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Simple Summary: Gastric cancer is a common upper gastrointestinal tumor. Death-associated
protein kinase (DAPK1) was found to participate in the development of various malignant tumors.
However, there are few reports on DAPK1 in gastric cancer. In this study, we found that the expression
of DAPK1 was up-regulated in gastric cancer tissues. Survival analysis showed that low expression
of DAPK1 was a favorable prognostic factor of overall survival and disease-free survival for gastric
cancer patients. The functional experiments demonstrated that DAPK1 can promote the migration
and invasion of gastric cancer cells. Meanwhile, a risk score module for four DAPK1-related genes
was constructed and validated. In conclusion, these results indicated that DAPK1 can promote gastric
cancer cell migration and invasion and established a signature of four DAPK1-related genes for
gastric cancer that could independently predict the survival of gastric cancer patients.

Abstract: Gastric cancer (GC) is a common upper gastrointestinal tumor. Death-associated protein
kinase (DAPK1) was found to participate in the development of various malignant tumors. However,
there are few reports on DAPK1 in gastric cancer. In this study, the TCGA and GEO datasets were
used to explore the expression and role of DAPK1 in gastric cancer. The functions of DAPK1 in
gastric cancer were determined by proliferation, migration and invasion assays. In addition, genes
co-expressed with DAPK1 in gastric cancer were estimated through the WGCNA and correlation
analysis. A DAPK1-related gene prognostic model was constructed using the Cox regression and
lasso analyses. The expression of DAPK1 was significantly up-regulated in gastric cancer tissues.
Kaplan–Meier analysis showed that low expression of DAPK1 was a favorable prognostic factor
of overall survival and disease-free survival for gastric cancer patients. Functional experiments
demonstrated that DAPK1 can promote the migration and invasion of gastric cancer cells. WGCNA,
correlation analysis, Cox regression, and lasso analyses were applied to construct the DAPK1-related
prognostic model. The prognostic value of this prognostic model of DAPK1-related genes was further
successfully validated in an independent database. Our results indicated that DAPK1 can promote
gastric cancer cell migration and invasion and established four DAPK1-related signature genes for
gastric cancer that could independently predict the survival of GC patients.
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1. Introduction

Gastric cancer (GC) is one of the highest incidences of cancer, with the fifth highest
incidence rate and a global mortality rate of 9% [1]. At present, the main methods of treat-
ment are surgery combined with chemotherapy and radiotherapy. However, there is still
an unsatisfactory prognosis for people with advanced GC. GC remains an important health
problem due to its high incidence. High-risk elements for GC include Helicobacter pylori
infection, smoking and an unhealthy diet [2]. Moreover, oncogenesis and progression in
GC are known to be affected by genetic and epigenetic alterations, such as the deactivation
of tumor suppressor genes and the inactivation of oncogenes.

Death-related protein kinase (DAPK1) is a calcium-dependent serine/threonine pro-
tein kinase that was originally discovered in the regulation of apoptosis and has been
confirmed to play an important role in some kinds of biological processes, including the
genesis and development of tumors [3]. DAPK1 might be implicated in a variety of cell
death processes in the context of various internal and external apoptotic stimuli (e.g., tumor
necrosis factor-alpha) and induces and further mediates pro-apoptotic pathways [4,5].
Previous studies reported that DAPK1 was decreased in many kinds of cancer, including
lung, colon, pancreatic and liver cancers [6–9]. Our previous study has indicated that
DAPK1 and DDX20 (DEAD-box helicase 20) can suppress liver cancer cell invasion and
migration, and the role of DAPK1 on the function of liver cancer depends on DDX20 [9].
However, the expression of DDX20 has been found to be increased in GC tissues and is an
unfavorable predictor factor for GC patients. Furthermore, it is able to increase the growth
and migration of GC cells [10]. Guo et al. found that DAPK1 expression was decreased
in 32 GC tissues compared with 32 normal tissues based on the GSE65801 dataset, and
DAPK1 promotes the killing ability of NK cells and suppresses the immune evasion of
GC cells [11]. At present, there is no report on the function of DAPK1 on the proliferation,
invasion and migration of GC cells.

In the study, we examined the expression and prognosis of DAPK1 in GC and investi-
gated the effect of DAPK1 on the invasion and migration of GC cells.

2. Materials and Methods
2.1. Data Mining from Public Databases

DAPK1 expression data were obtained from TCGA (The Cancer Genome Atlas;
https://portal.gdc.cancer.gov/, accessed on 14 October 2020) and GEO (Gene Expression
Omnibus; http://www.ncbi.nlm.nih.gov/geo/, accessed on 18 October 2020) databases,
including GSE13195, GSE63089, GSE33335 and GSE62254. The GSE13195 dataset contained
21 GC tissues and 25 normal tissues. For the remaining two datasets, 25 GC tissues and
25 normal tissues were contained in GSE33335 dataset, and 45 GC tissues and 45 normal
tissues were contained in the GSE63089 dataset. The method for extracting microarray gene
expression values was based on our previous study [10,12,13].

DAPK1 expression between GC tissues and normal tissues was obtained from UAL-
CAN based on the TCGA database (http://ualcan.path.uab.edu/analysis.html, accessed
on 20 October 2020) [14]. The prognostic significance of the DAPK1 mRNA for GC patients
was analyzed by Kaplan–Meier using the GSE62254 database and TCGA database. UCSC
XENA was used to verify the correlation of DAPK1 expression with 24 DAPK1 CpG sites
(http://xena.ucsc.edu/, accessed on 28 October 2020).

2.2. Cells Culture and Transfection

MGC-803 cells were grown in PRMI-1640 medium (Biological Industries, Kibbutz Beit,
Haemek, Israel) with 100 U/mL penicillin and 0.1 mg/mL streptomycin (BBI Life Sciences,
Shanghai, China) and 10% FBS (BI, Kibbutz Beit, Haemek, Israel) at 37 ◦C with 5% CO2.

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://ualcan.path.uab.edu/analysis.html
http://xena.ucsc.edu/
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The shRNA sequence of DAPK1 was cloned into the pLVX vector. The target sequence of
DAPK1-specific shRNA was as follows: 5′-CAAGAAACGTTAGCAAATG-3′. Transfection
was performed with lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA).

2.3. Cell Migration Assay

MGC-803 cell migration was detected using the scratch method. Cells were cultured
in six-well plates at 5.0 × 105 cells/well. When cell confluence reached 100%, a cell-free
zone was formed with a 10 µL pipette tip. MGC-803 cells were washed several times with
PBS to remove all dead cells or debris that had scratched and floated in the culture wells.
Serum-free medium was added to the plate. Cells were imaged at 0 and 48 h after scratch.

2.4. Cell Invasion Assay

MGC-803 cell invasion was performed with a transwell chamber. A transwell chamber
with matrigel (Corning, NY, USA) was put in a 24-well plate with serum medium at 37 ◦C
for 20 min. The 200 µL serum-free medium containing 15,000 MGC-803 cells was added
to the upper part of the chamber of the transwell. After 24 h, a cotton swab was used
to gently wipe off the upper basement membrane cells. Finally, the cells were fixed with
70% methanol and stained with 300 µL of Gentian violet dye solution for 10 min. After
staining, excess dye in and around the basement membrane was removed with a cotton
swab. Photographs of the chambers were taken.

2.5. CCK-8 Assay

Cells (1500 cells/per well) were cultured in 96-well plates with 6 replicates per group
and incubated at 5% CO2 and 37 ◦C for 0, 24, 48 and 72 h. At each time point, all medium
in the wells was aspirated off, and 10 µL CCK-8 solution (Transgen Biotech, Beijing, China)
and 100 µL complete medium were added and incubated for about 2 h. The absorbance
was detected at 450 nm.

2.6. WGCNA (Weighted Gene Co-Expression Network Analysis) Analysis

The WGCNA was performed with the WGCNA R package. Scale-free R2 = 0.95 and
powers β = 3 were chosen as soft threshold parameters to ensure the signing of scale-free
co-expression gene networks. A cluster dendrogram was created based on the topological
overlap matrix with a minimum cluster size of 20. In total, 23 modules were generated.

2.7. Risk Score Module Construction

The GSE62254 transcriptome data was used to build the risk score module of DAPK1
related gene using Lasso (least absolute shrinkage and selection operator). The L1-norm
was applied to penalize the weights of the features. The risk score module based on DAPK1-
related gene characteristics was built based on their weight calculated by lasso analysis.
Risk score = (0.788 ∗ FAM161B (FAM161 Centrosomal Protein B) + 0.741 ∗ SEC31A (SEC31
Homolog A, COPII Coat Complex Component) + 1.568 ∗ YPEL5 + 0.197 ∗ ZSWIM6 (Zinc
Finger SWIM-Type Containing 6)).

2.8. Functional Enrichment Analysis

To analyze the function of DAPK1-related genes in GC tissues, the GO-BP (Gene
Ontology-Biological Process) and KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways were analyzed through the DAVID database (http://david.abcc.ncifcrf.gov,
accessed on 29 October 2020).

2.9. Correlogram Analyses

The correlation plots were drawn by use of the program R package. Correlations were
considered as significant when p < 0.05 and |r| > 0.3. Significant correlations are shown as
red or blue points on the correlation plot. The magnitudes of the points in the correlation
matrices are proportional to the strength of the correlation.

http://david.abcc.ncifcrf.gov
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2.10. Statistical Analysis

Student’s t-test was used to generate a p-value for comparison between normal and
GC tissues. DFS (disease-free survival) and OS (overall survival) were calculated through
Kaplan–Meier, and differences between groups were tested by the log-rank test. Here,
p < 0.05 was considered statistically significant.

3. Results
3.1. The Expression Pattern and Prognosis Analysis of DAPK1 in GC Patients

In this research, three related GEO datasets, including GSE13195, GSE63089 [15] and
GSE33335 [16], were assessed to explore the expression patterns of DAPK1 in GC. The above
three GEO datasets were based on the Affymetrix Human Exon 1.0 ST Array. We found
that DAPK1 was significantly up-regulated in GC tissues based on GSE13195 (Figure 1A),
GSE63089 (Figure 1B), and GSE33335 (Figure 1C). To minimize the potential batch effects
for three independent databases, batch effect removal strategies were performed by the
COMBAT algorithm. GSE13195, GSE63089, and GSE33335 were merged to remove batch
effects and renamed as 3GEOs. From the boxplot, we can observe that the sample distribu-
tion of each dataset before removing the batch effect is different, suggesting that there is a
batch effect. After removing batch effects, the data distributions between each dataset tend
to be consistent (Figure 1D). We found that DAPK1 expression was increased in GC tissues
based on the 3GEO database (Figure 1E). Based on the TCGA dataset, we also observed
that DAPK1 expression was increased in GC tissues (Figure 1F).
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Figure 1. DAPK1 expression in GC. (A–C) The expression of DAPK1 in GC based on GSE13195 (A),
GSE63089 (B), and GSE33335 (C). (D) Boxplots of data distribution before and after batch effect
removal for GSE13195, GSE63089, and GSE33335 datasets. (E,F) The expression of DAPK1 in GC
based on 3GEOs (E) and TCGA (F). * p < 0.05; *** p < 0.001.
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Because the GSE62254 dataset has a sufficient sample size (n = 300) and complete
recurrence information, we chose the GSE62254 dataset to perform Kaplan–Meier analysis
for the OS and DFS. According to the prognosis analysis, low DAPK1 levels were correlated
with better OS and DFS (Figure 2A,B). Based on TCGA dataset, low DAPK1 levels were
also linked to greater OS in GC patients (Figure 2C).
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Figure 2. The prognosis of DAPK1 in GC patients. (A) Survival analysis of DAPK1 on the OS of GC
patients based on the GSE62254 dataset; (B) survival analysis of DAPK1 on the DFS of GC patients
based on the GSE62254 dataset; (C) survival analysis of DAPK1 on the OS of GC patients based on
the TCGA dataset.

Table 1 summarises the clinicopathological characteristics of GC patients in the
GSE62254 dataset. DAPK1 expression was significantly correlated with the sex and
GC stage.

Table 1. Characteristics of GC patients and DAPK1 level based on GSE62254 dataset.

Characteristics

All Patients Low DAPK1 High DAPK1
p Valuen = 300 n = 107 n = 193

No. (%) No. No.

Age 0.1168
≤50 41 13.7 10 31
>50 259 86.3 97 162
Sex 0.0110

Male 199 66.3 81 118
Female 101 33.7 26 75

Tumor Stage 0.0105
I + II 127 42.3 56 71

III + IV 173 57.7 51 122
Pathology 0.2796

Diffuse 135 45 42 93
Intestinal 146 48.7 58 88

Mixed 17 5.6 5 12
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Meanwhile, we performed univariate and multivariate Cox analyses to ascertain the
independent prognostic factor for GC patients (Tables 2 and 3). Tumor stage, pathology
and DAPK1 were identified as independent prognostic factors by univariate Cox analy-
sis. Through multivariate analysis, the tumor stage was established as an independent
prognostic factor of GC patients.

Table 2. A univariate Cox analysis for OS and DFS of GC patients based on the GSE62254 dataset.

Variables
OS DFS

HR (95% CI) p HR (95% CI) p

Age (years)
≤50 Reference Reference
>50 1.24 (0.8–1.92) 0.330 1.19 (0.78–1.83) 0.420

Sex
Female Reference Reference
Male 1.11(0.79–1.55) 0.560 1.02(0.74–1.42) 0.900

Tumor Stage
I + II Reference Reference

III + IV 3.47 (2.39–5.05) <0.001 3.46 (2.39–5.01) <0.001
Pathology

Diffuse Reference Reference
Intestinal 0.6 (0.43–0.83) 0.002 0.68 (0.49–0.94) 0.019

DAPK1 expression
Low Reference Reference
High 1.49 (1.05–2.11) 0.025 1.41 (1.00–1.99) 0.046

Table 3. A multivariate Cox analysis for OS and DFS of GC patients based on the GSE62254 dataset.

Variables
OS DFS

HR (95% CI) p HR (95% CI) p

Age (years)
≤50

NA NA>50
Sex

Female
NA NAMale

Tumor Stage
I + II Reference Reference

III + IV 3.52 (2.33–5.31) <0.001 3.59 (2.40–5.38) <0.001
Pathology

diffuse Reference Reference
intestinal 0.79 (0.56–1.12) 0.182 0.88 (0.62–1.25) 0.471

DAPK1 expression
Low Reference Reference
High 1.25 (0.87–1.81) 0.23 1.29 (0.89–1.86) 0.179

3.2. The Relationships of DAPK1 Expression with DNA Methylation and Transcription Factors

DAPK hypermethylation occurs in many different cancers than in normal tissues. Thus,
we detected associations between DAPK1 expression and DNA methylation via the UCSC
XENA website. The methylation values of 24 methylation sites in the promoter of DAPK1
are shown in Figure 3A. The correlation of 24 DAPK1 CpG sites with DAPK1 expression was
analyzed. Results indicated that DAPK1 expression is inversely correlated with 5 CpG sites,
including cg19734228, cg15746719, cg14014720, cg13527872 and cg24754277 (Figure 3B–F).
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Figure 3. The correlation between the level of DAPK1 and methylation of DAPK1 DNA CpG sites
and TF. (A)The expression value of 24 methylation sites of DAPK1 promoter. (B–F) The correlation
of DAPK1 with (B) cg13527872, (C) cg2474277, (D) cg19734228, (E) cg14014720 and (F) cg15746719.
(G) Top 20 TFs that potentially regulate DAPK1 in different human cancers. (H) Correlation between
DAPK1 and TF mRNA expression.
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To ascertain membership of the putative molecular network which regulates DAPK1
expression, we investigated transcription factors potentially affecting DAPK1 gene tran-
scription. First, the top 20 regulatory transcription factors in human cancers were identified
using the Cistrome DB Toolkit (Figure 3G). Subsequent analyses revealed no correlation
between DAPK1 and the expression of 20 transcription factors (Figure 3H).

3.3. DAPK1 Displays Oncogenic Features in GC Cells

Prompted by the above findings, we examined whether DAPK1 exerted oncogenic
functions in GC. Firstly, DAPK1 was knocked down in MGC-803 cells using the DAPK1-
shRNA plasmid (Figure 4A). Knockdown of endogenous DAPK1 did not affect MGC-803
cell proliferation (Figure 4B). Migration assay and invasion assay demonstrated that DAPK1
knockdown suppressed the invasion and migration abilities of MGC-803 cells (Figure 4C,D).
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Figure 4. Knockdown DAPK1 inhibits GC cell migration and invasion. (A) Western blot was
used to detect the levels of DAPK1 in MGC-803 cells transduced by DAPK1-shRNA; (B) DAPK1
knockdown did not significantly affect MGC-803 cell proliferation by using CCK8; (C) DAPK1
knockdown inhibited MGC-803 cell migration; (D) DAPK1 knockdown inhibited MGC-803 cell
invasion. ** p < 0.01. Please find the original western blot of (A) in the Figure S1.
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DAPK1 overexpression plasmid has been further transfected into MGC-803 cells to
analyze the effects of DAPK1 on GC cells (Figure 5A). In Figure 5B, overexpression of
DAPK1 did not affect MGC-803 cell proliferation. The migration and invasion assays
showed that increased DAPK1 levels promoted the invasion and migration abilities of
MGC-803 cells (Figure 5C,D).
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migration; (D) DAPK1 promoted MGC-803 cell invasion. ** p < 0.01. Please find the original western
blot of (A) in the Figure S2.

3.4. Construction of a Co-Expression Network for Weighted Genes of DAPK1 in GC

WGCNA was used to explore networks of the co-expression of the DAPK1 gene in
GC patients. We constructed WGCNA using the GSE62254 dataset and calculated network
topologies with soft threshold power values to select the optimal threshold. A power value
of 3 is the minimum power for scale-free topology in GSE62254 databases (Figure 6A,B).
After that, the co-expression resemblance matrix was transformed into an adjacency matrix
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by choosing 3 as a soft threshold (Figure 6C). We used the dynamic tree-cutting method
and yielded 23 meaningful modules. A total of 1367 genes co-expressed with DAPK1
lengthened to the blue module. KEGG-pathway and GO-BP analysis were used to reveal
the functions of these 1367 genes. The result of GO-BP demonstrated that the top 10 terms
were cell cycle, cell cycle process, etc. (Figure 6D). KEGG-pathway results demonstrated
that the top 10 terms were cell cycle, DNA replication, etc. (Figure 6E).
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Figure 6. WGCNA was used to identify co-expression module genes relating to DAPK1. (A) As-
sociation between power and scale-free topology model fit in GSE62254 database. (B) Association
between power and mean connectivity in GSE62254 dataset. (C) Dendrogram of modules identi-
fied by WGCNA in the GSE62254 dataset. (D) GO-BP analysis of the genes in the blue module.
(E) KEGG-pathway analysis of the genes in the blue module.
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3.5. Prognosis Model of DAPK1-Related Genes Constructed

Correlation analysis between the expression of 1367 genes and DAPK1 expression
was performed, and it was found that only the expression of 12 genes was positively
correlated with DAPK1 expression in GC, including FAM161B (family with sequence
similarity 161, member B), PELI2 (pellino E3 ubiquitin-protein ligase family member 2),
FNIP2 (folliculin interacting protein 2), GRAMD1B (GRAM domain containing 1B), IFT20
(intraflagellar transport 20), NTN4 (netrin 4), PDGFD (platelet-derived growth factor D)
SEC31A (SEC31 homolog A), STX12 (syntaxin 12), UGCG (UDP-glucose ceramide gluco-
syltransferase), YPEL5 (yippee-like 5) and ZSWIM6 (zinc finger, SWIM-type containing 6)
(r > 0.3, p < 0.05) (Figure 7A). The survival analysis results indicated that high expression
of YPEL5, FAM161B, SEC31A, ZSWIM6, and PDGFD was linked with poor survival of GC
patients (p < 0.05) (Figure 7B).
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Figure 7. Construction of survival risk score system based on DAPK1-related genes. (A) The
correlation between DAPK1 and DAPK1-related genes. (B) Survival analysis of the DAPK1-related
genes. (C) Partial likelihood deviance of overall survival for LASSO coefficient profiles. (D) LASSO
coefficient profiles of 4 genes for overall survival. (E) The distribution of survival status, risk scores,
and the expression of four genes of GC patients. (F) Survival analysis of risk score module.

Next, these 5 genes were included in the LASSO analysis. Figure 7C plotted the
partial likelihood deviance versus log (λ), where λ was the tuning parameter. The value
of λ was 0.03 and was chosen by 10-fold cross-validation. Figure 7C shows the change
in the trajectory of each prognostic variable. Each variable has a coefficient as its weight
provided by LASSO. We obtained 4 variables with nonzero coefficients at the value λ
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chosen by the cross-validation. These prognostic variables included FAM161B, SEC31A,
YPEL5, and ZSWIM6. The variables were ranked by their contribution to the prognostic
model as follows: FAM161B (weight: 0.788), SEC31A (weight: 0.741), YPEL5 (weight:
1.568) and ZSWIM6 (weight: 0.197). Then, the prognostic model risk score for each patient
was computed according to the summation of 4 variables multiplied by a coefficient
generated from the LASSO regression. The formula for this risk score was (0.788 * FAM161B
expression) + (0.741 * SEC31A expression) + (1.568 * YPEL5 expression) + (0.197 * ZSWIM6
expression). Each GC patient was classified into low- and high-risk score groups based on
the median value. The distribution of survival status, risk scores, and the expression of four
genes of GC patients in the GSE62254 dataset are shown in Figure 7E. The survival analysis
results indicated that the prognosis of GC patients in the high-risk group was inferior to
the low-risk group (Figure 7F).

Moreover, survival analyses were performed on GC patients with low- and high-risk
scores in different subgroups, including age, gender and tumor stage (Figure 8). These
results reinforce the powerful stratification capabilities of the risk scores.
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Figure 8. Survival analysis of GC patients in different subgroups. (A,B) Survival analysis of the GC
patients with (A) sex = female and (B) GC patients with sex = male subgroup. (C,D) Survival analysis
of the GC patients with age < 60 (C) and GC patients with age ≥ 60 (D) subgroup. (E,F) Survival
analysis of the GC patients with stage = I & II (E) and GC patients with stage = III & IV (F) subgroup.



Biology 2022, 11, 1488 13 of 16

To demonstrate the reliability of the risk score model, the TCGA database was used
as the verification dataset (Figure 9). GC patients were divided into the low-and high-risk
group, respectively. GC patients with high-risk scores had a worse OS compared to the
low-risk score group, indicating that the model has excellent accuracy.
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3.6. Construction of a Clinical Prognostic Prediction Model

A survival nomogram has been generated to accurately compute the 1-, 3- and 5-year
survival probabilities based on gender, age, tumor stage and risk score (Figure 10A). As
shown in Figure 10B, the nomogram performed well compared to the ideal model. We
consider that the nomogram has been shown to have excellent accuracy in predicting
survival in GC patients.
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4. Discussion

DAPK1 has an important role in the regulation of cellular processes and is involved
in tumorigenesis and development [17–20]. DAPK1 is emerging as a tumor suppressor
for some cancers, including bladder, liver, colorectal and oesophageal squamous cell
carcinomas [9,21–23]. In liver cancer, DAPK1 expression is markedly down-regulated;
low expression of DAPK1 is an unfavorable prognosis for liver cancer patients. DAPK1
can inhibit the invasion and migration of liver cancer cells by up-regulating DDX20 [9].
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In GC tissues, DDX20 is significantly up-regulated, and high expression of DDX20 is
an unfavorable prognostic factor for GC patients. DDX20 can promote the proliferation,
invasion and migration of GC cells [10]. Therefore, DDX20, the downstream gene of
DAPK1, appears to be both an oncogene and an oncogene suppressor in different tumor
types. Recent studies have demonstrated the oncogenic role of DAPK1 [24]. We were,
therefore, interested in the function of DAPK1 in GC cells.

A previous study reported that DAPK1 was down-regulated in 32 GC tissues com-
pared with 32 normal tissues based on the GSE65801 dataset [11]. Because the sample size
of GSE65801 is relatively small, we used a larger sample size to detect the expression and
prognosis of DAPK1 in GC based on three GEO and TCGA datasets. In this study, three
GEO datasets (GSE13195, GSE63089 and GSE33335) and the TCGA dataset demonstrated a
significant up-regulation of DAPK1 expression in GC tissues. Survival analysis suggested
that the low expression of DAPK1 was a favorable prognostic factor for GC patients. These
results demonstrated that DAPK1 may be a carcinogenic gene in GC. Guo et al. found
that DAPK1 was associated with the immune microenvironment of GC. DAPK1 is able
to increase the killing ability of NK cells and restrain immune evasion of GC cells [11].
However, the effects of DAPK1 on the proliferation, invasion and migration of GC cells
have not been reported. Therefore, we evaluated the effect of DAPK1 on the proliferation,
invasion and migration of GC cells. Results have shown that DAPK1 can promote the
invasion and migration of GC cells. These results indicate that DAPK1 can significantly
influence invasion and immune escape in GC and suggest that DAPK1 plays different
biological roles both at the tissue level and at the cellular level. Furthermore, further single-
cell analysis studies will be necessary to improve the comprehension of the differences in
DAPK1 expression in GC.

Compared to normal tissue, hypermethylation of DAPK1 has been routinely observed
in many cancers, including lung, kidney and bladder cancers [25–27]. In the study, we
observed that DAPK1 expression was inversely associated with cg19734228, cg15746719,
cg14014720, cg13527872 and cg24754277 based on the TCGA database. Thus, we have
suggested that DAPK1 expression is modulated by DNA methylation in GC.

Next, we used the WGCNA technique to identify DAPK1-related gene modules in GC
and identified the blue module as the DAPK1-related gene module. Functional analyses
found cell cycle and DNA metabolic process pathways were enriched in the DAPK1-related
gene module. Correlation analysis and lasso analysis were employed to build a DAPK1-
related risk score model consisting of four DAPK1-related genes, including FAM161B,
SEC31A, YPEL5 and ZSWIM6, which could classify patients into low-risk and high-risk
groups. There have been few reports on the roles of FAM161B in tumors. Previous studies
have reported that FAM161B was regulated by methylation in colon cancer [28]. SEC31A is
an external component of the COPII associated with the pathogenesis of non-small cell lung
cancer [29]. YPEL5 is a member of the highly conserved YPEL gene family [30]. YPEL5 has
been found to inhibit the proliferation of cervical and colorectal cancer cells [31,32]. The
expression of ZSWIM6 was found to be increased in the brain. Previous studies found that
mutations of the ZSWIM6 gene affect developmental and neurological disorders [33–35].
Subsequently, the model was validated in the TCGA validation database. We refined the
model by developing a nomogram to make it more clinically applicable.

5. Conclusions

In conclusion, we identified that DAPK1 is highly expressed in GC and is associated
with a poor prognosis. Aside from this, we proved that DAPK1 increased the invasion and
migration of GC cells. A DAPK1-related multi-gene signature prognostic model, including
co-expression genes, was constructed, which might have crucial implications in predicting
the prognosis of GC patients
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