
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imaging of vascular wall and hematopoietic activity. These results show that in patients with CAD,

activation of the innate immune system occurs at the level of bone marrow myeloid progenitors,

which adds exciting opportunities for novel treatment strategies.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Biological
sample
(Homo sapiens)

Peripheral
blood

Through
venous puncture

Freshly isolated
from Homo sapiens,
men, 18–75 years

Biological
sample
(Homo sapiens)

Bone Marrow
aspirate

From the
posterior iliac
crest according to
standard practice

Freshly isolated
from Homo sapiens

Antibody Mouse
monoclonal
CD45 KO

Beckman Coulter Clone J33
Cat# B36294,
RRID:AB_2833027

(1:25)

Antibody Mouse
monoclonal
HLA-DR PE

Beckman Coulter Clone immu-357
Cat# IM1639U
RRID:AB_2876782

(1:10)

Antibody Mouse
monoclonal
CD14 PECy7

eBioscience Clone 61D3
Cat# 25-0149-42
RRID:AB_1582276

(1:25)

Antibody Mouse
monoclonal
CD16 FITC

eBioscience Clone CB16
Cat# 11-0168-42
RRID:AB_10805747

(1:25)

Antibody Mouse
monoclonal
CD3 APC-Alexa750

Beckman Coulter Clone UCTH1
Cat# A66329
RRID:AB_2876783

(1:25)

Antibody Mouse
monoclonal
CD56 APC

Beckman Coulter Clone N901
Cat# IM2474U
RRID:AB_2876784

(1:25)

Antibody Mouse
monoclonal
CD192 BV421

BD Biosciences Clone 48607
Cat# 564067,
RRID:AB_2738573

(1:50)

Antibody Mouse
monoclonal
CD11b BV785

Biolegend Clone ICRF44
Cat# 301346,
RRID:AB_2563794

(1:50)

Antibody Mouse
monoclonal
CD41 PerCP-Cy5.5

Biolegend Clone Hip8
Cat# 303719,
RRID:AB_2561731

(1:50)

Antibody Mouse
monoclonal
CD90 FITC

Biolegend Clone 5E10
Cat# 328107,
RRID:AB_893438

(1:50)

Antibody Mouse
monoclonal
CD123 PE

BD Biosciences Clone 9F5
Cat# 555644,
RRID:AB_396001

(1:40)

Antibody Mouse
monoclonal
CD19 ECD

Beckman Coulter Clone J4.119
Cat# IM2708U,
RRID:AB_130854

(1:20)

Antibody Mouse
monoclonal
CD38 PC5.5

Beckman Coulter Clone LS198-4-3
Cat# IM2651U,
RRID:AB_131166

(1:20)

Antibody Mouse
monoclonal
CD117 PEC7

Beckman Coulter Clone 104D2D1
Cat# IM3698,
RRID:AB_131184

(1:20)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Mouse
monoclonal
CD45RA APC

Beckman Coulter Clone
2H4LDH11LD89
(2H4) Cat# B14807
RRID:AB_2876787

(1:20)

Antibody Mouse
monoclonal
CD34-APC A750

Beckman Coulter Clone 581
Cat# A89309
RRID:AB_2876786

(1:20)

Commercial
assay or kit

DRAQ7 Biostatus Live/Dead stain (1:500)

Commercial
assay or kit

Human Cytokine
Magnetic Magpix
25-plex panel

Invitrogen MAGPIX platform

Commercial
assay or kit

SimplePlex
cartridge

ProteinSimple Ella platform

Commercial
assay or kit

Truseq small
RNA primers

Illumina

Commercial
assay or kit

hsCRP ELISA R&D DY1707

Commercial
assay or kit

VCAM-1 ELISA R&D DY809

Commercial
assay or kit

MMP2 ELISA R&D DY902

Commercial
assay or kit

E-selectin ELISA R&D DY724

Chemical
compound,
drug

Pharm Lyse
lysing buffer

BD Biosciences

Chemical
compound,
drug

Glutamine Invitrogen 2 mmol/L in RPMI

Chemical
compound,
drug

Gentamycin Centrafarm 10 mg/mL in RPMI

Chemical
compound,
drug

Pyruvate Invitrogen 1 mmol/L in RPMI

Chemical
compound,
drug

Methocult GF Stemcell
Technologies

H84435

Sequence-
based reagent

Hg19 human
Refseq
transcriptome

Li and
Durbin, 2010

To align RNAseq

Peptide,
recombinant
protein

Lipopolysaccharide
from Escherichia coli

Sigma-Aldrich Serotype
055:B5, L2880

10 ng/mL

Peptide,
recombinant
protein

Pam3CysK4 EMC
Microcollections

L2000 10 ug/mL

Peptide,
recombinant
protein

Interferon
gamma

Immukine,
Boehringer
Ingelheim BV

50 ng/mL for
Seahorse

Peptide,
recombinant
protein

Oligomycin Sigma-Aldrich 75351 1 mM for Seahorse

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Peptide,
recombinant
protein

FCCP Sigma-Aldrich C2920 1 mM for Seahorse

Peptide,
recombinant
protein

Rotenone Sigma-Aldrich R8875 1.25 mM

Peptide,
recombinant
protein

Antimycin A Sigma-Aldrich A8674 2.5 mM

Software,
algorithm

Kaluza Beckman Coulter Version 2.1
RRID:SCR_016182

Flow Cytometry
analysis

Software,
algorithm

MultiQC Ewels et al., 2016 RRID:SCR_014982 Quality check
RNAseq

Software,
algorithm

DEseq2 v1.22.0 Love et al., 2014
BioConductor

RRID:SCR_015687 Differential gene
expression RNAseq

Software,
algorithm

clusterProfiler
v3.10.1

Yu et al., 2012
BioConductor

RRID:SCR_016884 RNAseq

Software,
algorithm

R 3.6.1 https://www.
r-project.org/

RRID:SCR_001905

Software,
algorithm

TrueX algorithm EARL protocols

Software,
algorithm

Inveon Research
Workspace 4.2

Preclinical Solutions,
Siemens Medical
Solutions

3D Gaussian
filter kernel, 3.0 mm

Postprocessing of
FDG PET CT
scanning

Software,
algorithm

PyRadiomics
toolbox

van Griethuysen
et al., 2017

Analysis FDG
PET CT

Software,
algorithm

SPSS V25.0 SPSS RRID:SCR_002865 Data analysis

Software,
algorithm

Prism v6.0 GraphPad
software

RRID:SCR_002798 Figures

Other Sysmex-XN 450
hematology
analyzer

Sysmex For total blood
counts

Other CytoFLEX flow
cytometer

Beckman Coulter 13 color on
CytExpert
RRID:SCR_017217

Flow Cytometry
Peripheral blood

Other Navios flow
cytometer

Beckman Coulter RRID:SCR_014421 Flow Cytometry
Bone marrow
Progenitors

Other XFp Analyzer Seahorse Bioscience

Other BD FACSAria
II SORP

Becton Dickinson RRID:SCR_018091 Flow cytometry
sorting

Other Illumina
Nextseq500
platform

Illumina RRID:SCR_014983 RNAseq

Other Biograph
40 mCT scanner

Siemens
Healthineers

~2.1 MGq/kg FDG i.v. FDG PET CT

Participant selection
Participants (male, 18–75 years) were recruited among patients who were admitted for the evalua-

tion of chest pain and underwent cardiac imaging at the Cardiology department of the Canisius Wil-

helmina hospital or the Radboud University Medical Centre, Nijmegen, The Netherlands after

January 1, 2015. Severe coronary atherosclerosis was defined as a calcium score >400 HU on com-

puted tomography (CT), or a total plaque score (TPS) >4 on coronary CT angiography (CCTA),
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according to previously described standards (Bekkering et al., 2016; Pen et al., 2013). Control par-

ticipants, with a calcium score and TPS of zero, were matched for age, body mass index (BMI), and

smoking.

Criteria for exclusion were previous cardiovascular events, malignancies, auto-immune or auto-

inflammatory diseases (including diabetes mellitus), chronic immunomodulatory drug use, chronic

kidney disease (MDRD <45 mL/min), liver disease (ALAT > 135 U/L), or thrombocytopenia

(<50 � 106/mL). Additionally, participants were excluded if they had an infection (>38,5˚C or antibi-

otic treatment), hospital admission, or vaccination within 3 months before study entry. The study

protocol was approved by the Institutional Review Board Arnhem/Nijmegen, the Netherlands, and

registered at ClinicalTrials.gov (NCT03172507). All individuals gave written informed consent.

Evaluation of atherosclerotic burden
CCTA total plaque score was calculated as previously described (Pen et al., 2013). Briefly, a 64-slice

MDCT scanner (Philips) was used to obtain CAC and MDCT Image acquisition using an ECG-syn-

chronized axial scan protocol and post-processing CT and CAC studies using IntelliSpace Philips

software. Before image acquisition, beta-blockers were administered targeting a heart rate of <60

beats per minute, and patients received nitroglycerin 0.8 mg sublingually. Prospective electrocardio-

graphically gated step-and-shoot contrast-enhanced MDCT imaging was performed, initiated from

10 mm above the level of the left main artery to 10 mm below the inferior myocardial apex with scan

parameters being 64 � 0.625 mm sections (2.5 mm), collimation tube currents of 350 to 780 mAs

and tube voltage of 100 or 120 kV. In the rare event that prospective scanning was not possible, ret-

rospective or helix scanning was used.

Reconstruction of the MDCT scans was performed with reconstructed images obtained, using an

ECG-triggered protocol, at 75% from the previous RR-interval, or at 75% and 40% from the previous

RR-interval if a helix scan-protocol was used. The TPS was determined by summing the number of

evaluable coronary segments with calcific or non-calcific plaque, or mixed plaque, where non-calci-

fied and mixed plaque was assigned with one point and calcified plaque with 0 (maximum score = 16).

Two independent experienced operators scored all CT images and both operators were blinded for

all clinical information. In case of disagreement, the opinion of a third independent observer was

asked.

Study design
Participants underwent [18F]FDG PET/CT scanning, follow by venepuncture and bone marrow aspira-

tion within 2–14 days. The participants were invited in pairs (1 patient:1 control) for blood sampling

and bone marrow aspiration from December 2017 till July 2018.

Cardiovascular risk assessment
Medical history, smoking status, medication use, BMI, and fasting glucose concentrations were

obtained from all individuals. Blood pressure was measured three times by a manual sphygmoma-

nometer after 5 min seated rest according to AHA guidelines. Fasting total cholesterol (Tchol), high-

density lipoprotein cholesterol (HDLc), and triglycerides (TG) were measured using standardized

methods, and low-density lipoprotein cholesterol (LDLc) was calculated with the Friedewald formula.

Blood sampling and bone marrow aspiration
Bone marrow was aspirated from the posterior iliac crest according to standard practice by an expe-

rienced physician assistant. Blood was sampled through venous puncture. Sample collection was per-

formed at 8.00–10.00 to avoid interference of circadian rhythms of immune parameters, and sample

processing occurred within 2 hours. Plasma and serum were stored at �80˚C until further use. Total

blood cell counts were determined with an automated Sysmex-XN 450 hematology analyzer (Sys-

mex, Hamburg, Germany).

Mononuclear cell enrichment and stimulation
Before mononuclear cell (MNC) enrichment, the bone marrow aspirate was filtered and washed with

sterile PBS. Thereafter, the same procedures were followed for peripheral blood MNCs (PBMCs) and

bone marrow MNCs (BM-MNCs). PBMCs/BM-MNCs were isolated by Ficoll-Paque density gradient
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centrifugation (GE Healthcare, Chicago, IL). Cell composition was evaluated by Sysmex analyzer (Sys-

mex) and with flow cytometry (Table 3, see key resource table (KRT) for RRIDs). PBMCs/BM-MNCs

were resuspended in Roswell Park Memorial Institute 1640 Dutch-modified culture medium (RPMI)

(Life Technologies/Invitrogen, Waltham, USA) supplemented with 2 mmol/L glutamine (Invitrogen),

10 mg/mL gentamicin (Centrafarm, Etten-Leur, The Netherlands) and 1 mmol/L pyruvate (Invitro-

gen). Per well, 5 � 105 PBMCs/BM-MNCs were stimulated for 24 hours in duplicate in round-bottom

96-well plates (Corning, NY) with the following stimuli: RPMI, 10 ng/mL Escherichia coli lipopolysac-

charide (LPS) (serotype 055:B5 Sigma-Aldrich, St. Louis, MO), and 10 mg/mL Pam3CysK4 (P3C) (EMC

Microcollections, Tübingen, Germany). After 24-hour incubation, supernatants were stored after

plate centrifugation at �80˚C until cytokine assessment.

Cytokine measurements
Cytokine and chemokine concentrations were determined in supernatants using Human Cytokine

Magnetic Magpix 25-plex panel (Invitrogen) on the MAGPIX platform (Luminex, Austin, TX). Circulat-

ing IL-1b, IL-1Ra, IL-6, and IL-18 concentrations were measured with the SimplePlex cartridge on the

Ella platform (ProteinSimple, San Jose, CA). Additional circulating cytokines/chemokines concentra-

tions were measured using ELISA (see KRT).

Flow cytometry
In the circulation, monocyte subpopulations and expression markers were determined with flow

cytometry. 50 mL EDTA blood was stained after the lysis-no-wash strategy (BD Pharm Lyse lysing

buffer, Becton Dickinson) by monoclonal antibodies CD45 Krome Orange ([KO], clone J33; Beckman

Coulter, Cat# B36294, RRID:AB_2833027), HLA-DR PE (clone immu-357; Beckman Coulter, Cat#

IM1639U, RRID:AB_2876782), CD14 PC7 (clone 61D3e Bioscience, Cat# 25-0149-42, RRID:AB_

1582276), CD16 FITC (clone CB16; eBioscience Cat# 11-0168-42, RRID:AB_10805747), CD3 APC-

Alexa750 (clone UCTH1; Beckman Coulter, Cat# AA66329, RRID:AB_2876783), CD56 APC (clone

N901; Beckman Coulter, Cat# IM2474U, RRID:AB_2876784), CD192 Brilliant Violet421 ([BV421]

clone 48607; Becton Dickinson, Cat#564067, RRID:AB_2738573), CD11b BV785 (clone ICRF44; Biol-

egend, Cat#301346, RRID:AB_2563794), CD41 PC5.5 (clone Hip8; Biolegend, Cat# 303719, RRID:

AB_2561731) and measured with CytoFLEX flow cytometer (Beckman Coulter, RRID:SCR_017217).

The gating strategy applied is shown in Supplementary file 1, gates were set with the fluorescence-

minus-one method (Weber et al., 2016; Ziegler-Heitbrock et al., 2010). In short, monocytes were

selected based on CD45+ HLA-DR+ and monocyte scatter properties, then CD3+ T-lymphocytes

and CD56+ NK-cells were excluded, and monocyte subsets were identified in the CD14/CD16 plot

as percentage of gated. Data was analyzed with Kaluza 3.1 software (Beckman Coulter, RRID:SCR_

016182). Characterization of monocytes subsets is according to current recommendations

(Weber et al., 2016; Ziegler-Heitbrock et al., 2010).

Bone marrow progenitors were identified with Navios flow cytometer (Beckman Coulter, RRID:

SCR_014421). 5 � 106 Bone marrow cells were washed, lysed, and stained for 20 min with the mono-

clonal antibodies: CD90 FITC (Clone 5E10; Biolegend Cat#328107, RRID:AB_893438), CD123 PE

(Clone 9F5; BD Biosciences, Cat#555644, RRID:AB_396001), CD19 ECD (Clone J3.119; Beckman

Coulter, Cat# IM2708U, RRID:AB_130854), CD38 PC5.5 (Clone LS198-4-3; Beckman Coulter, Cat#

IM2651U, RRID:AB_131166), CD117 PEC7 (Clone 104D2D1; Beckman Coulter, Cat# IM3698, RRID:

Table 3. Cell composition of PBMC and BM-MNC fraction.

Cell types in PBMC fraction Controls Patients

Lymphocytes (%) 73 [68-79] 65 [62-75]*

Monocytes (%) 25 [19-31] 32 [23-35]

Neutrophils (%) 0.7 [0.6–1.1] 1.2 [0.6–1.7]

Cell types in BM-MNC fraction

HSPCs (%) 1.6 [1.2–2.0] 1.4 [1.2–4.7]

Cellular composition after mononuclear cell enrichment of peripheral blood and bone marrow. Median with [IQR].

Mann-Whitney U test. *: p<0.05, **: p<0.01. HSPCs: hematopoietic stem and progenitor cells.

Noz et al. eLife 2020;9:e60939. DOI: https://doi.org/10.7554/eLife.60939 17 of 24

Research article Medicine

https://scicrunch.org/resolver/AB_2833027
https://scicrunch.org/resolver/AB_2876782
https://scicrunch.org/resolver/AB_1582276
https://scicrunch.org/resolver/AB_1582276
https://scicrunch.org/resolver/AB_10805747
https://scicrunch.org/resolver/AB_2876783
https://scicrunch.org/resolver/AB_2876784
https://scicrunch.org/resolver/AB_2738573
https://scicrunch.org/resolver/AB_2563794
https://scicrunch.org/resolver/AB_2561731
https://scicrunch.org/resolver/SCR_017217
https://scicrunch.org/resolver/SCR_016182
https://scicrunch.org/resolver/SCR_016182
https://scicrunch.org/resolver/SCR_014421
https://scicrunch.org/resolver/AB_893438
https://scicrunch.org/resolver/AB_396001
https://scicrunch.org/resolver/AB_130854
https://scicrunch.org/resolver/AB_131166
https://doi.org/10.7554/eLife.60939


AB_131184), CD45RA APC (Clone 2H4LDH11LD89; Beckman Coulter, Cat# B14807, RRID:AB_

2876787), DRAQ7 (Biostatus), CD34-APC A750 (Clone 581; Beckman Coulter, Cat# A89309, RRID:

AB_2876786), CD192 PB (Clone 48607; Becton Dickinson, Cat# 564067, RRID:AB_2738573), CD45

KO (Clone J33; Beckman Coulter, Cat# B36294, RRID:AB_2833027). The target input was set at 1 �

106 measured events, panels were balanced with the fluorescence-minus-one method to determine

spill over, spectral overlap, and nonspecific binding.

The gating strategy is displayed in Figure 2—figure supplement 1. In short, HSPCs were defined

as CD45+CD34+CD38dim/+ cells, after selecting for singlets and alive cells. Next, the lymphoid line-

age was excluded by the gating of CD19-CD117+ cells. In CD45RAdimCD38+ gated cells, CMP,

GMP, MEP, and R1-3 progenitor populations were identified using CD123 and CD45RA expression.

CD90 expression in CD38-CD45RA- cells determined MPP and HSC populations. Data were ana-

lyzed with Kaluza 2.1 software.

Proliferation assays
2.5 � 104 BM-MNCs were cultured in methylcellulose medium containing erythropoietin, G(M)-CSF,

IL-3 and IL-6 (MethoCult GF H84435, Stemcell technologies, Vancouver, Canada) and 2% fetal

bovine serum (Integro B.V., Zaandam, The Netherlands) in Petri dishes for 14 days in 37˚C 5% CO2

incubator. After 14 days, erythroid progenitor (BFU-E), common myeloid progenitor (CFU-GEMM),

and granulocyte-macrophage progenitor (CFU-GM) cell colonies were counted in duplo by an expe-

rienced hematology operator.

Mitochondrial respiration and glycolysis assays
Using a modified protocol from Shirai et al., 2016, 2 � 106 BM-MNCs were plated per well in five-

fold to overnight-calibrated cartridges in assay medium (DMEM with 1 mM L-Glutamine, 11 mM glu-

cose, and 1 mM pyruvate [pH adjusted to 7.4]) and incubated for 1 hr in a non-CO2-corrected

incubator at 37˚C. In addition, BM-MNCs were stimulated with 50 ng/mL interferon gamma (IFN-g )

(Immukine, Boehringer Ingelheim BV, Alkmaar, The Netherlands) and 10 ng/mL LPS (Sigma-Aldrich)

for 2 hr. Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured

via XFp Analyzer (Seahorse Bioscience, North Billerica, MA), with final concentrations of 1 mM oligo-

mycin, 1 mM FCCP, and the combination of 1.25 mM rotenone and 2.5 mM antimycin A.

RNA sequencing of sorted progenitor populations and circulating
monocytes
HSPCs were sorted by BD FACSAria II SORP flow cytometer sorter (Becton Dickinson, RRID:SCR_

018091), using the flow cytometric panel as described above (Figure 2—figure supplement 1). BM-

MNCs stored in liquid nitrogen were gently thawed in fetal calf serum (in house) containing 1.25 mM

MgCl2 and 0.1 mg/mL DNase I (Sigma). HSCs, MPPs, and GMPs populations were directly sorted in

100 mL TRIzol (ThermoFisher, Waltham, MA) before processing for RNA sequencing.

Total RNA was extracted using the standard TRIzol (ThermoFisher) protocol and used for library

preparation and sequencing. mRNA was processed as described previously, following an adapted

version of the single-cell mRNA seq protocol of CEL-Seq (Hashimshony et al., 2012; Simmini et al.,

2014). In brief, samples were barcoded with CEL-seq primers during reverse transcription and

pooled after second strand synthesis. The resulting cDNA was amplified with an overnight in vitro

transcription reaction. From this amplified RNA, sequencing libraries were prepared with Illumina

Truseq small RNA primers (Illumina, San Diego, CA). Paired-end sequencing was performed on the

Illumina Nextseq500 platform (RRID:SCR_014983). Read one was used to identify the Illumina library

index and CEL-Seq sample barcode. Read two was aligned to the hg19 human RefSeq transcriptome

using BWA (Li and Durbin, 2010). Reads that mapped equally well to multiple locations were dis-

carded. RNA input for all samples was normalized, and libraries for each progenitor population were

sequenced in a single run.

Bioinformatics, differential gene expression, and pathway analysis
Reads were mapped to hg19 human reference genome using BWA (Li and Durbin, 2010). MultiQC

(RRID:SCR_014982) was used to quality check all the samples (Ewels et al., 2016). In total,

107,565,838 reads were mapped in 59 progenitor populations, with one GMP population failed to
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pass quality control. Raw read counts provided the input for differential gene expression analysis

with DESeq2 (RRID:SCR_015687) (Love et al., 2014) after excluding genes with less than 50 reads.

Internal variance stabilizing transformation was used for regressing out age and to normalize the

data (Benjamini–Hochberg correction was used to adjust p-value for multiple testing correction). In

the differential expression analyses within HSC populations, one HSC population was marked as

an outlier and further filtered out as it located three standard deviations away from mean values in

principle component analysis of this study.

Differential gene expression analysis was carried out after regressing out age with DESeq2

v1.22.0 in R (RRID:SCR_001905) (Love et al., 2014), with internal statistical and normalization

method (i.e. correction for multiple testing with Benjamini–Hochberg). The average expression

between individuals with atherosclerosis (n = 10) and matched individuals without atherosclerosis

(n = 10) was analyzed for each progenitor population. Enrichment analysis was performed using R

package clusterProfiler (RRID:SCR_016884) (Yu et al., 2012) with Gene Ontology terms

(Ashburner et al., 2000). After BH adjustment, a FDR <0.05 in enrichment analysis was considered

significant.

[18F]FDG PET and low-dose CT scanning
Participants underwent [18F]FDG PET with low-dose non-contrast-enhanced CT from skull base to

the trochanter major on a dedicated Siemens Biograph 40 mCT scanner (Siemens Healthineers,

Erlangen, Germany). After adhering to a 24-hour low-carbohydrate diet and 6 hours of fasting,~2.1

MBq/kg [18F]FDG was administered intravenously, as described previously (Bucerius et al., 2016).

Glucose concentrations were obtained (5.3 ± 0.5 mmol/L) after injection. Before scanning, partici-

pants rested in the supine position for 2 hours.

Images were reconstructed according to EARL protocols; using a TrueX algorithm with point

spread function (PSF) and time-of-flight (TOF) measurements, using three iterations, 21 subsets,

matrix size 200 � 200 (pixel spacing of 4.07 mm), full width half maximum (FWHM) of 3 mm and

using 2 min of PET data. Postprocessing was performed using a 3D Gaussian filter kernel, 3.0 mm,

using the Inveon Research Workspace 4.2 (Preclinical Solutions, Siemens Medical Solutions USA,

Knoxville, TN).

[18F]FDG-uptake in the vascular wall was determined in seven regions of interest (ROI) by a single

investigator (MPN); the aorta ascendens, aorta descendens, abdominal aorta, the left and right com-

mon carotid arteries, and the left and right iliac arteries. [18F]FDG-uptake in hematopoietic tissue

was assessed in the spleen, lumbal vertebrae L2 and L3, and in the left and right medullary bone of

the femur. These regions of interest were evaluated using the Inveon Research Workspace 4.2. The

standardized uptake value (SUV) was extracted from each ROI after correction for [18F]FDG dose

(MBq) and BMI using the PyRadiomics toolbox (van Griethuysen et al., 2017). The SUVs of left and

right ROIs (e.g. left and right carotid artery) were averaged. Next, the target-to-background ratio

(TBR) was calculated as the ratio of the vascular wall SUV and the mean thoracic arterial blood pool

SUV. The TBRs of hematopoietic tissue were expressed as the ratio of the mean liver SUV. The pri-

mary outcome is the TBR, as recommended by the European guideline (Bucerius et al., 2016).

Statistical analysis
This study is exploratory, hence no sample size calculation is performed. Normal distribution of the

data was checked with the Shapiro-Wilk test, when the p-value reached <0.05 this assumption was

violated and non-parametric tests were used. Data are reported as mean ± SD with independent

samples T-test according to Levene’s test for equality of variances, as mean (number of participants)

with Χ2 test for categorical data, and as median [interquartile range] with Mann-Whitney U test for

non-parametrical data. Outliers were removed with a standard deviation >± 2.5 of Z-scores. All out-

comes were log(10)-transformed and thereafter corrected with ANCOVA for confounding demo-

graphics such as age and BMI. SPSS V25.0 (SPSS Inc, Chicago, IL, RRID:SCR_002865) and Graphpad

Prism v6.0 (GraphPad software, La Jolla, CA, RRID:SCR_002798) were used for data analysis and

visualization. A two-sided p-value<0.05 was considered statistically significant.
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